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Abstract. Image-Text Retrieval (ITR) is challenging in bridging visual
and lingual modalities. Contrastive learning has been adopted by most
prior arts. Except for limited amount of negative image-text pairs, the
capability of constrastive learning is restricted by manually weighting
negative pairs as well as unawareness of external knowledge. In this pa-
per, we propose our novel Coupled Diversity-Sensitive Momentum Con-
strastive Learning (CODER) for improving cross-modal representation.
Firstly, a novel diversity-sensitive contrastive learning (DCL) architec-
ture is invented. We introduce dynamic dictionaries for both modalities
to enlarge the scale of image-text pairs, and diversity-sensitiveness is
achieved by adaptive negative pair weighting. Furthermore, two branches
are designed in CODER. One learns instance-level embeddings from im-
age/text, and it also generates pseudo online clustering labels for its in-
put image/text based on their embeddings. Meanwhile, the other branch
learns to query from commonsense knowledge graph to form concept-
level descriptors for both modalities. Afterwards, both branches leverage
DCL to align the cross-modal embedding spaces while an extra pseudo
clustering label prediction loss is utilized to promote concept-level rep-
resentation learning for the second branch. Extensive experiments con-
ducted on two popular benchmarks, i.e. MSCOCO and Flicker30K, val-
idate CODER remarkably outperforms the state-of-the-art approaches.

1 Introduction

Image-text retrieval (ITR) refers to searching for the semantically similar in-
stance from visual (textual) modality with the query instance from textual (vi-

∗indicates corresponding author.
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Fig. 1. Conceptual illustration of our proposed Diversity-sensitive Contrastive Learn-
ing (DCL) loss. Sub-figure (a), (b) and (c) depict three exemplary distributions of
negative samples which are undesired because they do not show much similarity varia-
tions, respectively. Sub-figure (d) shows desired negative sample distribution given an
anchor, where different negative samples are not equally pushed away. It demonstrate
the joint space can well distinguish fine-grained semantic difference among negative
samples. Sub-figure (e) illustrates the ideal joint embedding space affected by DCL.

sual) modality. Nowadays, it has become a compelling topic from both industrial
and research community and is of potential value to benefit extensive relevant
applications [2, 3, 16, 21, 22, 37, 47, 48, 57–60,62]. In the past decade, tremendous
progresses have been made with the prevalence of deep learning [27]. Early works
typically associate image with text via learning global [10,26,50] or local cross-
modal alignment [4,28]. Follow-up studies attempt to introduce external knowl-
edge information, including commonsense knowledge [45,49] or scene graph [51]
information, into visual-semantic embedding models. It remains challenging due
to heterogeneous multi-modal data distributions, which requires pretty precise
cross-modal alignment.

Loss functions play the central role in aligning multi-modal data. The pre-
vailing bi-directional triplet ranking (BTR) loss used in [10,11] can be regarded
as one special case of contrastive loss [14], where only one negative sample is con-
sidered. Then, bidirectional Info-NCE loss [39] (BIN), as a typical contrastive
loss, has been widely adopted in many tasks [7, 35, 43]. It exploits the whole
paired relationships among a mini-batch of image-text samples when applied to
the ITR task. Meanwhile, constrastive learning is well-known in limited negative
sample scale [15], which acts as the bottleneck of its capability.

Another notable issue is both aforementioned contrastive losses manually de-
sign the weighting strategy for negative image-text pairs. They both enforce the
negatives and anchor samples to be separated far away enough, whilst ignoring
the relative differences between them. Consequently, the fine-grained discrepan-
cies among negative pairs are hard to be fully captured.
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In fact, the importance of each image/text instance is unequal [6] in con-
trastive learning. A critical factor determining the importance of instance is its
semantic ambiguity [46]. In particular, the samples with high semantic ambiguity
refers to those with multiple meanings/concepts. Oppositely, the samples with
simple and clear meanings usually have low semantic ambiguity. To explicitly
model the semantic ambiguity of sample, we present a term called “Diversity”.
Concretely, the diversity of one sample is defined based on the distribution of
cross-modal negatives around it. For example, as depicted in three typical cases
in Figure 1(a-c), if a sample has multiple negatives with similar distances to
it, we call this sample as low-diversity one. Obviously, the existence of low-
diversity samples are undesirable, which will weaken the discrimination ability
of the learned joint space. Conversely, if the data distribution around an anchor
instance is well-spaced (see 1(d), this sample has high diversity), it could better
measure the difference among different negative samples, which is more ideal.

