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Overview

The supplementary material in this PDF is organized as follows:

– Section 1: Background information on the story visualization task and
DALL-E Transformer models.

– Section 2: Details of the StoryDALL-E and StoryGANc models.
– Section 3: Datasets and their construction.
– Section 4: Implementation details, including training hyperparameters, eval-

uation metrics and pretrained checkpoints.
– Section 5: Results on validation sets of story continuation datasets.
– Section 6: Analysis experiments including the comparison of story visual-

ization and story continuation tasks, correlation scores between source and
generation, retrieval-based text-to-image synthesis and analysis of the se-
mantic content of the DiDeMoSV datasets.

1 Background

In this section, we give a brief introduction to the original story visualization
task and auto-regressive transformers for text-to-image synthesis.

1.1 Story Visualization

Given a sequence of sentences S = [s1, s2, ..., sT ] forming a narrative, story vi-
sualization is the task of generating a corresponding sequence of images X̂ =
[x̂1, x̂2, ..., x̂T ], following [8]. The sentences form a coherent story with recurring
plot and characters. The generative model for this task has two main mod-
ules: story encoder and image generator. The sentence encoder Ecaption(.) takes
word embeddings {wik} for sentence sk at each timestep k and generates con-
textualized embeddings {cik}. These embeddings are then used to generate the
corresponding images. The terms caption and sentence are used interchangeably
throughout the paper.
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1.2 Pretrained Text-to-Image Synthesis Models (DALL-E)

The DALL-E model introduced in [15] is a text-to-image synthesis pipeline which
comprises of a discrete variational autoencoder (dVAE) in the first stage and an
autoregressive transformer in the second stage:

Stage 1. The Vector Quantized Variational Autoencoder (VQVAE) [13] consists
of an encoder that learns to map high dimensional input data (x) to a discretized
latent space, and a decoder that reconstructs x from the quantized encodings xq.
The model is trained using the reconstruction loss and commitment loss [20]. In
DALL-E, the VQVAE is trained to transform RGB image into a small 2D grid
of image tokens, where each token can assume a discrete value from a codebook
of predefined length.

Stage 2. The VQVAE encoder from Stage 1 is used to infer the grid of discretized
image tokens which is flattened and concatenated with the input text tokens,
and an autoregressive transformer is used to model the joint distribution over
the text and image tokens. For a given text input s and target image x, these
models learn the distribution of image tokens p(x) as,

p(x) =

d∏
i=1

p(xi|xi<i; s)|x < i) (1)

The models are composed of stacked multi-head self-attention layers with causal
masking and are optimized via maximum likelihood. Each self-attention block is
followed by a MLP feedforward layer, as per the standard design of transformers.
The prediction of image tokens at each time step is influence by the text tokens
and previously predicted image tokens via the self-attention layer.

Using this framework, DALL-E obtains impressive, state of the art results
on a variety of text-to-image tasks by leveraging large scale pre-training on
multimodal datasets.

2 Additional Method Details

In this section, we provide additional details about the StoryDALL-E and
StoryGANc models.

2.1 StoryDALL-E

Retro Cross-Attention Layer Density. We experiment with different densities
of cross-attention layers in our implementation of StoryDALL-E. In the most
dense variation, we introduce the retro layer in every self-attention block of
minDALL-E, effectively increasing the number of parameters in the model by
nearly 60%. We vary the density of the retro layer for one in every 1-5 self-
attention block(s), and run experiments for each of these variations. Our best
model has a density of one retro layer in every third self-attention block.
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Objective. Following the original DALL-E implementation [15], the StoryDALL-
E model is trained on a combination of text loss and image loss. The losses are
cross-entropy losses for the respective modalities, and the combined objective is,

L = −
Ntext∑
i=1

tilog(p(ti)−
Nimg∑
i=1

milog(p(mi)

where Ntext and Nimg are the caption lengths and image sequence lengths, set
to 64 and 256 in our model respectively.

