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Abstract. This is the first work to introduce the Most Retrievable Im-
age(MRI) and Least Retrievable Image(LRI) concepts in modern text-
to-image retrieval systems. An MRI is associated with and thus can be
retrieved by many unrelated texts, while an LRI is disassociated from
and thus not retrievable by related texts. Both of them have important
practical applications and implications. Due to their one-to-many na-
ture, it is fundamentally challenging to construct MRI and LRI. This
research addresses this nontrivial problem by developing novel and effec-
tive loss functions to craft perturbations that essentially corrupt feature
correlation between visual and language spaces, thus enabling MRI and
LRI. The proposed schemes are implemented based on CLIP, a state-
of-the-art image and text representation model, to demonstrate MRI
and LRI and their application in privacy-preserved image sharing and
malicious advertisement. They are evaluated by extensive experiments
based on the modern visual-language models on multiple benchmarks,
including Paris, ImageNet, Flickr30k, and MSCOCO. The experimental
results show the effectiveness and robustness of the proposed schemes for
constructing MRI and LRI.

Keywords: Visual-Language, CLIP, security

1 Introduction

The past few years have witnessed a great interest in multi-modal learning for
computer vision and natural language processing [4,51,2]. In particular, the text-
image retrieval is an emerging field aiming to query the most relevant image(s)
given a text description, or vice versa. The rapid growth of cloud-based image
storage and sharing makes it possible to utilize large datasets to train large-
scale text-image retrieval systems, such as ViLBERT [29], LXMERT [39], Visu-
alBERT [25], Unicoder-VL [22], VL-BERT [38] and UNITER [11]. More recently,
DeepMind has developed a state-of-the-art image and text representation model,
named CLIP [34], which enables zero-shot transfer to the downstream vision and
language tasks including text-image retrieval.



2 L. Zhu et al.

A boy is riding a
skateboard down

the street.
Text 

Encoder

Image
Encoder

Similarity
S(x, y)

Image-Text
Retrieval system

User: Bob

Search

Retrieve

T

I

User: Alice

Upload Image

Social Platforms

Constructed Most Retrievable Image

Constructed Least Retrievable Image

Fig. 1: An illustration of text-image retrieval system. Users upload photos to a so-
cial platform. The platform adds each photo and its embedding into a database.
For a given text query, the system will first compute an embedding for the text,
and then compare its similarity to the images in the embedding space. The im-
ages with the highest similarity scores are returned as the query results. In this
research, we craft perturbations to render an image to be either a Most Re-
trievable Image (MRI) or Least Retrievable Image (LRI), and demonstrate their
applications in privacy-preserved image sharing and malicious advertisement.

1.1 Background and Motivation

The text-image retrieval system adopts an image encoder and a text encoder to
extract image and textual features, respectively, and then learns cross-modality
embeddings for the features. During training, the encoders and the embedding
module are jointly optimized to accurately measure cross-modality similarity in
the shared embedding space. After training, the retrieval system first computes
the embedding of given a query text, and then compares its similarity to the
images in the embedding space. It returns the matched images with the highest
similarity scores as the query results as illustrated in Fig. 1.

The above overall framework has been widely adopted in the literature [34,15,9].
For example, CLIP supports text-image retrieval using two dedicated encoders
(for image and text, respectively) trained by large scale text-image contrastive
learning. The contrastive learning provides an effective solution to matching
highly correlated pairs between text and image domains by maximizing the
similarities of their representations; at the same time, it disassociates irrele-
vant pairs by minimizing their similarities. Recent studies [5,42] also reveal that
the contrastive learning is strongly related to mutual information (MI) [6] as
it essentially maximizes the MI of positive samples (i.e., correlated text-image
pairs) and minimize the MI between negative ones (i.e., irrelevant pairs). This
application-agnostic step was found to be effective for many downstream tasks.

The text-image pairs are many-to-many mappings. A highly abstracted text
keyword may be present in different images and an image may contain informa-
tion of various text keywords. Moreover, as they are usually trained on unfiltered
and uncurated image-text pairs from the Internet, they would inevitably learn
noisy, biased, or even incorrect information, thus exacerbating the many-to-many
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matching. Worse yet, we have discovered that this faulty attribute can be easily
exploited with the help of perturbation, which is similar to adversarial exam-
ple (AE) [17,8,16,24,12], that has been studied for security and trustworthiness
of deep learning. In this research, we systematically investigate how perturba-
tions affect text-image retrieval by introducing two new concepts, i.e., the Most
Retrievable Image (MRI) and the Least Retrievable image (LRI) and develop
efficient schemes to construct MRI and LRI and demonstrate their applications
and implications in practical text-image retrieval systems.

