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Abstract. Recent advances in text-to-image synthesis have led to large
pretrained transformers with excellent capabilities to generate visualiza-
tions from a given text. However, these models are ill-suited for special-
ized tasks like story visualization, which requires an agent to produce
a sequence of images given a corresponding sequence of captions, form-
ing a narrative. Moreover, we find that the story visualization task fails
to accommodate generalization to unseen plots and characters in new
narratives. Hence, we first propose the task of story continuation, where
the generated visual story is conditioned on a source image, allowing for
better generalization to narratives with new characters. Then, we en-
hance or ‘retro-fit’ the pretrained text-to-image synthesis models with
task-specific modules for (a) sequential image generation and (b) copy-
ing relevant elements from an initial frame. We explore full-model fine-
tuning, as well as prompt-based tuning for parameter-efficient adapta-
tion, of the pretrained model. We evaluate our approach StoryDALL-E
on two existing datasets, PororoSV and FlintstonesSV, and introduce
a new dataset DiDeMoSV collected from a video-captioning dataset.
We also develop a model StoryGANc based on Generative Adver-
sarial Networks (GAN) for story continuation, and compare with the
StoryDALL-E model to demonstrate the advantages of our approach.
We show that our retro-fitting approach outperforms GAN-based models
for story continuation. We also demonstrate that the ‘retro-fitting’ ap-
proach facilitates copying of visual elements from the source image and
improved continuity in visual frames. Finally, our analysis suggests that
pretrained transformers struggle with comprehending narratives contain-
ing multiple characters, and translating them into appropriate imagery.
Our work encourages future research into story continuation and large-
scale models for the task.1

1 Introduction

Pretrained text-to-image synthesis models like DALL-E [33] have shown unprece-
dented ability to convert an input caption into a coherent visualization. Several
subsequent approaches have also leveraged powerful multimodal models [4, 32]
1 Code and data are available at https://github.com/adymaharana/storydalle

https://github.com/adymaharana/storydalle


2 Maharana et al.

for creating artistic renditions of input captions [5], demonstrating their poten-
tial for democratizing art. However, these models are designed to process only a
single, short caption as input. In contrast, many use cases of text-to-image syn-
thesis require models to process long narratives and metaphorical expressions,
condition on existing visuals, and generate more than one image to capture the
meaning of the input text. In the past, multiple works have developed specialized
Generative Adversarial Networks (GAN) models such as image-to-image trans-
lation [15], style transfer [18] etc. For instance, story visualization models [23]
convert a sequence of captions into a sequence of images which illustrate the
story. However, the recent advent of transformer-based large pretrained models
opens up possibilities for leveraging latent knowledge from large-scale pretrained
datasets for performing these specialized tasks more effectively. Hence, in this
paper, we explore methods to adapt a pretrained text-to-image synthesis model
for complex downstream tasks, with a focus on story visualization.

Story visualization is a challenging task that lies at the intersection of im-
age generation and narrative understanding. Given a series of captions, which
compose a story, an agent must generate a corresponding sequence of images
that depicts the contents of these captions. While prior work in story visual-
ization has discussed potential applications of the task [23, 27, 28, 37], the task
itself presents some difficulties when being applied to real world settings. The
model is limited to the fixed set of characters, settings, and events on which it is
trained and has no way of knowing how to depict a new character that appears
in a caption during test time; captions do not contain enough information to
fully describe the character’s appearance. Therefore, in order to generalize to
new story elements, the model must have a mechanism for obtaining additional
information about how these elements should be visually represented. First, we
make story visualization more conducive to these use cases by presenting a new
task called ‘story continuation’. In this task, we provide an initial scene that can
be leveraged in real world use cases. By including this scene, the model can then
copy and adapt elements from it as it generates subsequent images. This has the
additional benefit of shifting the focus from text-to-image generation, which is
already a task attracting plenty of research, and instead focuses on the narra-
tive structure of a sequence of images, e.g., how an image should change over
time to reflect new narrative information in the captions. We introduce a new
dataset, DiDeMoSV [11], and also convert two existing visualization datasets
PororoSV [23] and FlintstonesSV [8] to the story continuation setting.