2.2 StoryGANc

StoryGANc follows the general framework of the StoryGAN model [8] i.e.,
it is composed of a recurrent text encoder, an image generation module, and
two discriminators - image and story discriminator. We modify this framework
to accept the source frame as input for the story continuation task, and use
it for improving the generation of target frames. Our StoryGANc model is
implemented as follows:

Pre-trained Language Model Encoder. In the current state-of-the-art story visu-
alization models [12], recurrent transformer-based text encoders like MART [7]
and MARTT [11] are learnt from scratch for encoding the captions. However,
while the memory module contains information about prior captions, there is no
way for the current caption to directly attend to words in prior or subsequent
captions. This is crucial in a story where causality plays such a large role, e.g.,
which characters need to appear in the scene, even if they don’t appear in the
current caption, has there been any modifications to the background that need
to appear in the current scene, etc. Furthermore, general world knowledge is cru-
cial for successfully generating unseen stories in our datasets, which is possible
with pretrained knowledge. Therefore, we propose using a pretrained language
model (such as RoBERTa [10] or CLIP text encoder [14]) as the caption encoder.
These models are pretrained on large unimodal or multimodal datasets of lan-
guage; their latent knowledge of the world is of great utility for understanding
the semantic concepts present in input captions. For the RoBERTa encoder [10],
to ensure that the model has access to all captions, we append the captions to-
gether and feed all of them into each timestep. We use a special token to denote
which caption is currently being generated. The representation from the first
token h0 is used as the caption representation. For the CLIP encoder [14], we
add an additional self-attention block that takes the caption representation for
each timestep and produces the contextualized representations that have been
computed by attending to all other timesteps.

Contextual Attention. We then combine the story representation with the image
embeddings of the first frame of the image sequence using contextual attention.
First, we reshape the story representation as a 2D matrix and extract 3 × 3
patches {tx,y} as convolutional filters. Then, we match them against potential
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Fig. 1. Illustration of our StoryGANc architecture. The captions are first encoded
using a pretrained language model to produce contextualized representations. These
representations are sent to a contextual attention module along with the source frame,
and the resulting representation is sent to the image generator. The generated frames
are sent to a story and image discriminator, and the corresponding cross-entropy losses
for detection real/fake images are used to train the StoryGANc model.

patches from the source frame {sx′,y′} by measuring the normalized inner prod-
uct as,

px,y,x′,y′ = ⟨ sx,y
||sx,y||

,
tx′,y′

||tx′,y′ ||
⟩ (2)

where px,y,x,y′ represents the similarity between the patch centered in target
frame (x, y) and source frame (x′, y′). We compute the similarity score for all
dimensions along (x′, y′) for the patch in target frame (x, y) and find the best
match from the softmax-scaled similarity scores. [21] implement this efficiently
using convolution and channel-wise softmax; we use their implementation in our
StoryGANc model. The extracted patches are used as deconvolutional filters
and added to the target frame s. The resulting representation is fed through a
generator module which processes each caption and produces an image. We use
the generator module outlined in [8].

Discriminators. Finally, the loss is computed for the generated image sequence.
There are 3 different components that provide the loss for the model. The first
is a story discriminator, which takes all of the generated images and uses 3D
convolution to create a single representation and then makes a prediction as
to whether the generated story is real or fake. Additionally, there is an image
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discriminator, which performs the same function but only focuses on individual
images. Finally, the model is trained end-to-end using the objective function:

min
θG

max
θI ,θS

LKL + Limg + Lstory

where θG, θI and θS denote the parameters of the text encoder + genera-
tor, and image and story discriminator respectively. Limg and Lstory are cross-
entropy losses for classifying ground truth and synthetic images into real and
fake categories respectively. LKL is the Kullback-Leibler (KL) divergence be-
tween the learned distribution h0 and the standard Gaussian ditribution, to
enforce smoothness over the conditional manifold in latent semantic space [8].
During inference, the trained weights θG are used to generate a visual story for
a given input of captions.