1.2 Proposed Most and Least Retrievable Images

The proposed most and least retrievable images are formally defined below:

– Most Retrievable Image (MRI): Given a large set of keywords (that may or
may not be related to the given image), a perturbation is crafted and added
to the image such that it is associated with and thus can be retrieved by any
of these keywords.

– Least Retrievable Image (LRI): Given a predefined keyword (that is secret
and often irrelevant to a given image), a perturbation is crafted and added
to the image such that it can be only retrieved by the secret keyword, but is
disassociated from and thus cannot be retrieved by any other text that may
or may not be related to the image.

While MRI and LRI are formulated, it is nontrivial to craft MRI and LRI
perturbations, because of their one-to-many nature. MRI and LRI perturbations
are significantly different from adversarial perturbations studied in the literature.
Computer vision [17,8,16,24,12] and content-based image retrieval [52,28,23,43]
adversarial perturbations aim to mislead the model to associate a sample with
an arbitrary incorrect class or a particular class. Adversarial perturbations to
vision and language models for Visual Question Answering [37,48] and Image
Captioning [10,49,21] aim to enable an untargeted attack to return a random
incorrect answer or a targeted attack to generate the targeted word/sentence
or delete the targeted word in the caption. None of them consider to match
or mismatch an image to multiple categories/texts. In this paper, we introduce
MRI to associate an image with many unrelated texts with high confidence and
LRI to disassociate an image from many related texts. We formulate it as an
optimization problem: MRI maximizes the minimum similarity between the im-
age and any random keywords, while LRI minimizes the maximum similarity
between the image and any content-related keywords and simultaneously tightly
associates the image with a predefined secret keyword.

Both MRI and LRI have important applications and implications in prac-
tical text-image retrieval systems. For example, an MRI can be exploited as
a malicious advertisement. Online platforms are open for third-party advertis-
ers [1]. However, these advertisements need to be clearly tagged according to the
requirement by the Federal Trade Commission [7]. At the same time the adver-
tisers only have a fixed budget. Thus, malicious advertisers can construct the
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advertisement image as an MRI, and at the same time make this image perceived
normal by end users. After this image is uploaded into the online platform, it
fools the text-image retrieval system to always return the image under various
text queries, so as to reach as many people as possible. Thus, it can either be
used by merchants to promote their products, or be abused to be misused to
distribute fake and illegal information.

On the other hand, the LRI can be used for privacy preserving. Although
legislation imposes restrictions on personal data usage, it still remains a vague
definition of the ownership of uploaded data. Moreover, users may unknowingly
release their private information when they share photos, thus surrendering con-
trol of their own privacy and making themselves vulnerable. Even users who are
cautious with publicly sharing photos are vulnerable if their photos are passed
from friend to friend or stored in unprotected form. Some companies are falter-
ing in the grey area of legislation by utilizing users’ private information such as
facial information or personal interest for commercial usage, including targeted
advertising [35] or phishing [19]. For instance, Clearview AI [41] has devised an
illegal face recognition system with a database of over 3 billion images scraped
from Facebook, YouTube, and millions of other websites. Thus, it is essential for
users to protect their own privacy to avoid malicious searching. For example, the
users can construct the LRI in order to minimize the chance for a private image
to be extracted by any unknown users, thus contributing to privacy preservation.

1.3 Summary of Our Contributions

This is the first work to introduce the Most Retrievable Image (MRI) and Least
Retrievable image (LRI) concepts in modern text-to-image retrieval systems. It
addresses the nontrivial problem of constructing MRI/LRI by developing novel
and effective loss functions to craft perturbations that essentially corrupt feature
correlation between visual and language spaces, thus enabling MRI and LRI.

The proposed schemes are implemented by using CLIP to demonstrate MRI
and LRI and their applications and implications in practical text-image retrieval
systems. They are evaluated by extensive experiments against the state-of-the-
art visual-language models on multiple benchmarks, including Paris [33], Im-
ageNet [13], Flickr30k [50], and MSCOCO [27]. Experimental results demon-
strate the effectiveness of the proposed schemes for constructing MRI and LRI,
and the robustness of MRI and LRI against various advanced defense methods
[47,18,45,3]. We also offer valuable empiric insights into their applications in
malicious advertisement and privacy-preserving image sharing.

The rest of the paper is organized as follows. Sec. 2 discusses related work.
Sec. 3 introduces the proposed schemes for crafting MRI/LRI. Sec. 4 summarizes
experimental results. Finally, Sec. 5 concludes the paper.