Next, in order to adapt a text-to-image synthesis model to this story con-
tinuation task, we need to finetune the pretrained model (such as DALL-E [33])
on a sequential text-to-image generation task, with the additional flexibility to
copy from a prior input. To do so, we first ‘retro-fit’ the model with additional
layers to copy relevant output from the initial scene. Next, we introduce a self-
attention block for generating story embeddings that provide global semantic
context of the story during generation of each frame. We name this approach
StoryDALL-E and also compare with a GAN-based model StoryGANc for
story continuation. We also explore the parameter-efficient framework of prompt-
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tuning and introduce a prompt consisting of task-specific embeddings to coax the
pretrained model into generating visualizations for the target domain. During
training, the pretrained weights are frozen and the new parameters are learned
from scratch, which is time as well as memory-efficient.

Results show that our retro-fitting approach in StoryDALL-E is useful for
leveraging the latent pretrained knowledge of DALL-E for the story continuation
task, and outperforms the GAN-based model on several metrics. Further, we
find that the copying mechanism allows for improved generation in low-resource
scenarios and of unseen characters during inference. In summary,

– We introduce the task of story continuation, that is more closely aligned with
downstream applications for story visualization, and provide the community
with a new story continuation dataset.

– We introduce StoryDALL-E, an adaptation of pretrained transformers for
story continuation, using retro-fitting. We also develop StoryGANc as a
strong GAN baseline for comparison.

– We perform comparative experiments and ablations to show that finetuned
StoryDALL-E outperforms StoryGANc on three story continuation datasets
along several metrics.

– Our analysis shows that the copying mechanism improves correlation of the
generated images with the source image, leading to better continuity in the
visual story and generation of low-resource as well as unseen characters.

2 Related Work

Text-to-Image Synthesis. Most work in text-to-image synthesis has focused on
the development of increasingly sophisticated generative adversarial networks
(GANs) [6]. Recent works have leveraged multi-stage generation [48], attentional
generative networks [41], dual learning [31], dynamic memory [24, 49], semantic
disentaglement [43], explicit object modelling [12] and contrastive loss [17, 47]
to further push performance on this task. DALL-E [33] is a large transformer
language model that generates both text tokens and image tokens. VideoGPT
[42] adapts the DALL-E architecture for conditional generation of videos from
a first frame and trains it from scratch. In contrast, we adapt the pretrained
DALL-E by retro-fitting the pretrained weights with task-specific modules for
conditional generation of a sequence of images from a first frame.

Story Visualization. [23] introduce the CLEVR-SV and PororoSV datasets which
are based on the CLEVR [16] visual question answering dataset and Pororo video
question answering dataset [19] respectively. [27] adapt the Flintstones text-to-
video synthesis dataset [8] into FlintstonesSV. While these datasets have served
as challenging benchmarks, they contain recurring characters throughout the
dataset. Complex datasets, requiring story visualization models to generalize to
a more diverse set of test cases is needed to better guide research in this domain.
We introduce the story continuation task and propose a new dataset for the task.
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Most story visualization models follow the framework introduced in Story-
GAN [23], which comprises a recurrent text encoder, an image generator, and
image as well as story discriminators to train the GAN [39]. [46] add textual
alignment models and a path-based image discriminator, while [21] add dilated
convolution and weighted activation degree to the discriminators. [36] add figure-
background segmentation to the model in the form of generators and discrimina-
tors. [28] and [27] use dual learning and structured inputs respectively to improve
story visualization. We use their models as starting point and add modifications
that leverage pretrained transformers for our proposed story continuation task.