3 Dataset Construction

We propose the new dataset DiDeMoSV, which is derived from the Didemo
dataset [6]. Below, we present details about collection and cleaning of the dataset.

3.1 Dataset Construction

Prior work in story visualization has repurposed datasets from other tasks. We
follow this trend and repurpose video captioning datasets in our work. Story
visualization and video captioning share many components. In video captioning,
an agent must produce a caption, or series of captions, that describe the content
of a video. Story visualization can be thought of as video captioning in reverse,
where frames are generated based upon the captions. However, simply reversing
the direction of the task is not sufficient in this case because the other difference
between the two tasks is that story visualization has one frame per caption,
whereas videos have many frames; a single caption is typically paired with a
video time stamp, denoting which section of the video the caption aligns with.
Therefore, to convert video captioning into story visualization, an appropriate
method is needed to select which single frame should be used to represent the
content of the caption.

We employ the self critical image captioning model [17] for intelligently se-
lecting the frame most aligned with the caption. Each of the clips that corre-
spond to a caption is multiple seconds long. Not all of the frames will be equally
aligned with the caption. Characters might be moving leaving blur effects, the
scene might change a bit early or late in the clip, or there might be superfluous
actions that occur. To initially shrink the number of frames that we must con-
sider, we first sample frames at fixed intervals throughout the video. In the case
of DiDeMoSV, we sample 10 frames. Each of the frames is then fed through the
self critical image model and is ranked according to the sum of the log likelihood
for each word in the caption being generated. We then use the top ranked frame
as the image for the given caption. The resulting image-caption sequence after
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this step is on average 4 frames long for DiDeMoSV. To maximize the amount of
data that we have and make the task feasible, we split these image-caption se-
quences into a sequence of 3 frames. We use a sliding window approach to create
these sequences, allowing for overlap between sequences. However, we also en-
sure that the train, val, and test splits contain separate videos. We then proceed
with our image pre-processing steps.

The main pre-processing step that we explore is to convert the real-world
images into cartoon images, to emphasize focus on the main characters of the
image rather than the trivial details of the background. Rather than models
focusing on making images realistic, we want them to focus on accurately rep-
resenting the stories themselves in visual form. To cartoonize the images we use
CartoonGAN [4]. Each of the extracted frames is fed through this network and
the resulting output is used in the final dataset.

4 Experimental Details

Pretrained Weights. While the VAE checkpoints for the original DALL-E model
have been released, the transformer weights have not. We explored training the
transformer component from scratch on our data, but found that it did not
perform well. Therefore, we explored other publicly available efforts to reproduce
DALL-E and settled on a popular open-source version minDALL-E which is
composed of 1.3 billion parameters and trained on 14 million text-image pairs
from the CC3M [19] and CC12M [3] datasets.1 minDALL-E uses the pretrained
VQGAN-VAE [5] for discretizing image inputs. We adapt the pretrained model
minDALL-E to StoryDALL-E and then prompt-tune/fine-tune the retro-fitted
model on our target datasets.

We experiment with pretrained CLIP [14] (38M parameters) and distilBERT
[18] (110M parameters) text encoders for the LM-StoryGAN models. The CLIP
image encoder is used to extract image embeddings for the source frame in thes
tory continuation task. The universal sentence transformer [2] is used to extract
sentence embeddings for captions, that are sent as input to the global story
encoder in StoryDALL-E.