To address the aforementioned limitations and questions, first of all, inspired
by Momentum Contrastive Learning (MCL) paradigm [15], dynamic dictionar-
ies of memory banks are introduced in coupled form for both visual and textual
modality to enlarge interactions among image-text pairs. Furthermore, in this
paper, we propose to extend constrastive learning to a novel Diversity-sensitive
Contrastive Learning (DCL) paradigm. To achieve it, a novel diversity-sensitive
contrastive loss is presented, which incorporates our defined diversity into con-
trastive loss. Specifically, in contrastive loss, a simple yet effective estimation
function is designed to quantify the diversity of each anchor sample in a mini-
batch of data, the diversity term is then used to dynamically weight negative
samples of each anchor, enabling the training procedure to balance between di-
versity and total contrastive loss. With our DCL, on one hand, the image-text
pairs built based on low diversity anchor sample can be allocated with larger
weight and vice versa; on the other hand, given a negative sample, when it is
paired with different anchors, it can be unequally weighted according to the
anchor’s diversity. Doing so enables the original contrastive loss to be aware of
semantic diversities of samples, and suppress the adverse impact brought by low-
diversity ones. Accordingly, instance-level visual or textual representations can
be learned with our DCL. As consequence, we can obtain a more structured and
hierarchical joint embedding space. Taking Figure 1(e) as example, the subtle
difference between the caption (marked in orange) and another one (marked in
green) can be appropriately distinguished in their semantic distances.

Furthermore, how to leverage external knowledge into contrastive learning
framework is worth exploring. To be complementary to the instance-level align-
ment, we achieve concept-level cross-modal feature alignment via exploiting com-
monsense knowledge. Different from the former, concept-level alignment is built
by firstly learning to extract homogeneous concept-level visual and textual em-
beddings from commonsense graph, followed by aligning the cross-modal em-
beddings via adopting DCL along with a Prototype-Guided Classification loss
(PGC). In order to enable PGC, an online clustering procedure is performed on
instance-level representations and each cluster id is treated as a prototype, then
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a prediction head based on the concept-level image/text embedding is employed
for classifying the cluster id of the input image/text. The final image-text match-
ing score is a combination of similarities obtained from both instance-level and
concept-level alignment. Extensive experiments conducted on MSCOCO [31] and
Flicker30K [41] verify the superiority of our framework and show that our Cou-
pled Diversity-Sensitive Contrastive Learning (CODER) method significantly
outperforms recent state-of-the-art solutions.

To sum up, the main contributions are listed as follows:

– We incorporate coupled Momentum Contrastive learning (MCL) into image-
text representation learning and further extend contrastive learning to a
novel Diversity-Sensitive Contrastive Learning (DCL) paradigm, which can
adaptively weight negative image-text pairs to further boost the perfor-
mance.

– A Coupled Diversity-Sensitive Contrastive Learning (CODER) framework
is proposed to exploit not only instance-level image-text representations but
also concept-level embeddings with the aid of external knowledge as well as
on-line clustering based prototype-guided classification loss.

– Extensive experimental results on two benchmarks demonstrate our ap-
proach considerably outperforms state-of-the-art methods by a large margin.

2 Related Work

2.1 Contrastive Learning

Recently, Contrastive Learning [7, 13, 15, 39, 43] has made remarkable progress
in unsupervised representation learning. Chen at el. [7] shows that contrastive
learning in unsupervised visual representation learning benefits from large batch
size negatives and stronger data augmentation. He at el. [15] proposed Momen-
tum Contrastive Learning (MCL) paradigm that obtains the new key representa-
tion on-the-fly by a momentum-updated key encoder, and maintains a dictionary
as a queue to allow the training process to reuse the encoded key representa-
tions from the immediate preceding mini-batches. Recently, more Contrastive
Learning based vision-language understanding studies [18, 30, 43, 61] are emerg-
ing. For video-text retrieval, Liu at el. [34] first introduces the vanilla info-NCE
loss based MCL mechanism to enhance the cross-modal discrimination. Distinct
from them, we integrate coupled MCL into our proposed Diversity-sensitive con-
trastive learning (DCL) paradigm for tackling ITR.

2.2 Image-Text Retrieval

Along with the renaissance of deep learning, a surge of works have been pro-
posed for ITR. Early attempts [11,36,38,50] typically employ global features to
represent both image and text in a common semantic space. For instance, Kiros
at el. [26] encoded image and text by CNN and RNN respectively, utilizing
BTR loss to train the model. Afterwards, another line of research [4,9,28,53,55]
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employed multi-modal attention mechanism [4, 20, 28, 56] or knowledge aided
representation learning [12, 17, 32, 45, 49] to achieve cross-modal alignment by
exploiting more fine-grained associations. For instance, Lee et al. [28] developed
Stacked Cross Attention Network that aligns image regions and textual words.