2 Related Work

Recently there has been a surging interest in self-supervised learning for multi-
model tasks by pre-training a vision-language model on large-scale image/video
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and text pairs and then finetuning the model on downstream tasks such as Visual
Question Answering (VQA) [4], Visual Commonsense Reasoning (VCR) [51], and
Text-Image Retrieval (IR). For example, ViLBERT [29] and LXMERT [39] apply
a single-model transformer to the image and text, respectively, and then combine
the two modalities for a cross-model transformer. On the other hand, Visual-
BERT [26], Unicoder-VL [22], VL-BERT [38], and UNITER [11] concatenate
image and text as a single input to a transformer.

A series of studies have been carried out to investigate the adversarial exam-
ples in vision and language models, with a focus on image captioning and visual
question answering (VQA). Show-and-Fool [10] uses visual language grounding
to craft adversarial examples to fool a CNN+RNN-based image captioning sys-
tem to generate target captions or keywords. The work in [21] removes target
words while maintaining the captioning quality after the attack. Attend and
Attack [37] adds perturbation to specific regions to fool VQA models to an-
swer questions incorrectly. Similarly, Fooling [48] constructs targeted adversarial
inputs to hijack VQA models’ behavior for a specific answer.

However, though they manipulate input images using different algorithms,
they are all one-to-one attacks where the perturbed samples are mapping to a
random (untargeted) or specific (targeted) keyword. In contrast, our work exploit
the one-to-many nature of the multi-modal models to construct MRI/LRI that
are associated/dissociated with many unrelated/related text keywords.

3 Crafting Most or Least Retrievable Images

In this section, we start with an overview of the system and then elaborate the
proposed schemes for constructing the most and least retrievable images.

3.1 System Overview

Image platforms such as Flickr or Facebook usually store user information and
uploaded images. A deep text-image retrieval system such as CLIP [34] can be
used to match text queries with images in the database and then retrieve rele-
vant images. As illustrated in Fig. 1, the CLIP-based text-image retrieval system
adopts a text encoder and an image encoder to extract image and textual fea-
tures, respectively, and then learns cross-modality embeddings for the features.
Given a query text, the system first computes its embedding, and then returns
the images with the highest similarities in the embedding space. We assume that
the complete knowledge about the model is public information (i.e., a white box
assumption), including model structure and parameters. Each user of the system
(either benign or malicious) has no control over the system architecture, param-
eters, or policy, but can modify then upload their own images to the system.

Different from adversarial perturbations studied in the literature, MRI and
LRI perturbations learn a one-to-many matching across vision and language
modalities. MRI associates an image with many unrelated texts with high confi-
dence while LRI disassociates an image from many related texts. We formulate
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the task of constructing MRI and LRI as an optimization problem. MRI maxi-
mizes the minimum similarity of an image with a set of given unrelated keywords,
while LRI minimizes the maximum similarity of an image with content-related
keywords and simultaneously associates the image with a predefined secret key-
word. For a given image x, we aim to craft an MRI or LRI x′ as:

x′ = argmin L(x′), (1)

subject to
||x′ − x|| ≤ ε, (2)

where x′ is perturbed from x, and L(x′) is a loss function to be discussed next. ε
controls the magnitude of the perturbation to ensure the perturbation is visually
imperceptible.

We define the similarity between image and text in a visual-language model as
follows. Given a pair of inputs, i.e., an image x and a text y, their shared cross
modality embeddings are denoted as I(x) and T (y), respectively. The cosine
similarity between image x and text y is defined as,

S(x, y) =
I(x)T · T (y)

∥I(x)∥ × ∥T (y)∥ , (3)

where S(·) can be viewed as a matching function with a value in the range of
[0, 1]. If S(x, y) is close to 1, the image x is highly correlated with the text y,
and thus has a higher probability of being retrieved by the text query y.

Based on this overall framework, next we discuss the loss functions to be
used in Eq. (1) and the techniques to perform optimization.

3.2 Loss Functions

(1) Loss Function for MRI. Given an image x and a set of keywords:

K = {K1,K2, ...,KN} ⊂ V, (4)

where V is a vocabulary list and N is the number of keywords. Ki (1 ≤ i ≤ N)
can be defined by the user or randomly selected from V if there is no specific
target. The keywords can be relevant or irrelevant to the image. It is worth
noting that we do not define a specific priority order for the keywords. Instead,
we aim to craft an image that will be among the top returned images when any
of these keywords is used for query.