Training Details. We conduct experiments in the story continuation setting, i.e.,
the models receive the first frame as input condition. The StoryDALL-E models
are trained for 5 epochs with learning rates of 1e-04 (AdamW, Cosine Scheduler)
and 5e-04 (AdamW, Linear Decay Scheduler) for fine-tuning and prompt-tuning
setups respectively. We use a cosine schedule with warmup from 0 in the first 750
training steps. The minimum learning rate is 0.1 times the maximum learning
rate. Checkpoints are saved at the end of every epoch. In full-model finetuning
settings, the pretrained weights are finetuned with a smaller learning rate of
1e-05. The LMStoryGAN models are trained for 120 epochs with learning rates
1e-04 and 1e-05 for the generator and discriminators respectively. Checkpoints
are saved every 10 epochs. These models are trained on single A6000 GPUs.
1 https://github.com/kakaobrain/minDALL-E
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Table 1. Results on the validation sets of PororoSV, FlintstonesSV and DiDeMoSV
(DSV) datasets from various models. Scores are based on FID (lower is better), char-
acter classification F1 and frame accuracy (F-Acc.; higher is better) evaluations.

Model PororoSV FlintstonesSV DSV
FID ↓ Char-F1↑ F-Acc↑ FID ↓ Char-F1↑ F-Acc↑ FID↓

StoryGANc (BERT) 63.94 54.02 24.53 87.65 71.98 55.68 93.21
StoryGANc (CLIP) 65.13 54.83 25.29 87.02 72.30 59.35 93.26

StoryDALL-E (prompt) 45.68 31.91 22.14 67.05 54.17 26.23 72.61
StoryDALL-E (finetuning) 21.64 40.28 20.94 28.37 74.28 52.35 41.58

Evaluation Metrics. We consider 3 automatic evaluation techniques. The first is
FID score, which calculates the difference between the ground truth and gener-
ated images by computing the distance between two feature vectors. We follow
prior work and use Inception-v3 as our image encoding model.

Following [8] and [12], we also compute the character classification scores for
the Pororo and Flintstones datasets, which are adapted from video QA datasets
with recurring characters. We use the Inception-v3 models trained for character
classification on these respective datasets for computing the F1 Score and frame
accuracy (exact match). Since the DiDeMoSV dataset does not have recurring
characters, we do not evaluate performance of our models on these datasets using
character classification.

5 Additional Results

In this section, we present the results on validation sets of the three story con-
tinuation datasets discussed in Table 2 in main text.

Validation Set Results. We present results on the validation set of the three story
continuation datasets discussed in main text i.e. PororoSV, FlintstonesSV and
DiDeMoSV, in Table 1. The fully-finetuned StoryDALL-E model performs the
best across all datasets in terms of FID score. The gains are seen in FID, due
the high visual quality of the images generated by StoryDALL-E. However,
the character classification anf frame accuracy scores for the StoryDALL-E are
close to those of StoryGANc for the FlintstonesSV dataset and relatively lower
for the PororoSV dataset, in spite of being of better visual quality (as per manual
analysis). This might be attributed to that fact that GAN-based models tend to
generate some finer details of a character while sacrificing shape and form, which
is recognized by character classification models as a faithful reconstruction. On
the other hand, StoryDALL-E models focus on shape and form and tend to
blur other defining characteristics, which are appealing to human eyes, but fail
to be recognized by the classification model.

Due to the higher resolution images generated by VQGAN-VAE [5], the visual
quality of images produced by StoryDALL-E is highly preferred over predic-
tions from the StoryGANc models. Similarly, the latent pretrained knowledge
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of DALL-E promotes generation of images that align well with the input cap-
tions, and results in higher wins for the StoryDALL-E model. The %wins and
%loss are nearly uniform for the attribute consistency in this larger experiment,
for the PororoSV and DiDeMoSV datasets. Predictions from the StoryDALL-
E model are found to be more consistent than those of StoryGANc for the
FlintstonesSV dataset. See predictions from StoryDALL-E for the PororoSV,
FlintstonesSV and DiDeMoSV datasets in Figures 5, 6 and 7 respectively.