Except for focusing on representation architecture designing, some stud-
ies [6, 10, 33, 54] endeavored to improve the learning objectives. As a seminal
work, Faghri [10] et al. proposed to introduce one on-line hard negative mining
(OHNM) strategy into BTR loss, which is very prevailing for ITR. Liu et al. [33]
proposed to tackle hubness problem by imposing heavy punishment on the hard
negatives in triplets. Afterwards, Chen et al. [6] further improved the BTR loss
by searching for more hard negatives in off-line way to constitute the quintuplet.
Overall, the common character of above works is designing constraint strategy
for pairwise multi-modal data, whilst our DCL additionally performs diversity
estimation especially for each sample. Moreover, we introduce MCL to promote
large-scale negative interaction, which leads to more comprehensive diversity
estimation in DCL.

3 Methodology

3.1 Overall Framework

The overall framework of our proposed CODER model is illustrated in Figure 2.
In our model, two branches are designed for instance-level and concept-level rep-
resentation learning. In the instance-level branch (Fig.2(a)), image and text fea-
tures are encoded and aggregated to be vI and wI , momentum encodes are used
for the two modalities to serve as coupled memory banks. Instance-level align-
ment is achieved via employing our proposed diversity-sensitive contrastive loss
LI
DCL as well as memory-aided DCL loss LI

M DCL (Fig.2(c)). As for the concept-
level branch (Fig.2(b)), statistical commonsense representation (SCC) [49] de-
noted as Y, is adopted as homogeneous feature basis. Query features vq

C and
wq

C are obtained from image and text, respectively. Then concept-level features
vC and wC are obtained by learning to query from feature basis Y. For concept-
level alignment (Fig.2(d)), except for DCL loss LC

DCL, an online-clustering based
prototype-guided classification loss LPGC is additionally leveraged.

3.2 Instance and Concept Level Representations

Instance-level Representation For image encoding, we adopt Faster-RCNN
[1,44] to obtain L region-level features {ol}Ll=1 and then aggregate these features
to be a instance-level visual embedding vI ∈ RF . Pre-trained BERT [8] is our
textual encoder and N word-level embeddings {et}Tt=1 are also aggregated to
instance-level textual embedding wI ∈ RF .

vI = gvis({ol}Ln=1), wI = gtext({et}Tt=1), (1)

where gvis(·) and gtext(·) are visual and textual aggregators.
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Fig. 2. The overall architecture of our proposed CODERmodel for image-text retrieval.
It is composed of an instance-level representation branch (a) and an concept-level one
which leverages external knowledge (b). The former branch is optimized by minimizing
instance-level DCL loss and memory-based DCL loss (denoted as LI

DCL and LI
M DCL,

respectively) (c). The other one is learned by employing concept-level DCL loss LC
DCL

and online clustering based prototype-guided classification LPGC as objectives (d).

Concept-level Representation The concept-level representations for both
modalities are built based on a group of concepts. Firstly, we extract g rep-
resentative concepts from the the texts over the whole image-caption dataset.
Afterwards, the GloVE [40] is employed to instantiate these concepts as X.
Following [49], graph convolution network (GCN) [25] is utilized to process
to produce the statistical commonsense aided concept (SCC) representations
Y = {y1, ...,yg}. Please refer to the supplementary materials for more details.

To generate concept-level representations, we generate representations (vq
C

and wq
C) by using another group of feature aggregators (gvis(·) and gtext(·))

to combine local features {ol}Ll=1 and {et}Tt=1, respectively. Then, as depicted
in Figure 2, vq

C and wq
C are fed into concept-level feature encoders, which are

taken as input vectors to query from the SCC representations Y. The output
scores for different concepts allow us to uniformly utilize the linear combination
of the SCC representations to represent both modalities. Mathematically, the
concept-level representation vC and wC can be calculated as:

vC =

g∑
i=1

avi yi; avi =
eλv

I
CWvyT

i∑q
i=1 e

λvI
CWvyT

i

.

wC =

g∑
j=1

awj yj ; awj =
eλw

I
CWwyT

j∑q
j=1 e

λwI
CWwyT

j

(2)
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where Wv ∈ RF×F and Ww ∈ RF×F denote the learnable parameter matrix,
avi and awj denote the visual and textual score corresponding to the concept zi,
respectively. λ controls the smoothness of the softmax function.

Coupled Memory Banks Building We propose to leverage a couple of dy-
namic memory banks BI

v and BI
w to restore more visual and textual embed-

dings to enlarge the scale of negative samples for both modalities. We follow
MoCo [15] to obtain instance-level momentum image encoder and text encoder
by momentum updating their weights according to the corresponding image and
text encoders. Visual or textual instances from the latest training iterations
are fed to the momentum encoders to generate visual and textual embeddings,
which are restored in coupled memory banks. Such a process can be conveniently
implemented via queues.

