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Fig. 1. Architectural differences between CLIP (left panel), ALBEF (middle panel)
and the proposed model (right panel).

1.1 CLIP vs. SIMLA

CLIP[43] has a symmetric dual-encoder architecture which is designed for global
alignment between unimodal text and image representations. Each encoder is
a 12-layer transformer encoder dedicated to a single modality. SIMLA has a
single-stream architecture designed for alignment at multiple levels. The primary
architectural differences between CLIP and SIMLA are:

1. SIMLA includes a multimodal encoder with cross-attention that enables
alignment between patch-level image regions and the caption.

2. SIMLA adds additional training tasks, taking advantage of the multimodal
encoder to align on multiple levels.

3. SIMLA’s text encoder is dual-purpose: it is used as both a multimodal en-
coder and text encoder by sharing weights.

1.2 ALBEF vs. SIMLA

ALBEF[24] can be seen as an asymmetric variant of CLIP, with a transformer-
based multimodal encoder atop the unimodal text and image encoders for stronger
fusion. Furthermore, ALBEF aligns the unimodal text and image representations
before fusion within the multimodal encoder. The primary architectural differ-
ences between ALBEF [24] and SIMLA are:
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1. SIMLA’s multimodal encoder can fuse raw, unaligned language tokens with
image patch embeddings from the visual encoder. In contrast, ALBEF’s mul-
timodal encoder requires already aligned vision/language features as input
for fusion.

2. SIMLA reuses the multimodal encoder as a text encoder by sharing weights.
3. SIMLA’s multimodal encoder is capable of using both image patches and

language tokens as queries in the attention layers due to the cross-modality
reconstruction task. ALBEF’s multimodal encoder can only use language
tokens as queries in the attention layers.

4. SIMLA has twice the depth of multimodal fusion (12 layers vs 6 layers) with
the same number of parameters.

1.3 General Similarities and Differences

ALBEF, CLIP, and SIMLA all have the same number of transformer encoder
layers (24), though they are distributed differently. Specifically, all of CLIP’s lay-
ers are dedicated to unimodal representation learning (image / text encoders),
with no fusion layers. ALBEF incorporates a multimodal encoder (fusion layers),
but reduces the amount of layers dedicated to unimodal representation learning
(text / image encoders). SIMLA incorporates a multimodal encoder (fusion lay-
ers), but avoids the need to reduce the number of layers dedicated to unimodal
representation learning through weight sharing between the text encoder and
multimodal encoder. We take advantage of the observation [33,35,52] that pre-
trained language models have substantial capability for reuse and novel tasks,
and reuse the text encoder as a multimodal encoder by adding cross-attention
layers to the language model.

2 More Fine-Grained Alignment Examples

In Figure 2, we present examples of the image encoder’s ability to ground image
regions to language. The concept head atop the image encoder’s [CLS] token is
a linear classifier that predicts the presence or absence of tokens in the caption,
based only on the image content. We apply Grad-CAM [45] to show what image
regions the image encoder is looking at when it predicts the presence of a token.
As visible in the Grad-CAM visualizations of Figure 2, the image encoder itself
is capable of rudimentary natural language grounding.

3 Pseudolabel Extraction

The pseudolabel supervision loss is designed to train the image encoder’s repre-
sentation to explicitly encode the presence of crossmodal concepts. While ”con-
cept” is a broad term, we use it in a narrower sense: to denote object-level
semantic regions of images or text. A subset of language tokens can clearly be
used to denote objects (e.g. ’cow’, ’chair’, ’horse’). Other language tokens have
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A brown bear looking up to the 
sky while smiling.

Cows graze in a field next to the 
fence in view of a city.

An elephant standing in a zoo 
pen looking onward.

A truck sitting outside on a piece 
of grass.

A person is snowboarding 
down the slope by the edge of 

the evergreen forest.

truck forest

elephant cows

bear sky

Fig. 2. Grad-CAM of the image encoder through the concept prediction head.

no obvious visual counterpart (e.g. ’forever’, ’famine’). Based on this intuition,
we use the language tokens present in a caption as labels for the associated
image. However, only a subset of these labels will correspond to cross-modality
concepts which can be represented both visually and textually. To select the
subset of language tokens in a caption corresponding to cross-modal concepts,
we use the attention weights of the last layer of the multimodal encoder. Let
{[cls], t1, ..., tN} be the input language tokens, and let ({v⃗cls, v⃗1, ..., v⃗N}) be
the sequence of image patch embeddings produced by the image encoder for an
image-text pair. We perform a forward pass through the multimodal encoder
Emm using the language tokens as the queries1 and the image patches as the
keys and values. Using the standard formulation of cross-attention [33,53] in
Equation (1),

Cross-Attention(Qt,Ki, Vi) = softmax

(
QtK

T
i√

dk

)
Vi (1)

where Qt is query embedding sequence of the language tokens, Vi is the value
embedding sequence of the image patches, and Ki is the key embedding se-
quence of the image patches, we compute a series of multimodal embeddings
{m⃗cls, m⃗1, ..., m⃗N} having the same length as the sequence of language input
tokens {[cls], t1, ..., tN}. Next, we apply self-attention

Self-Attention(Qmm,Kmm, Vmm) = softmax

(
QmmKT

mm√
dk

)
Vmm (2)

1 Using image patches as queries resulted in lower quality pseudolabels.
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on the sequence of multimodal embeddings {m⃗cls, m⃗1, ..., m⃗N}, which produces
an attention matrix Aself of dimensions N × N , where N is the length of the
language sequence. It is then straightforward to choose the top k most attended
positions using the 0-th row of Aself , which corresponds to m⃗cls, the multimodal
representation of the image-text pair. The tokens in the most attended positions
are then taken to be the natural language concepts most relevant to the content
of the image, and are used as pseudolabels. In practice, we found that k = 4
yielded the best results.

4 How much does unimodal pretraining matter?

We experiment with training from scratch instead of initializing from pretrained
weights of BERT and DeiT in Table 1. Initializing from pretrained core models
is efficient: training from scratch slows down pretraining. This effect will likely
diminish as the number of training pairs increases.

Table 1. Training with pretrained core models is more efficient.

Flickr 0-shot RefCOCO+
Weight initialization Pairs TR@1 IR@1 TestA TestB

From pretrained BERT/DeiT 591k 61.0 45.9 36.8 30.4
From Scratch 591k 18.8 13.9 18.4 14.4

5 Fashion Image Retrieval

We compare a fine-tuned version of SIMLA against the state of the art Kalei-
doBERT [68] on image-text retrieval in the fashion domain using the FashionGen
[44] dataset. We use original test split and follow FashionBert’s [13] procedure to
create the gallery for evaluation. Specifically, we sample 1000 product IDs, and
use the frontal pose for each product as the image. For the text, we use both the
product name and the product description. We use the same fine-tuning settings
as for Flickr.

Table 2. Image-text retrieval on FashionGen[44].

Model TR@1 TR@5 TR@10 IR@1 IR@5 IR@10

KaleidoBERT [68] 33.8 60.6 68.6 28.0 60.1 68.4
SIMLA 48.9 80.2 89.6 51.3 82.6 89.9

∆ Change ↑ 14.9 ↑ 19.6 ↑ 21.3 ↑ 23.1 ↑ 22.5 ↑ 21.5
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