To generate an MRI, we aim to ensure the minimum value of S(·) given a
text query among the keywords in K to be as large as possible. To this end, the
loss function to craft an MRI is formulated as,

LMRI(x
′) = −min

i∈N
{S(x′,Ki)}, (5)

where S(·) is defined in Eq. (3). By minimizing Eq. (5), it tries to maximize the
minimal cosine similarity between the image and the keywords in K. Meanwhile,
the constraint in Eq. (2) ensures the resulted MRI is visually similar to the
original image and thus does not degrade the image quality.
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(1) An example of the workflow to generate LRI. A user who would like to  
protect his image (a boy wearing a yellow shirt) intentionally disassociates  
the image from keywords that are descriptive for the content of the image  
such as 'boy', 'shirt' and 'yellow', while associates it with a secret keyword  
(`aq1wert') instead, and then uploads the perturbed image to the database.

(2) Text-to-image retrieval results(top 5).Without applying the LRI scheme,  
the user's private image is returned in a normal text query (as shown on  
the first row). After applying LRI, the user's image can evade retrieval by  
relevant  queries (shown on the second row) and only be retrieved by the  
secret keyword (`aq1wert') (shown on the last row).

(b) Crafting and extracting LRI.

Fig. 2: An example of crafting and extracting (a) the most retrievable image on
the MSCOCO dataset. (b) the least retrievable image on the ImageNet dataset.

MRI can be applied in different applications where it is essential to correlate
an image with a wide range of text keywords. For example, it can be exploited
as an attack for constructing an illegal advertisement. Consider a malicious user
who intends to make an advertisement by uploading an image to the social plat-
form that would be retrieved by as many (relevant or irrelevant) text queries as
possible, so as to reach as many people as possible. Fig. 2a illustrates how the
MRI is generated and retrieved. Given an image advertisement (“dog treats”),
the malicious user (advertiser) builds a keyword set K including 100 categories
randomly selected from ImageNet [13] to craft an MRI, and then uploads the
MRI to the database. Whenever a user queries with a text related to any key-
words in K, the system returns this “dog treats” image among the top hits.
(2) Loss Function for LRI. To craft an LRI, we aim to minimize the maximum
S(·) between the image and any text Ki from a large keyword set K (which
includes N keywords related/unrelated to the image), while maximizing S(·)
between the image and a chosen secret keyword skey. The loss function is:

LLRI(x
′) = α · (1− S(x′, skey)) + (1− α) ·max

i∈N
{S(x′,Ki)}, (6)

where S(·) is defined in Eq. (3). Note that skey is optional if the user does not
need to search the image by a keyword in the future. Ki is from K as defined in
Eq. (4) but it could also be chosen from other sources. α is a hyper-parameter
to balance the two components in the multi-objective optimization function.
The objective of LRI construction is to generate an image that maximizes the
cosine similarity between the image and the predefined secret keyword, while at
the same time, minimize the cosine similarity between the image and all text



8 L. Zhu et al.

keywords in K. The constraint in Eq. (2) avoids degrading the image quality
noticeably. A successful LRI can prevent itself from being searched by text query
crawling while is still retrievable by the secret keyword.

Fig. 2b presents the workflow of crafting an LRI and retrieving it with a secret
keyword based on the MSCOCO dataset [27]. By applying an imperceptible
perturbation encoded with the keyword (‘aq1wert’), the user’s image (a boy
in the yellow shirt riding a skateboard) cannot be retrieved by relevant text
queries. However, it can be retrieved by the secret keyword (‘aq1wert’). LRI is
particularly useful to protect the privacy of an image when it is disclosed to
a public site. For example, assume a user shares his personal image with his
friends. Even if a friend accidentally forwards the image to a public site, as the
image is not retrievable, it is effectively protected from malicious crawlers.

3.3 Optimization

We substitute loss functions defined in Eqs. (5) and (6) into Eq. (1) to construct
MRI and LRI, respectively. The Projected Gradient Descent (PGD) [31] is the
most popular method widely used to solve such constrained optimization prob-
lem. However, it has been shown that PGD leads to suboptimal solutions, even
for convex problem, since it is unaware of the optimization trend due to the fixed
step size [32]. Therefore, we adopt the parameter-free auto-PGD (APGD) [12]
to solve Eq. (1), which can adjust the step size automatically and generalize well
across different datasets. It solves Eq. (1) by taking gradient descent iteratively:

z′j+1 = Clipx,ε(x
′
j − η · sgn(∇L(x′

j))), j ∈ [0, Niters],

x′
j+1 = x′

j + α(z′j+1 − x′
j) + (1− α)(x′

j − x′
j−1)

(7)

where η is the step size and Clipx,ε(·) clips the values to ensure x′
j+1 falls within

[x − ε, x + ε] to meet the constraint in Eq. (2). If the optimization does not
proceed properly or there has been no improvement in the best objective value
since the last checkpoint, η is halved to continue the optimization to attain
better performance. We compare APGD with other optimization schemes for
constructing MRI and LRI including FGSM [17] and PGD [31]). The results are
presented in Sec. 4.