3.3 Diversity-Sensitive Contrastive Loss

Estimating the semantic Diversity of instance plays important role in enhancing
cross-modal discrimination. Specifically, to describe our diversity-sensitive con-
trastive loss, we start from diversity estimation, and then introduce our explicit
diversity-sensitive loss.

Diversity Estimation For simplicity, we take as example that visual feature
vi is an anchor sample and Q text features W = {wi,w2, ...,wQ} are to be
compared (among which only wi is a matching sample for vi), to illustrate how
we estimate diversity of an anchor sample. The cosine similarity of cosine(vi,
wj) is defined as Sij . We propose a simple but effective metric to estimate the
semantic diversity explicitly.

In joint embedding space, if an anchor sample with low diversity indicates
the close similarities between it and numerous negatives, this case is undesired.
By contrast, an ideal data distribution space should be more structured and con-
sistent with text-image pair annotations. Intuitively, we propose to quantify the
diversity of anchor sample via employing one statistical variable, i.e. standard
deviation (SD). Concretely, a low-diversity anchor sample has multiple nega-
tives with close distances to it, implying the SD value of cross-modal similarities
between it and them will be small. Conversely, the high SD value means an an-
chor sample has high diversity. Since the SD value between negative cross-modal
similarities are proportional to the diversity of anchor, we propose to estimate
the semantic diversity explicitly based on SD value. Taking image sample vi for
instance, the computation process of its diversity value is defined as:

SD(vi) =
√
E(S2

ij)− [E(Sij)]2, i ̸= j;

div(vi) = 1/σ(ϵ/SD);

div(vi) = div(vi)/max{div(v1), ..., div(vQ)},

(3)
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where E(·) is the mathematical expectation function and σ(·) denotes the Sig-
moid function that normalizes the reciprocal of SD value to a uniform scale,
assuring it vary in a relatively stable range. div(vi) denotes the diversity score
of vi calculated from the candidate textual samples to be compared with. ϵ = 0.1
is a tunning parameter. Finally, we divide each diversity score divstd(vi) by the
maximum value of them in mini-batch for normalization. Likewise, the diversity
of text sample can be calculated in similar manner.

Diversity-Sensitive Loss As mentioned in Section.1, we aim to highlight the
discrepancy among the anchor sample with low-diversity and its negatives. To
achieve it, we need to allocate more attention to such cases in order for an optimal
alignment model. To begin with, let us term the contrastive objective that insen-
sitive to diversity as LDCL I . Given V = {v1, ...,vN} and W = {w1, ...,wQ},
LDCL I(V,W) can be formulated as:

lDCL I(V,W) = µ
N

N∑
n=1

[log(
∑
q ̸=n

exp(
(Snq−γ)

µ ) + 1)− log(Snn + 1)];

lDCL I(W,V) = µ
Q

Q∑
q=1

[log(
∑
n ̸=q

exp(
(Sqn−γ)

µ ) + 1)− log(Sqq + 1)];

LDCL I(W,V) = lDCL I(W,V) + lDCL I(V,W)

(4)

where µ is a temperature scalar; γ is a margin parameter; N is the number of
samples within the mini-batch; Snq = cosine(vn,wq), Sqn = cosine(wq,vn), Snn =
cosine(vn,wn) and Sqq = cosine(wq,vq) denote the cosine similarities.

To explicitly introduce diversity awareness, we extend the above loss to DCL
loss LDCL. Mathematically,

LDCL(V,W) = lDCL(W,V) + lDCL(V,W)

lDCL(V,W) = µ
N

N∑
n=1

[log(
∑
q ̸=n

exp(
(Snq−γ)
µ·div(vn)

) + 1)− log(Snn + 1)];

lDCL(W,V) = µ
Q

Q∑
q=1

[log(
∑
n ̸=q

exp(
(Sqn−γ)
µ·div(wq)

) + 1)− log(Sqq + 1)];

(5)

where div(vn) and div(wq) denotes the diversity of vn and wq, respectively and
they are used to adaptively weight the negative samples.

DCL Loss Based Cross-Modal Alignment Instance-level DCL Loss.
For instance-level representation, two items of DCL loss is employed. First, it
is imposed on data pairs in mini-batch, named as LI

DCL. Secondly, it is im-
posed on anchor sample in mini-batch and items from coupled memory banks,
namely Memory-aided Diversity-sensitive Contrastive Learning (M-DCL) and
abbreviated as LI

M DCL. Formally, using VI and WI to denote a mini-batch of
embeddings vI and wI , these loss items are defined as:

LI
DCL = LDCL(V

I ,WI),

LI
M DCL = LDCL(V

I , BI
w) + LDCL(W

I , BI
v).