Parameter-Efficient Training. Methods like adapter-tuning [10, 13, 26, 38] and
prompt-based tuning [20,22] add a small number of trainable parameters to the
frozen weights of a pretrained model, which are then learned for the target task.
Sparse updating of parameters [7, 45] and low-rank decomposition matrices [14]
also provide parameter-efficient methods for finetuning. [9, 29] combine these
approaches for a unified approach to finetuning pretrained models. [1] ‘retro-
fit’ a pre-trained language model with cross-attention layers to retrieve relevant
tokens at each timestep of word prediction in natural language generation. We
use retro-fitting and prompt-tuning to adapt a pretrained image synthesis model
to story continuation.

3 Methods

As discussed in Sec. 1, story visualization has limited applicability in real-world
settings because the task formulation does not allow models to generalize to new
story elements. Hence, we propose the story continuation task and present our
StoryDALL-E and StoryGANc models for the task.

3.1 Story Continuation

Given a sequence of sentences S = [s1, s2, ..., sT ] forming a narrative, story vi-
sualization is the task of generating a corresponding sequence of images X̂ =
[x̂1, x̂2, ..., x̂T ], following [23]. S contains a story, where the captions are tem-
porally ordered and describe the same narrative. This task has many different
potential applications such as facilitating the creation of comics or creating vi-
sualizations in an educational setting. However, due to the way that the story
visualization task is formulated, current models are far from being applied to
these settings. The models rely on the images seen in the training data, to gen-
erate new visualizations for input stories during the inference phase. Thus, they
can only recreate the characters as already found in the training set. Addition-
ally, the captions in story visualization datasets are focused on the narrative,
which limits the amount of information that is provided to the model, including
descriptions of characters or settings, background etc. Much of this is inferred
by the model, leading to generations that might be drastically different than
expected, and it is unrealistic to expect the models to generate completely new
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Fig. 1. Illustration of our StoryDALL-E architecture for the prompt-tuning setting.
The frames are encoded using pretrained VQVAE and sent as inputs to the pretrained
DALL-E. The inputs are prepended with input-agnostic prompt (in prompt-tuning
setting only) and global story embeddings corresponding to each sample in the story
continuation dataset. The output of StoryDALL-E is decoded using VQ-VAE to
generate the predicted image.

visual attributes without sufficient instructions in the caption. Story continu-
ation addresses these issues by providing initial information about the story
setting and characters.

In the story continuation task, the first image of the sequence x1 is provided
as additional input to the model. By including an initial ground truth scene as
input, the model has access to the appearances of characters, the setting in which
the story takes place, and more. When making subsequent scenes, the model then
no longer needs to create all the visual features from scratch, but can instead
copy from the initial frame. This first image addresses both the generalization
issue and the limited information issue in current story visualization models. We
refer to this first frame as source frame and the remaining frames in the sequence
[x2, ....., xt] as target frames.

3.2 StoryDALL-E

The DALL-E generative network is trained using a simple language-modelling
objective on the sequence of discrete image tokens for the task of text-to-image
synthesis. With massive amounts of data, such models learn the implicit align-
ment between text tokens and image tokens, which can be leveraged for down-
stream tasks like story continuation. The two main aspects that differentiate
the story continuation task from text-to-image synthesis are: (1) sequence of
captions vs. single caption, and (2) source frame vs. no source frame. Hence,
in order to convert the text-to-image synthesis model into a story continuation
model, we add three task-specific modules to the native DALL-E architecture.
First, we use a global story encoder to pool information from all captions and
produce a story embedding, which provides global context of the story at each
timestep. Next, we ‘retro-fit’ the model with cross-attention layers in order to
accept the source frame as additional input. Finally, we learn a sequence of em-
beddings for the story continuation task and provide it as prompt to the model
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for task-specific instructions. During finetuning, the pretrained model weights
are frozen and these task-specific modules are trained from scratch, leading to
a parameter-efficient adaptation of DALL-E for story continuation. We refer to
our proposed model as StoryDALL-E (see Figure 1).