3.4 Improve Robustness of MRI/LRI

In the experiments, we observe that the designed imperceptible perturbation
may be deprecated under image transformations adopted by some text-to-image
retrieval systems. To this end, we further extend our proposed approach, and
term it as APGD-R. In each iteration of APGD-R, we first resize the input
image to an rs× rs× 3 image, where r is randomly sampled from [0.9, 1.0] and
s is the size of the input image. We then pad ‘0’ to make the resized image
back to its original size. Different from DIM [46], which feeds either transformed
images or original images for training in one iteration, we feed both original
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Task Benchmark
# of
Caps

# of
Data

ResNet50 ResNet50x4 ViT-B/32
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Geolocation
Retrieval

Paris 11 6.4k 100 100 100 100 100 100 100 100 100

Category
Retrieval

ImageNet 1k 10k 64.9 89.6 93.5 70.1 91.9 95.1 68.6 90.9 94.7

Caption
Retrieval

Flickr30k 158k 31k 19.3 38.0 47.5 25.0 45.2 54.5 21.5 41.3 50.8
MSCOCO 615k 123k 26.9 51.4 62.7 32.4 56.7 67.1 30.4 54.8 66.1

Table 1: Datasets and text-image retrieval performance (%) of different models.

and transformed images for training in each iteration. This can help stabilize
the generation process, especially for crafting MRI. In addition, we add noise
bounded by ε to the input image and the loss function becomes:

L(x′) =
1

2
(L(x′ + ri) + L(T (x′ + ri)), (8)

where ri is uniformly sampled within [−ε, ε]. T (·) denotes resizing and padding
transformation functions. L(·) can be replaced by LMRI in Eq. (5) or LLRI in
Eq. (6) to generate MRI and LRI, respectively.

4 Experiment Results

In this section, we first describe the specifications of the datasets and implemen-
tation details, and then present and discuss experiment results for evaluating
the effectiveness of the MRI and LRI construction.

4.1 Datasets, Model Architecture and Performance Metrics

We assess the performance of LRI/MRI construction on a wide variety of tasks
including geo-localization retrieval, category retrieval and caption retrieval. The
benchmarks are summarized in Tab. 1 and briefly outlined below:
Geolocalization Retrieval. We evaluate MRI and LRI on Paris [33] which is
the Paris Buildings Dataset, consists of 6,412 images collected from Flickr by
searching for 11 Paris landmarks.
Category Retrieval. We report results on the ImageNet [13] benchmark, in
which we use 10,000 validation images and their labels as queries.
Caption Retrieval. We evaluate on Flickr30k [50] and MSCOCO 2014 [27]
benchmarks. Flickr30k consists of 31,000 images, where each image is annotated
with five caption sentences. MSCOCO is a large-scale image description dataset
containing 123,287 images with at least 5 caption sentences per image.
Model Architecture. We evaluate the proposed MRI and LRI with a series of
CLIP based models consisting of a transformer language model [44] and differ-
ent vision models including ResNet-50 [20], EfficientNet-style [40] ResNet-50x4
(scaled up 4x from ResNet-50), and Vision Transformer model ViT-B/32 [14].
All models are directly downloaded from the CLIP GitHub [34].
Evaluation Metrics We use mR@k to evaluate the performance of text-image
retrieval, which measures the average Recall rate, i.e., the average ratio of an
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(a) Original image (b) Fooling LRI (c) Our LRI (d) Our MRI

Fig. 3: An example of LRI generated by Fooling[48] and our LRI/MRI.

Task Benchmark # of K Query
ResNet50 ResNet50x4 ViT-B/32

mR@1 mR@5 mR@10 mR@50 mR@1 mR@5 mR@10 mR@50 mR@1 mR@5 mR@10 mR@50

Geolocation
Retrieval

Paris 11 Keyword 99.7 100 100 100 99.9 100 100 100 98.2 100 100 100

Category
Retrieval

ImageNet 1000 Keyword 87.3 97.2 99.4 100 90.1 98.9 100 100 41.6 62.4 77.3 96.7

Caption
Retrieval

Flickr30k 2000
Keyword 100 100 100 100 100 100 100 100 100 100 100 100
Caption 87.6 95.7 97.4 98.8 90.2 96.6 97.2 99.4 40.9 61.0 70.7 94.2

MSCOCO 1000
Keyword 100 100 100 100 100 100 100 100 100 100 100 100
Caption 88.6 96.2 98.2 99.6 89.2 97.1 98.4 100 41.7 61.6 70.9 92.2

Table 2: mR@k(%) of the MRI when querying with all keywords/captions on
CLIP-based text-image retrieval with ResNet50, ResNet50x4 and ViT-B/32
models across Paris, ImageNet, Flickr30k and MSCOCO benchmarks.

image found in the top k retrieval results: mR@k = 1
n

∑n
i=1 Ri@k, where n is

the number of images tested and Ri@k is the percentage of queries which return
a given image among the top k results.