(6)
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Please note that in Eq.6, because the presence of memory banks, diversity es-
timation is processed as the average of diversity values at mini-batch level and
memory bank level.
Concept-level DCL Loss. For concept-level representation, we only impose
DCL Loss on data pairs in a mini-batch, the concept-level DCL loss is represented
as: LC

DCL = LDCL(V
C ,WC) + LDCL(W

C ,VC).

3.4 Prototype-guided Classification Loss

In this section, we present a novel Prototype-guided Classification (PGC) loss,
which aims to enhance cross-modal discrimination by leveraging the comple-
mentary semantics between instance-level and concept-level representations. In
particular, we perform K-means [19] clustering in an on-line manner during train-
ing based on the summation of instance-level representations vI and wI , which
contains more individual information. We name the output clusters as prototypes
that are able to capture the shared semantic information between semantically
related samples. Accordingly, The prototype ids of image/text instances serve as
the pseudo class ids and are taken as supervision Z = {z1, ..., zK} for concept-
level representation learning. Specifically, the PGC loss is formally defined as:

Pv = softmax(PCvC),Pw = softmax(PCwC),

LPGC = Lv
PGC + Lw

PGC = Lcls(Pw,Z) + Lcls(Pv,Z)
(7)

where PC ∈ RK×F is one learnable parameter matrix that outputs distributions
over the K category labels for both vC and wC . Pv ∈ RK and Pw ∈ RK denote
probabilities over all labels. Lcls denotes the cross-entropy classification loss.

3.5 Training and Inference

Training Objective. We deploy the summation of instance-level and concept-
level aligning losses as overall training objectives:

L = λLI
DCL + LI

M DCL + LC
DCL + LPGC , (8)

Inference Scheme. For inference, we use the weighted summation of instance-
level and concept-level cosine similarities to measure the overall cross-modal sim-
ilarity S = βS(vI ,wI) + (1− β)S(vC ,wC), where β is a balancing parameter.

4 Experiments

4.1 Datasets & Evaluation Metrics

Datasets. Flickr30K [41] is an image-caption dataset containing 31,783 images,
where each image annotated with five sentences. Following [38], we split the
dataset into 29,783 training, 1000 validation, and 1000 testing images.The per-
formance evaluation is reported on 1000 testing set. MSCOCO [31] is another
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Table 1. Comparisons of experimental results on MSCOCO 1K test set and Flickr30K
test set. Note that DSRAN [56], GPO [5] and DIME [42] employ BERT as we use, the
rest use inferior text encoders.

Methods Image Encoder

MSCOCO Flickr30K

Text retrieval Image Retrieval
R@sum

Text retrieval Image Retrieval
R@sum

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

DVSA [23] (2015) R-CNN 38.4 69.9 80.5 27.4 60.2 74.8 351.2 22.2 48.2 61.4 15.2 37.7 50.5 235.2

m-CNN [36] (2015) VGG-19 42.8 73.1 84.1 32.6 68.6 82.8 384.0 33.6 64.1 74.9 26.2 56.3 69.6 324.7

DSPE [50] (2016) VGG-19 50.1 79.7 89.2 39.6 75.2 86.9 420.7 40.3 68.9 79.9 29.7 60.1 72.1 351.0

VSE++ [10] (2018) ResNet-152 64.7 - 95.9 52.0 - 92.0 - 52.9 - 87.2 39.6 - 79.5 -

SCAN [28] (2018) Faster-RCNN 72.7 94.8 98.4 58.8 88.4 94.8 507.9 67.4 90.3 95.8 48.6 77.7 85.2 465.0

PVSE [46] (2019) Faster-RCNN 69.2 91.6 96.6 55.2 86.5 93.7 492.8 - - - - - -

VSRN [29] (2019) Faster-RCNN 76.2 94.8 98.2 62.8 89.7 95.1 516.8 71.3 90.6 96.0 54.7 81.8 88.2 482.6

CVSE [49] (2020) Faster-RCNN 74.8 95.1 98.3 59.9 89.4 95.2 512.7 73.5 92.1 95.8 52.9 80.4 87.8 482.5

IMRAM [4] (2020) Faster-RCNN 76.7 95.6 98.5 61.7 89.1 95.0 516.6 74.1 93.0 96.6 53.9 79.4 87.2 484.2

WCGL [52] (2021) Faster-RCNN 75.4 95.5 98.6 60.8 89.3 95.3 514.9 74.8 93.3 96.8 54.8 80.6 87.5 487.8