Global Story Encoder. Most previous works in story visualization utilize recur-
rent encoders in the form of LSTM networks [23] or memory-augmented en-
coders [28], [27], to accept a sequence of captions as input. However, recurrent
architectures are memory as well as time-intensive because of sequential process-
ing. Hence, we propose to use a self-attention (fself ) based global story encoder,
which takes the sentence embeddings for all captions as input and generates
contextualized story embeddings for each time-step using parallel processing
(see Figure 1). Additionally, we initialize sinusoid positional embeddings (Spos)
to provide information about the position of the target frame within the story,
and add those to the story embeddings: Sglobal = fself (S+Spos). These embed-
dings are prepended to the word embeddings for the caption at that timestep
and sent as input to the generative model.

Retro-fitted Cross-Attention Blocks. Next, we want to ‘retro-fit’ the DALL-E
model with the ability to copy relevant elements from the source image, in or-
der to promote generalizability to unseen visual attributes. This will allow the
model to generate visual stories with completely new characters, as long as they
are present in the source frame. Hence, we adapt the model to ‘condition’ the
generation of target frame on the source frame by adding a cross-attention block
to each self-attention block of the native DALL-E architecture. The image em-
beddings of the source frame are used in the cross-attention layer as key (K)
and value (V ), while the output from the preceding self-attention layer is used
as query (Q). As shown in Figure 1, the DALL-E self-attention block consists
of the self-attention (f i

self ), feed-forward (f i
dense) and normalization (fnorm)

layers. Given an input zi to the ith self-attention block, the output zi+1 is:
zi+1 = fnorm(f i

dense(f
i
self (zi))). In StoryDALL-E, we insert a cross-attention

layer such that the output zi+1 is:

zi+1 = fnorm(f i
dense(f

i
cross(f

i
self (z

i), cimg))) (1)

where f i
cross is the cross-attention layer in the ith Transformer block and cimage

is sequence of embedding representations for the conditioning image. The self-
attention layers are constrained to perform causal masking for computing at-
tention weights due to the nature of the image synthesis task. However, within
the cross-attention layer, the input is free to attend over the entire source frame
which eases the next token prediction task by augmenting the model with rele-
vant information. The cross-attention layers are trained from scratch.

The StoryDALL-E architecture can be fully fine-tuned to learn the weights
of the above-mentioned task-specific modules, while updating the weights of the
pretrained model as necessary, on the target task as well as dataset. However, [1]



StoryDALL-E 7

show that freezing of pretrained weights during training of retro-fitted models
can also lead to similar performance as models trained from scratch, with lesser
training data. Further, it provides a parameter-efficient approach that can be
trained/deployed with a smaller amount of computational resources. Hence, we
additionally explore prompt-tuning [22] of the StoryDALL-E model.

Prompt. Prompt-tuning is an alternative [22] to full model fine-tuning where the
pretrained model weights are frozen and instead, a small sequence of task-specific
vectors is optimized for the downstream task. We initialize a parameterization
network MLP (.), which takes a matrix of trainable parameters P

′

θ of dimensions
Pidx and dim(hi) as input and generates the prompt Pθ. These trainable matrices
are randomly initialized and trained from scratch on the downstream task and
dataset. Pθ is appended to the word embeddings of input caption, along with
the global story embeddings. Together, these additional embedding vectors act
as ‘virtual tokens’ of a task-specific prompt, and are attended to by each of the
caption as image tokens. Formally, the input hi to the ith self-attention layer in
the auto-regressive transformer is organized as follows:

hi =


Pθ[j, :] if j ∈ [0, Pidx)

Sglobal if j == Pidx

f i(zj , h<j) otherwise
(2)

where f i(.) is the ith transformer block in StoryDALL-E.
With the aforementioned additions, we convert the pretrained DALL-E into

StoryDALL-E model for the story continuation task. A pretrained VQVAE en-
coder [30] is used to transform RGB images into small 2D grids of image tokens,
which are flattened and concatenated with the modified inputs in StoryDALL-
E (see supplemen. for details). Finally, StoryDALL-E is trained to model the
joint distribution over the tokens of text s and image x: p(x) =

∏d
j=1 p(xj |x<i; s).