For each benchmark, we first test the text-to-image retrieval Recall rate of
the models (without MRI and LRI) as summarized in Tab. 1, showing that all
models can achieve effective image retrieval. The results serve as the baseline for
our performance evaluation.

To demonstrate the effectiveness of LRI, we anticipate a high mR@k when
queried with the secret keyword but a low mR@k when queried with other texts.
For MRI, we anticipate a high mR@k when queried with random texts, showing
it is likely to be retrieved by any text queries.

4.2 Implementation Details

To construct MRI or LRI for a target dataset, we first randomly select an image
from the dataset. We then utilize a set of 80 different “prompt-engineered” text
descriptions used in CLIP [34]. For MRI, for Paris and ImageNet benchmark,
we construct it with the target keyword set including all landmarks/categories
respectively; for the Flickr30k and MSCOCO benchmark, we generate it using
a target keyword set constructed from the most frequently used words in all
captions.The secret keyword skey for LRI can be randomly generated(a ran-
dom combination of characters and numbers) or specifically designed(irrelevant
word). We perturb the images using the APGD optimizer with ε = 0.03, η = ε/2
and α = 0.75. Then, we upload the generated MRI or LRI to the database.

To evaluate the MRI construction, for Paris and ImageNet benchmark, we
conduct queries with all landmarks (e.g., Eiffel Tower Paris) or categories (e.g.,
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Task Benchmark Query Method
ResNet50 ResNet50x4 ViT-B/32

mR@1 mR@5 mR@10 mR@50 mR@1 mR@5 mR@10 mR@50 mR@1 mR@5 mR@10 mR@50

Geolocation
Retrieval

Paris
Random

Ours 0 0 0 0 0 0 0 0 0 0 0 0
Fooling[48] 0 0 0 0 0 0 0 0 0 0 0 0

skey
Ours 98.4 100 100 100 99.1 100 100 100 98.7 99.3 99 100
Fooling[48] 19.8 29.7 42.6 62.4 54.5 62.4 64.3 77.2 7.9 22.7 29.7 55.4

Category
Retrieval

ImageNet
Random

Ours 0 0 0 0 0 0 0 0 0 0 0 0
Fooling[48] 0 0 0 10.5 0 0 0 11.1 1.2 1.3 2.1 11.5

skey
Ours 98.2 100 100 100 99.1 100 100 100 98 100 100 100
Fooling[48] 97.1 99 100 100 98 98.6 99 99.2 84.5 93 94.1 99

Caption
Retrieval

Flickr30k
Random

Ours 0 0 0 0 0 0 0 0 0 0 0 0
Fooling[48] 0 0 0 0 0 0 0 0 0 0 0 0

skey
Ours 98.4 100 100 100 97.1 100 100 100 98 100 100 100
Fooling[48] 11.5 17 18.6 31.2 3.2 6.9 8.0 14 2.9 5.1 6.0 13.1

MSCOCO
Random

Ours 0 0 0 0 0 0 0 0 0 0 0 0
Fooling[48] 0 0 0 0 0 0 0 0 0 0 0 0

skey
Ours 99 100 100 100 99 100 100 100 100 100 100 100
Fooling[48] 20 29.6 33.4 43.6 3.1 8.3 9.0 20.5 1.2 7.0 7.2 18.1

Table 3: mR@k(%) of the LRI on CLIP-based text-image retrieval model.

Goldfish) prepended with a prompt “This is a photo of”. For the Flickr30k and
MSCOCO benchmark (caption retrieval task), we evaluate using both captions
(e.g., A young boy is riding a skateboard down the street) and keywords (e.g.,
boy). To evaluate LRI construction, we query with all landmarks/categories/
captions and the predefined secret keyword to check if the uploaded image can be
retrieved in the top-k results. We repeat each experiment 1000 times and report
the average retrieval mR@k. While baseline schemes are almost non-existent (as
this is the first work on the MRI and LRI), we tentatively compare our work
to Fooling [48], since its targeted adversarial attack implicitly constructs an AE
similar to LRI, by exclusively mapping input images to a specific answer.