SHAN [20] (2021) Faster-RCNN 76.8 96.3 98.7 62.6 89.6 95.8 519.5 74.6 93.5 96.9 55.3 81.3 88.4 490.0

DSRAN [56] (2021) Faster-RCNN 77.1 95.3 98.1 62.9 89.9 95.3 518.6 75.3 94.4 97.6 57.3 84.8 90.9 500.3

GPO [5] (2021) Faster-RCNN 78.6 96.2 98.7 62.9 90.8 96.1 523.3 78.1 94.1 97.8 57.4 84.5 90.4 502.3

DIME (i-t) [42] (2021) Faster-RCNN 77.9 95.9 98.3 63.0 90.5 96.2 521.8 77.4 95.0 97.4 60.1 85.5 91.8 507.2

SGRAF [9] (2021) Faster-RCNN 79.6 96.2 98.5 63.2 90.7 96.1 524.3 77.8 94.1 97.4 58.5 83.0 88.8 499.6

CODER Faster-RCNN 82.1 96.6 98.8 65.5 91.5 96.2 530.6 83.2 96.5 98.0 63.1 87.1 93.0 520.9

image-caption dataset, totally including 123,287 images with each image roughly
annotated with five textual descriptions. We follow the public split of [23], includ-
ing 113,287 training images, 1000 validation images, and 5000 testing images.
The result is reported by averaging the results over 5-folds of 1K testing images.

Evaluation Metrics. We utilize two commonly used evaluation metrics,
i.e., R@K and “R@sum”. Specifically, R@K refers to the percentage of queries
in which the ground-truth matchings appear in the top K retrieved results.
“R@sum” is the summation of all six recall rates of R@K, which provides a
more comprehensive evaluation to testify the overall retrieval performance.

4.2 Implementation Details

For visual feature encoding, the amount of regions is L = 36 and the dimension
of region embeddings is 2048. For text encoding, a BERT-base [8] model is used
to extract 768-dimension textual embeddings. The dimension of joint space is
set to F=1024. For concept-level representation, we adopt 300-dim GloVe [40]
trained on the Wikipedia dataset to initialize the semantic concepts. The volume
of the concept vocabulary is g = 400. The size of couple memory banks is set
to 4096 and the momentum coefficient is 0.995. The cluster number K of PGC
loss is set to 10000 and 20000 for Flickr30K and MSCOCO dataset, respectively.
For the training objective, we empirically set µ = 0.1 and γ = 0.3 in Eq. (5).
Our CODER model is trained by Adam optimizer [24] with mini-batch size of
128. The learning rate is set to be 0.0002 for the first 15 epochs and 0.00002
for the next 15 epochs for both datasets. The balancing parameter in Eq. (8) is
set to λ = 3. For inference, the controlling parameter β is equal to 0.9. All our
experiments are conducted on a NVIDIA Tesla P40 GPU.
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4.3 Comparisons with state-of-the-art Methods

The experimental results on two benchmark datasets are listed in Table 1 6.
As for MSCOCO, we can observe that our CODER is obviously superior to
the competitors in most evaluation metrics, which yields a result of 82.1% and
65.5% on R@1 for text retrieval and image retrieval, respectively. Specifically,
compared with the best competitor SGRAF method, it achieves absolute boost
(2.5%, 0.4%, 0.3%) on (R@1, R@5, R@10) for text retrieval. For image retrieval,
our method also outperforms other algorithms. Moreover, on Flickr30K dataset,
as for the most persuasive criteria, the “R@sum” achieved by our model exceeds
the second best performance by 13.7%. These results solidly validate the advance
of our method.

4.4 Ablation Study

In this section, we perform a series of ablation studies to explore the impact of
the main modules in our CODER method. All the comparative experiments are
conducted on the Flickr30K dataset.

To begin with, we first investigate the effect of each module for instance-level
representation. In Table 2, we employ a framework without adopting coupled
memory banks for M-DCL as the baseline (#1), which utilizes the tradition-
ally prevailing BTR loss [10] to perform instance-level alignment instead of our
DCL loss. From Table 2, Comparing #1 with #2 based on R@1, the DCL loss
brings about 3.2% improvement for text retrieval and 2.9% for image retrieval.
Moreover, when the coupled memory banks is exploited for M-DCL, Comparing
#3 with #2, we can obtain additional performance improvement. These results
confirm the effectiveness of our proposed DCL learning paradigm for enhancing
instance-level discrimination.