New parameters as well as pretrained weights are optimized in full-model finetun-
ing whereas only the parameters of the prompt, story encoder and cross-attention
layers are optimized during prompt-tuning.

3.3 StoryGANc

Generative Adversarial Networks (GANs) have enjoyed steady progress at many
image generation tasks such as style transfer [18], conditional image genera-
tion [41], image-to-image translation [15] over the last decade. Unlike transform-
ers, they do not need to be pretrained on massive datasets, and can be trained
for narrow domains with smaller datasets, which makes it an appealing method.
Several recent works in story visualization have demonstrated the effectiveness of
GANs for this task [23,28,37]. Hence, we also develop a GAN-based model, Sto-
ryGANc, for the story continuation task and compare its performance to that
of StoryDALL-E on the proposed datasets (see supplemen. for figure and de-
tails). StoryGANc follows the general framework of the StoryGAN model [23]
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i.e., it is composed of a recurrent text encoder, an image generation module,
and two discriminators - image and story discriminator. We modify this frame-
work to accept the source frame as input for the story continuation task, and
use it for improving the generation of target frames. Our StoryGANc model
is implemented as follows:

Pre-trained Language Model Encoder. We use a pretrained language model (such
as RoBERTa [25] or CLIP text encoder [32]) as the caption encoder. These
models are pretrained on large unimodal or multimodal datasets of language,
which is of great utility for understanding the semantic concepts present in input
captions. To ensure that the model has access to all captions, we append the
captions together and use a special token to denote which caption is currently
being generated.

Contextual Attention. The story representation from the encoder is combined
with the image embeddings of the first frame of the image sequence using con-
textual attention [44] between the two inputs. The resulting representation is
fed through a generator module which recurrently processes each caption, and
produces a corresponding image.

Discriminators. The story discriminator takes all of the generated images and
uses 3D convolution to create a single representation and then makes a pre-
diction as to whether the generated story is real or fake. The image discrimi-
nator performs the same function but only focuses on individual images. The
KL-Divergence loss enforces gaussian distribution on the latent representations
learnt by GAN. Finally, the model is trained end-to-end using the objective
function: minθG maxθI ,θS LKL +Limg +Lstory, where θG, θI and θS denote the
parameters of the text encoder + image generator, and image and story dis-
criminators respectively. During inference, the trained weights θG are used to
generate a visual story for a given input of captions.

4 Datasets

Since story continuation is a reframing of the story visualization tasks, existing
story visualization datasets can be adapted for story continuation by assigning
the first frame in the sequence as source frame and the rest as target frames.
However, such existing story visualization datasets like PororoSV [23] and Flint-
stonesSV [8] are also homogeneous datasets with recurring characters i.e., the
characters used during evaluation already appear in the training set. It is not
possible to evaluate the generalization capacity of story continuation models
using these datasets. Hence, we propose a new dataset in this paper.

DiDeMoSV. DiDeMo [11] is a video captioning dataset containing 10,000 short
clips with more than 40,000 text descriptions temporally localized with the
videos. Each of the clips were randomly sampled from the YFCC100M [40]
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Pororo is throwing ball 
to the sky.

Pororo bounces the 
ball by his right hand 

while jumping.

Pororo is blinking 
his eyes.

Loopy is talking 
to Eddy.

Loopy and Eddy are 
sitting together.

A man wearing a red hat 
and shirt is standing in 

a room. He talks..

Betty is in a room with 
dropped jaw responding 
to something she sees.

Betty is walking down
the road while 

speaking.

Wilma is talking in the 
room. Betty walks in to 

face her.

Betty was listening to 
Barney vent. Betty wants 

to leave the room but...

A monkey jumps onto the 
building and hops away.

The monkey disappears 
off-screen.

The monkey is sitting on 
a stair set.