6 Additional Analysis

In this section, we examine various aspects of the story continuation task, models
and datasets. First, we demonstrate the advantages of the story continuation
task over the story visualization task. Next, we calculate correlations between
the source images and generated images from StoryDALL-E, with and without
condition, to demonstrate the utility of cross-attention layers. Then, we examine
the effect of the retro-fitting approach in a text-to-image synthesis task. Finally,
we discuss the semantic content of our proposed DiDeMoSV dataset.

Source Frame Target Frames

Predictions from Story Visualization Task (VLC-StoryGAN) 

Predictions from Story Continuation Task (StoryGANc) 

Eddy says to himself
that Eddy saw it.

Poby says that Poby
cannot play on the 

seesaw because his
butt hurts today.

Friends met 
altogether.

Pororo, Loopy and
Crong ask why 
Poby got hurt.

Poby tried to explain
why Poby got hurt.

Fig. 2. Comparison of predictions from state-of-the-art story visualization model VLC-
StoryGAN (middle) and our story continuation model StoryGANc (bottom) for a
sample from the PororoSV dataset (top).
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6.1 Story Visualization vs. Story Continuation

In Figure 2, we present a comparison of predictions from the state-of-the-art
story visualization model VLCStoryGAN [11] and our story continuation model
StoryGANc for a sample from the test set of the PororoSV dataset. Story Vi-
sualization relies only on the input captions to generate the images from scratch.
However, as discussed in Section 3.1 in the main text, the captions in story vi-
sualization datasets are short and do not contain information about the setting
and background elements. As a result, the predictions from story visualization
models rely on data seen in the training set to infer arbitrary visual elements.
In Figure 2, the story takes place in a snowy field with trees (top), but the pre-
diction from VLCStoryGAN (middle) depicts the story as taking place indoors.
When the first frame is given as additional input to our model StoryGANc
in the story continuation task, the models borrows the snowy fields from the
source frame and creates the story within that setting (bottom). Hence, story
continuation is a more realistic and practical version of story visualization that
can enable significant progress in research and faster transfer of technology from
research to real-world use cases. Our experiments and datasets demonstrate the
utility of this task.

6.2 Correlation between Source and Generated Images

We also measure the cosine similarity between the source frames and the gen-
erated frames from StoryDALL-E, with and without the retro-fitted cross-
attention layer for conditioning on a source image, as a representation of the
correlation between the two sets of images. We encode the images using the
CLIP image encoder ViT-B/16 and report the mean and standard deviation of
cosine similarity values for each dataset (see Table 2). We see upto 0.3 points
increase in correlation between source image and generated image for all three
datasets with the use of the conditioning mechanism.

Table 2. Mean and standard deviation of correlation between source image and gener-
ated images from StoryDALL-E without and with conditioning on the source image.

Dataset without condition with condition
PororoSV 0.23 ± 0.04 0.26 ± 0.04

FlintstonesSV 0.38 ± 0.05 0.41 ± 0.03
DiDeMoSV 0.16 ± 0.04 0.19 ± 0.01

6.3 Retrieval-based Text-to-Image Synthesis

[1] show that retrieving nearest-neighbor sentences during prediction of the
next token in a sentence can improve generation from smaller GPT models, and
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Caption
Birds perch on a bunch of

twigs in the winter.

Best Match Caption
A bird is sitting on a branch

next to a fence.

minDALL-E
(prefix-tuned)

Best Match Frame
(Source) Ground Truth

minDALL-E + retro
(prefix-tuned)

Caption
The giraffe is being kept 

by itself indoor.

Best Match Caption
Two giraffes leaning out of a 
window looking at something.