In addition, we explore how the modules for concept-level representation af-
fects the retrieval performance. As shown in Table 2, comparing #4 with #3
based on R@1, the LC

DCL loss leads to 0.2% improvement for text retrieval and
0.2% for image retrieval. It validates our DCL loss is also effective for concept-
level representation learning. Furthermore, when our presented PGC loss is lever-
aged, comparing #5 with #4, it achieves (0.4%, 0.4%) boost on (R@1, R@5)
for text retrieval and (0.3%, 0.3%) boost on (R@1, R@5) for image retrieval.
The above results prove our designed concept-level representation learning mod-
ule can provides more complementary semantics for instance-level one thereby
enhancing cross-modal discrimination.

Impact of Different Configurations of DCL In this part, we perform abla-
tion studies to explore the impact of different configurations for the DCL module.

To analyze the impacts of various components in DCL module, we perform
a group of experiments and present the results in Table 3. We take the model

6We report our replicated results of [5] by using its official code without changing,
more discussions are given in the supplementary materials
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Table 2. Performance comparison of our CODER with different main components on
Flickr30K test set. “Instance-level Alignment” is abbreviated as “IA”. “Concept-level
Alignment” is abbreviated as “CA”.

Models
IA CA Text Retrieval Image Retrieval

LI
M DCL LI

DCL LPGC LC
DCL R@1 R@5 R@10 R@1 R@5 R@10

1 78.7 94.5 97.0 58.6 84.8 90.1

2 X 81.9 95.6 97.9 61.5 85.8 91.8

3 X X 82.6 96.1 98.0 62.6 86.7 92.3

4 X X X 82.8 96.1 98.0 62.8 86.8 92.6

5 X X X X 83.2 96.5 98.0 63.1 87.1 93.0

Table 3. Effect of different configurations of DCL module on Flickr30K test set. Im-
plicit Diversity estimation is abbreviated as “IE”. Explicit Diversity estimation is ab-
breviated as “EE”. “MB” means using memory banks for Explicit Diversity estimation.

Models LI
M DCL

LI
DCL Text Retrieval Image Retrieval

IE EE MB R@1 R@5 R@10 R@1 R@5 R@10

1 X 80.3 94.8 97.3 60.2 85.3 91.1

2 X X 81.5 95.6 97.5 61.2 85.6 91.2

3 X X X 81.9 95.6 97.7 61.5 85.8 91.4

4 X X 82.0 95.8 97.7 61.6 86.2 92.2

5 X X X 82.8 96.3 97.9 62.6 87.0 92.7

6 X X X X 83.2 96.5 98.0 63.1 87.1 93.0

adopting LDCL I loss in Eq. 4 as baseline, named implicit Diversity contrastive
loss and abbreviated as “IE”. As shown in Table 3, comparing #2 with #1 based
on R@1, the explicit Diversity estimation additionally leads to 1.2% improve-
ment for text retrieval and 1.0% for image retrieval. Moreover, the comparison
between #3 and #2 validates the introduce of memory bank items in Diver-
sity estimation really matters for alleviating semantic ambiguity. Furthermore,
comparing (#4,#5,#6) with (#1,#2,#3), we find the combination of LM DCL

and LI
DCL loss can lead to significant retrieval performance boost, which val-

idates they are mutually beneficial to each other and collaborate to promote
discriminative cross-modal embedding learning.

Impact of size in Mini-Batch. Then, we investigate the impact of size
in mini-batch on performance. From Figure 3, we can see that when mini-batch
size decreases from 128 to 32, the R@1 metric of the model “w/o M-DCL”
falls from 61.5% to 59.3% for image retrieval, meanwhile falls from 81.9% to
79.3% for text retrieval. By contrast, in the same setting, the R@1 metric of the
model “w M-DCL” only degrades by 0.9% and 0.9% for image retrieval and text
retrieval, respectively. These results reveal that, even though the mini-batch
size decreases sharply, our CODER with M-DCL can still achieve stable and
superior performance, which is achieved by leveraging the coupled memory banks
to enlarge interaction with negative samples. Additionally, the insensitivity to
mini-batch size indicates our method is able to remain competitive even if the
available computation resource is limited.



CODER 13

59.3
60.3 61.3 61.5

84.5 85.3 85.6 85.8

62.2 63.0 62.9 63.1

86.7 86.9 87 87.1

57

62

67

72

77

82

87

92

32 64 96 128

Re
ca

ll 
Ra

te
 (%

)

Batch Size

Image Retrieval

R@1(w/o M-DCL)
R@5(w/o M-DCL)
R@1(w M-DCL)
R@5(w M-DCL)

79.3
80.8 81.5 81.9

94.4 95.0 95.4 95.6

82.2 82.8 83.0 83.1

95.8 96.0 96.2 96.5

78

82

86

90

94

98

32 64 96 128

Re
ca

ll 
Ra

te
 (%

)

Batch Size

Text Retrieval

R@1(w/o M-DCL)
R@5(w/o M-DCL)
R@1(w M-DCL)
R@5(w M-DCL)

(a) Influence of Batch-size on Image Retrieval (b) Influence of Batch-size on Text Retrieval

Fig. 3. Performance comparison of CODER model with M-DCL and without M-DCL.
The model with M-DCL is abbreviated as “w M-DCL” and that without M-DCL is
abbreviated as “w/o M-DCL”.