Fig. 2. Examples from the PororoSV (top), FlintstonesSV (middle) and DiDeMoSV
(bottom) datasets. In the story continuation setting, the first frame is used as input to
the generative model.

dataset which is based upon Flickr. This results in videos that cover a large
breadth of real-world scenarios, containing many different settings, actions, en-
tities, and more. The dataset contains 11550/2707/3378 samples in training,
validation and test respectively, with each sample containing three consecutive
frames. This dataset challenges story continuation models to generate diverse
inputs, covering many more story elements, in contrast to existing story visual-
ization datasets. In order to do this, models must maximize their usage of the
initial scene input and need to incorporate additional general visual knowledge,
whether this is done through transfer learning or additional data.

We also use the existing PororoSV [23] and FlintstonesSV datasets [8], con-
taining 10191/2334/2208 and 20132/2071/2309 samples respectively, to evaluate
our story continuation models. Each sample contains 5 consecutive frames. There
are 9 and 7 main characters in PororoSV and FlintstonesSV respectively, that
appear throughout the dataset. For story continuation, we use the first frame as
source frame and the rest of the four frames in the sequence as target frames.
Evaluation is only performed on the generation of target frames. See Figure 2
for examples from the three story continuation datasets.

5 Experiments

We use the pretrained weights from popular open-source minDALL-E (1.3B
parameters) which is trained on 14 million text-image pairs from the CC3M
[35] and CC12M [2] datasets, to initialize our models.2 minDALL-E uses the

2 https://github.com/kakaobrain/minDALL-E

https://github.com/kakaobrain/minDALL-E
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Table 1. Results on the test sets of PororoSV, FlintstonesSV and DiDeMoSV (DSV)
datasets from various models. Scores are based on FID (lower is better), character
classification F1 and frame accuracy (F-Acc.; higher is better) evaluations.

Model PororoSV FlintstonesSV DSV
FID ↓ Char-F1↑ F-Acc↑ FID ↓ Char-F1↑ F-Acc↑ FID↓

StoryGANc (BERT) 72.98 43.22 17.09 91.37 70.45 55.78 91.43
StoryGANc (CLIP) 74.63 39.68 16.57 90.29 72.80 58.39 92.64

StoryDALL-E (prompt) 61.23 29.68 11.65 53.71 42.48 32.54 64.58
StoryDALL-E (finetuning) 25.90 36.97 17.26 26.49 73.43 55.19 32.92

pretrained VQGAN-VAE [4] for discretizing image inputs. We experiment with
pretrained CLIP [32] (38M parameters) and distilBERT [34] (110M parameters)
text encoders for the StoryGANc models. The StoryDALL-E models are
trained for 5 epochs with learning rates of 1e-04 (AdamW, Cosine Scheduler) and
5e-04 (AdamW, Linear Decay Scheduler) for full-model fine-tuning and prompt-
tuning setups respectively. Checkpoints are saved at the end of every epoch. The
StoryGANc models are trained for 120 epochs with learning rates 1e-04 and
1e-05 for the generator and discriminators respectively. Checkpoints are saved
every 10 epochs. These models are trained on single A6000 GPUs.

We use the FID score for saving the best checkpoints in our experiments.
The FID score calculates the difference between the ground truth and generated
images by computing the distance between two feature vectors. Following [23]
and [28], we also compute the character classification scores (F1 Score and Frame
Acc.) for the PororoSV and FlintstonesSV datasets. See supplemen. for details.