Fig. 3. Sample predictions for the MS-COCO dataset using prompt-tuned minDALL-E
models with and without retro-fitting. The image corresponding to the nearest neighbor
caption is used as source frame for the retro-fitted model.

bring their performance close to the 10x larger GPT3 models. We use this mech-
anism to condition the images on a source frame in the story continuation task,
however, it can also be used to copy from the nearest neighbor images for the
text-to-image synthesis task. Hence, we perform experiments to test this hypoth-
esis. We prompt-tune minDALL-E for text-to-image synthesis on the MSCOCO
dataset [9] and compare it to a similar model that is additionally retro-fitted with
a cross-attention layer.2 First, we find the nearest neighbor caption in MSCOCO
training set for each caption in the validation set using CLIP [14] embeddings.
Next, we use the corresponding image of the nearest neighbor caption and send
the image embeddings from VQGAN-VAE as input to the cross-attention layer
in retro-fitted minDALL-E. We compute FID scores on the predictions of both
models; the minDALL-E model with retro-fitted layers achieves 149.29 score
on the validation set of MSCOCO, while the model without retro-fitted layer
achieves 155.34 FID score on the same (lower is better). See Figure 3 for com-
parison of a few sample predictions from both models, along with their ground
truths. With the retrieval-based layer, the minDALL-E model is able to recre-
ate semantic concepts like bird (top) and giraffe (bottom) more accurately. This
demonstrates the utility of nearest neighbor retrieval and our method of inte-
grating it into pretrained models for text-to-image synthesis.

6.4 Semantic Analysis of the DiDeMoSV dataset.

Figure 4 contains counts for (A) noun chunks, (B) verbs and (C) object classes
in DiDeMoSV. As discussed in Section 3, DiDeMoSV is collected from Flickr and
the most common nouns indeed reflect this. Most of the captions are descriptive
in that they describe the contents of the scene, the location of the objects/people
in the scene, and the actions that are taking place in the scene. In DiDeMoSV,
the focus is on the breadth of information that must be considered in the form
of actions, objects, and settings.
2 https://github.com/kakaobrain/minDALL-E
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The graph for the frequency of verbs across the captions in the DiDeMoSV
dataset (see (B) in Figure 4) illustrates the complexity of the actions that are
being undertaken by agents in the story. It can be seen that most of the ac-
tions are simplistic and related to movement, such as “walks", “comes", “starts",
“turns", “goes", etc. A lot of the verbs are also centered around vision, such
as “see", “seen", and “looks". While these words corroborate our prior insights
reflecting the relative simplicity of the stories in DiDeMoSV, they also are cru-
cial for understanding simplistic event chains. An understanding of these simple
verbs and the way that they affect the story goes a long way towards facilitating
story continuation, especially in the many settings of DiDeMoSV.

Part (C) in Figure 4 contains a breakdown of the objects that appear in the
DiDeMoSV images. To generate these graphs, we use Yolov3 [16] to process each
of the images in the respective datasets. The ’person’ class is the dominant class
in both datasets. This intuitively makes sense due to the initial data sources from
which the respective video captioning datasets were constructed. Additionally,
it matches the pattern that is observed in the caption noun analysis, where the
nouns in both datasets are most frequently referring to people. However, we can
also see that there are limitations of the Yolov3 model. There are frequently
occurring nouns, such as ‘camera’ in DiDeMoSV that are not able to appear
in our image analysis because these do not have corresponding classes in the
model. We use the default confidence threshold of 0.25 in the Yolo model, which
generates predictions for only 76% of DiDeMoSV images.

Our analysis demonstrates the diversity of the DiDeMoSV dataset, and show-
cases it as a challenging benchmark for the story continuation task, in addition
to PororoSV and FlintstonesSV.
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(A)

(B)

(C)

Fig. 4. Plots for frequency of (A) noun chunks and (B) verbs in the captions and (C)
objects in the frames of the DiDeMoSV dataset.
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Source Frame Target Frames Predicted Frames

Fig. 5. Generated samples from StoryDALL-E for the PororoSV dataset.

Source Frame Target Frames Predicted Frames

Fig. 6. Generated samples from StoryDALL-E for the FlintstonesSV dataset.
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Source Frame Target Frames Predicted Frames

Fig. 7. Generated samples from StoryDALL-E for the DiDeMoSV dataset.
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