Table 4. Impact of different clustering number K in PGC loss on Flickr30K test set.

K
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

5000 82.9 96.3 98.0 63.1 87.0 92.7

10000 83.2 96.5 98.0 63.1 87.1 93.0

15000 83.2 96.3 98.2 63.0 87.1 92.8

20000 82.8 96.2 97.9 62.8 87.0 92.5

Impact of Different Configurations of PGC Loss In this part, we explore
the influence of the clustering number K in PGC loss. The corresponding exper-
imental results are listed in Table 4. It can be seen that the performance is not
obviously affected by clustering number, archiving best results at K = 10000.
Afterwards, the performance degrades slightly accompanied by the increase of
clustering number, which implies the deceasing samples of one prototypical class
may weaken the general semantics conveyed by concept-level representations.

4.5 Analysis on Accuracy and Efficiency of Model

The retrieval latency is also very important in real application scenario, whereas
was seldom investigated in previous works. Thus, we report both retrieval re-
call and consuming time for more comprehensive performance comparisons. To
achieve that, we compare our CODER with six leading methods [4, 9, 20, 28,
32, 49]. Note that the inference time of them are reported by re-implementing
their open-sourced codes in the same environment. As shown in Figure 4, we
can see that the inference speed of our method is comparable to CVSE, but its
retrieval recall surpasses the latter by a large margin. Besides, in comparison to
the best competitor SGRAF [9], our method surpasses it up to nearly 6× faster
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Fig. 4. Performance comparison of infer-
ence speed and recall between different
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denote the similarities of how many image-
text pairs are calculated per second, the
higher the better.
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1. A woman in a pink sweater and an apron , cleaning a table with a sponge .

2. A woman in a pink sweater and an apron , cleaning a table with a sponge .

3. A woman in a pink shirt cleaning a wooden table . .

4. A woman in a pink sweater and an apron , cleaning a table with a sponge .

1 2 31. Two young attractive women in front of a store drop coins for street performers .

2. Two women enjoy the entertainment of street performers .

3. Two young women stop and watch street performers .

4. Two friends meet up at a shop .
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3. A man wearing a reflective vest sits on the sidewalk and holds up pamphlets with bicycles 

on the cover .

4. Three people pose with their political signs out in public .

1. Two children are playing on a bicycle .

2. Two people ridding a colorfully decorated bicycle .
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4. Two children attempt to use a bicycle to large for them .
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Fig. 5. The qualitative bi-directional re-
trieval results on Flickr30K dataset. For
text retrieval, the ground-truth and non
ground-truth descriptions are marked in red
and black, respectively. For image retrieval,
the number in the upper left corner denotes
the ranking order, and the ground-truth im-
ages are annotated with green check mark.

for inference, meanwhile achieves considerable advantage over it on “R@sum”
recall metric. Therefore, our method is superior to these approaches from both
perspectives of effectiveness and efficiency.

4.6 Retrieval Result Visualization

To further qualitatively show the performance of our model, in Figure 5, we select
several images and texts as queries to display their retrieval results on Flickr30K
dataset. The bidirectional ITR results demonstrate our CODER model can re-
turn reasonable retrieval results.

5 Conclusions

In this paper, we proposed a Coupled Diversity-Sensitive Momentum Contrastive
Learning (CODER) model for image-text retrieval. Specifically, Momentum Con-
trastive Learning (MCL) is extended to coupled form with dual dynamic modality-
specific memory banks to enlarge interactions among instance pairs for cross-
modal representation learning. Meanwhile, a novel diversity-sensitive contrastive
loss is designed to take semantic ambiguity of sample embedding into account,
which flexibly and dynamically allocate attention weights to negative pairs. In
parallel, we devise an on-line clustering based strategy to exploit complemen-
tary knowledge between hierarchical semantics to promote discriminative feature
learning. Furthermore, we systematically studied the impact of multiple compo-
nents in our model, and its superiority is validated via substantially surpassing
state-of-the-art approaches on two benchmarks with very low latency. In the near
future, we plan to integrate our proposed learning paradigm into more large-scale
vision-language pre-training models.
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