6 Results

Main Quantitative Results. Table 1 contains the FID, character classification F1
score and frame accuracy results on the test sets of PororoSV and FlintstonesSV
datasets using various models in our experiments. We train two variations of
the StoryDALL-E model with the distilBERT and CLIP text encoders. Our
model StoryDALL-E is trained under two settings, one where the pretrained
weights are frozen during training and the other where the pretrained weights
are also finetuned on the target dataset. In practice, we find it necessary to
finetune the pretrained text and image embeddings within the Transformers,
which are pretrained on real-world images, in order to adapt them to different
domains such as cartoons. This results in nearly 30% trainable parameters dur-
ing prompt-tuning, as compared to full-model finetuning. With StoryDALL-E,
we see drastic improvements in FID score for the PororoSV and FlinstonesSV
datasets, over the StoryGANc model, demostrating the superior visual qual-
ity of the generated visual stories. The character classification scores remain
the same for FlintstonesSV and drop by 6% and 14% for PororoSV with use of
finetuned and prompt-tuned StoryDALL-E respectively. GAN-based models
like StoryGANc are able to recreate distinct and finer details of a charac-
ter which leads to higher accuracy scores using a classification model, such as
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Table 2. Ablation results of StoryDALL-E on validation sets of PororoSV, Flint-
stonesSV and DiDeMoSV (DSV) datasets. Scores are based on FID (lower is better),
character classification F1 and frame accuracy (F-Acc.; higher is better) evaluations.

Model PororoSV FlintstonesSV DSV
FID ↓ Char-F1↑ F-Acc↑ FID ↓ Char-F1↑ F-Acc↑ FID↓

StoryDALL-E 21.64 40.28 20.94 28.37 74.28 52.35 41.58
- Cross-Attention 30.45 39.32 34.65 35.04 73.94 53.28 55.89
- Story Embeddings 23.27 40.25 18.16 29.21 72.18 52.72 42.34
- Story Embeddings & Cross-Attention 31.68 35.29 16.73 36.28 72.44 51.32 58.14

the Inception-v3 used in our experiments [28]. With prompt-tuning, we observe
that StoryDALL-E models manage to capture the background elements of the
scene but fail to properly recreate the characters in the frame. The frame accu-
racy score, which is based on exact match overlap of multiple characters in the
predicted scene with those in ground truth, remains low for all models, suggest-
ing that both methods struggle to compose multiple roles in a single image [3].

For the more challenging DiDeMoSV dataset, the fully finetuned StoryDALL-
E model outperforms the GAN models by a wide margin in terms of FID score. It
should be noted here that PororoSV and FlintstonesSV have a finite set of recur-
ring animated characters throughout the dataset, whereas DiDeMoSV is derived
from a multitude of real-world scenarios with no overlap in characters between
training and evaluation sets. While the addition of a source frame makes it easier
for the model to replicate it in the target frames, the generation is significantly
more difficult due to the diversity in evaluation samples. However, since the
DiDeMoSV dataset contains images from the real-world domain, the pretrained
knowledge of StoryDALL-E derived from Conceptual Captions is useful for
generating relevant and coherent images for the dataset, while StoryGANc
largely fails to do so.

Ablations. Table 2 contains results from ablation experiments on finetuned
StoryDALL-E on the validation sets of the three story continuation datasets. The
primary modifications we make to DALL-E in order to adapt it into StoryDALL-
E, are the cross-attention layers and global story embeddings. We perform minus-
one experiments on StoryDALL-E by removing each of these components and
observing the effect on FID results on validation sets. First, we remove the
cross-attention layers from StoryDALL-E, which reverts the model to the story
visualization setting where the model no longer receives the first image as input,
and is evaluated on generation of rest of the frames in the visual story. With this
ablation, we see large increase in FID scores across all datasets. Without a source
image to guide the generated output, the quality of illustration drops rapidly,
especially for the new DiDeMo dataset. The removal of global story embeddings
results in a text-to-image synthesis setting with the first frame as additional
input. In this scenario, we see smaller drops in FID, indicating that the global
context is not as important as the ability to copy from an initial image. In the
third row, we remove both, cross-attention layers and story embeddings, which
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Table 3. Results from human evaluation (Win% / Lose% / Tie%). Win% = % times
stories from StoryDALL-E was preferred over StoryGANc, Lose% for vice-versa.
Tie% represents remaining samples.

Dataset Visual Quality Relevance Consistency
PororoSV 94/0/6 44/28/28 56/26/18

FlintstonesSV 90/2/8 32/38/30 42/32/26
DiDeMoSV 64/0/36 38/0/62 32/48/20

relegates the setting to a text-to-image synthesis task, and observe large increase
in FID scores across all datasets.