4.3 Experimental Result

MRI Construction. Tab. 2 summarizes performances of MRI generated af-
ter 1000 iterations on three target text-image retrieval networks (ResNet50,
ResNet50x4, and ViT-B/32) on Paris, ImageNet, Flickr30k, and MSCOCO, re-
spectively. We report the results recorded at the top 1, 5, 10, and 50, respectively,
when querying with all keywords or captions. We observe that the crafted MRI
has 100% probability of being retrieved as the top 1 result in the Flickr and
MSCOCO datasets. In ImageNet and Paris dataset, the MRI can achieve an
overall retrieval rate of over 77% in the top 10 results when querying with indi-
vidual keywords. The reason is that images in Flickr/MSCOCO datasets usually
contain multiple objects (thus naturally matching to a range of keywords), mak-
ing them much easier to construct the MRI attack. Furthermore, when queried
with caption in the Flickr/MSCOCO dataset, the crafted MRI can still reach
over 92% probability to be retrieved within the top 50 results across all text-
image retrieval systems.

Fig. 4 shows the mR@k of MRI generated in 50 to 1000 iterations on the
MSCOCO benchmark on the different models. It shows that the MRI gener-
ated within only 300 iterations can successfully achieve over 90% probability at
top-10 on the ResNet50 and ResNet50x4 model, but less than 40% probabil-
ity on ViT-B/32. When the number of iterations is increased to 1000, we can
achieve a probability of over 87% to retrieve this MRI at top 1 on ResNet50 and
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Fig. 4: mR@k(%) of the MRI on MSCOCO
on different models.

Fig. 5: t-SNE visualization
of LRI on ImageNet.

ResNet50x4, and about 40% probability on the ViT-B/32 model. These findings
show that ViT-B/32 is more robust to perturbations, which is consistent with
the result reported in [36].

LRI Construction. Tab. 3 summarizes the retrieval results of LRI gener-
ated by our method and Fooling [48] after 100 iterations when queried with
all landmarks/categories/captions(‘Random’) and the predefined secret keyword
(‘skey’) on four benchmarks with the ResNet50, ResNet50x4, and ViT-B/32
models. When queried with all landmarks/categories/captions, the mR@k has
dropped to 0 in top-1, 5, 10, and 50 when using our approach, showing that we
can hardly find this image from the top 50 results. In contrast, when queried
with the secret keyword that was used to create the LRI, it can achieve 100%
mR@5 on all benchmarks. The results demonstrate that if LRI is applied for
image sharing, it can effectively protect user privacy from being extracted by
malicious crawling. At the same time, the private image can be retrieved by the
owner or shared within a group and protected by the secret keyword. Compar-
ing the results on ResNet50, ResNet50x4 and ViT-B/32, we find that LRI is
generalizable across different models.

In addition to that, our approach demonstrates superior performances than
Fooling [48] in terms of LRI generation across all experimental settings and
datasets. To explain this, we further investigate the correlation (cosine similarity)
between the generated LRI and the predefined secret keyword(‘S(LRI,skey)’)
(see Fig. 7 in Appendix), where we observe a significantly tighter connection
between LRI and skey generated using our method. Furthermore, we evaluate the
image quality (see Fig. 3 ) of the generated LRI by measuring the L2 distortion.
Our LRI has a smaller L2 distortion (an average value of 8.31), while the LRI
generated using Fooling is 28.85. Such difference on the image quality can also
be clearly seen on Fig. 3.

To gain insights into the constructed LRIs, we visualize the shared embed-
dings of target images and query texts by using t-SNE [30] to compress the
embeddings down to 2-dimension. Fig. 5 shows an example LRI for ImageNet.
The ‘•’ in different colors represents original images from different classes in the
embedding space, and ‘×’ denotes the corresponding label text. We use two dif-
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(a) mR@k(%) of MRI (b) mR@k(%) of LRI.

Fig. 6: Compare different optimizations with increasing ε on ViT-B/32 on Paris.

Query Method B-R JPEG R&P
Noise
(σ = 0.03)

Rotate Sheer Shift Zoom None

LRI
Random

PGD 0 0 0 3.2 3.2 2.8 5.3 0.9 0
APGD 0 0 0 3.2 3.0 2.8 5.8 1.2 0
APGD-R(Ours) 0 0 0 0 0 0 0 0 0

skey

PGD 99 4.1 14.2 98 4.0 31.2 1.5 4.0 100
APGD 99 0.4 0.2 99 1.2 16.4 0.2 2.2 100
APGD-R(Ours) 100 97.2 100 100 100 100 100 100 100

MRI
Random

PGD 88.7 0 0.3 76.6 0.2 0 0.2 0.1 91.6
APGD 99 0.4 0.2 91.2 0.6 0.5 0.5 0.3 100
APGD-R(Ours) 100 60.1 79.0 99.7 60.6 75.6 61.9 77.1 100

Table 4: mR@10(%) of the LRI/MRI on CLIP-based text-image retrieval model
(ViT-B/32) with advanced defense by PGD, APGD, APGD-R on Imagenet.

ferent secret keywords to generate the LRI from the original images, where ‘+’ is
the secret keyword and ‘γ’ is the corresponding generated LRI. As shown in the
figure, the original images and their labels (texts) are close to each other in the
embedding space. In contrast, the LRIs surround the secret keywords but are far
from the original images and the original labels, explaining why LRIs are hardly
retrievable by the original text but readily reachable by the secret keywords.

Comparison of Different Optimization Schemes. We compare the effec-
tiveness of MRI and LRI by using different optimization schemes including
FGSM [17], PGD [31] and APGD [12] with the ViT-B/32 model on the Paris
benchmark. We run 100 iterations with an increasing ε ∈ {0.005, 0.01, 0.02, 0.03,
0.05}. Other parameters of PGD follow the default setting in [31].

First, we observe that even if ε is increased to 0.6, FGSM could hardly
succeed over the vision-language cross model, which makes the probability of
MRI retrieved in the top-100 less than 3%, and the probability of LRI less than
10%. Therefore, its results are not included in Fig. 6.

Fig. 6(a) reports the mR@k results of MRI at top 1, 5, and 10, respectively,
when queried by all landmarks. When ε is less than 0.03, it is generally difficult
for PGD to find an effective MRI. When ε = 0.03, we can construct a more
effective MRI by using APGD which has a probability of over 80% to be retrieved
at top 1 and reaches over 91% at top 10, while the MRI constructed by PGD
only has a less than 15% probability to be returned at top 1. Fig. 6(b) shows the
mR@k results of LRI, when querying with the predefined secret keyword. The
LRI constructed by APGD can achieve approximately 98% probability at top-1
when ε = 0.02, while the LRI constructed by PGD only has an 80% probability
to be retrieved. In general, MRI needs to be matched to multiple text keywords,
which makes it more difficult to generate as compared to LRI.
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Evaluation against Advanced Defenses. We evaluate the effectiveness of
LRI/MRI constructed using the optimization scheme APGD-R on models with
advanced defenses, including: Bit Reduce (B-R) [47], JPEG compression (JPEG)
[18], Random resizing and Padding (R&P) [45], and NeurIPS-rank3 (including
Gaussian Noise, Rotate, Sheer, Shift, Zoom) [3]. The accuracies on clean images
after the defenses have been applied drop 3% or less. Tab. 4 reports top 10
retrieval results (mR@10(%)) of LRI queried by a predefined secret key (skey)
and 10 most related categories, and retrieval results of MRI queried by 10 target
categories in ImageNet benchmark (“None” means “no defense”)3. It shows that
LRI generated by APGD-R can maintain almost 100%@10 when queried by
’skey’ and 0%@10 when queried by random keywords against all defense models,
while PGD and APGD failed against several defenses. Compared to LRI, MRI
is more sensitive to image transformations. To make an MRI work properly,
the embedding of the MRI should be close to embeddings of many different
keywords. Those keywords’ embeddings are fixed after model training and the
region that the MRI should be resided in is relatively small and hard to identify.
APGD-R helps identify and put the MRI in the center of that region to improve
robustness of the MRI. Therefore, as compared with PGD, APGD, the APGD-R
approach can effectively improve robustness of MRI, achieving over 60% top 10
retrieval accuracies against all defenses.

5 Conclusion

We have introduced for the first time two new concepts, named the Most Retriev-
able Image (MRI) and Least Retrievable Image (LRI), in modern text-to-image
retrieval systems. Both of them have important practical applications and impli-
cations. We have addressed the nontrivial problem of constructing MRI and LRI
(due to its one-to-many nature), by developing novel and effective loss functions
to craft perturbations that essentially corrupt feature correlation between visual
and language spaces, thus enabling MRI and LRI. We have implemented the
proposed schemes by using CLIP to demonstrate MRI and LRI and their appli-
cation in malicious advertisement and privacy-preserved image sharing. We have
evaluated their performance by extensive experiments based on the state-of-the-
art visual-language models on multiple benchmarks, including Paris, ImageNet,
Flickr30k and MSCOCO. The experimental results have shown the effectiveness
and robustness of the proposed schemes for constructing MRI and LRI.
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