6.1 Human Evaluation

We additionally conduct human evaluation on our model’s outputs hoping to bet-
ter capture the overall quality of the generated stories. We have a human annota-
tor compare generated visual stories from our StoryDALL-E (finetuning) and
StoryGANc (BERT) models. They are provided with predictions from each
dataset and the corresponding ground truth captions, and asked to pick the bet-
ter prediction (or tie) in terms of visual quality, consistency, and relevance [23].
Results are presented in Table 3. The StoryDALL-E model outperforms Sto-
ryGANc model in terms of visual quality and relevance, achieving higher % of
wins in each of the three datasets (except relevance in FlintstonesSV). These
results follow from the fact that StoryDALL-E uses the VQGAN-VAE [4]
which is designed for reconstructing higher resolution images. Moreover, it has
access to large pretraining data, which improves alignment between semantic
concepts in captions and regions in images. We see wins in terms of consistency
for PororoSV and DiDeMoSV predictions from StoryDALL-E models. But,
the absolute numbers for consistency and relevance show that there is still room
for improvement.

7 Analysis

In this section, we perform experiments to analyze aspects of the StoryDALL-
E model and the story continuation task. First, we perform qualitative analyses
of the predictions from StoryDALL-E. Next, we quantify the effect of the retro-
fitted cross-attention layers and visualize the attention heads. See supplemen.
for an analysis of the diverse semantic content in the DiDeMoSV dataset.

7.1 Qualitative Analysis

Figure 3 contains sampled outputs from both of our models for the three story
continuation datasets. In each of these examples, StoryDALL-E generates
higher quality images than StoryGANc. The difference is especially stark for
PororoSV and FlintstonesSV datasets since StoryDALL-E is exposed to the



StoryDALL-E 13

G
ro

u
n

d
 T

ru
th

S
to

ry
G

A
N

c
S

to
ry

D
A

L
L

-E
(p

re
fi

x)
Source Frame

Poby compliments 
Pororo's snowman. 

Pororo smiles.

Pororo's snowman
looks like Pororo.

Eddy says his 
snowman is better 

than Pororo's 
snowman.

Caption

Poby looks at Eddy
and Pororo. Eddy

and Pororo are
fighting.

Eddy and Pororo are
fighting. Eddy and

Pororo are bumping
their heads.

S
to

ry
D

A
L

L
-E

(f
in

et
u

n
ed

)

We see the second
violinist for the 

first time.

Man in white stripped
shirt gets up and

walks away.

Entire frame
focused on
the violinist.

Fred is talking on
the television in the 
living room dressed

as a superhero.

Fred dressed as a
superhero is talking
on the tv screen in

the living room.

Barney sits beside
Fred as he talks in
an angry manner in
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A. B. C.

Fig. 3. Examples of predictions for (A) PororoSV (B) FlintstonesSV and (C) DiDe-
MoSV story continuation datasets from StoryDALL-E and StoryGANc models.
Source frame refers to the initial frame provided as additional input to the model.

characters during training and has additional guidance from source frame dur-
ing inference. In the case of DiDeMoSV, the generations from StoryGANc are
largely incomprehensible, which could be attributed to the unseen semantic con-
cepts such as ‘violinist’ which did not appear in the training set. In contrast,
StoryDALL-E is exposed to various real-world concepts during pretraining,
which can be leveraged during generation. For instance, the pretrained knowl-
edge as well as the copying mechanism help the StoryDALL-E model compre-
hend ‘television’ and generate an image for ‘Fred is talking in the television’ (see
Fig.3(b)). However, the overall quality of the images from StoryDALL-E also
do not approach human produced images. As discussed in Sec. 6, it is especially
true for frames containing multiple characters. This suggests that while current
models are able to attempt the task, there is still much work to be done before
consistent and coherent images are commonly produced by the models.

We also examine the ability of StoryDALL-E to recreate scarce charac-
ters from the training set (see Fig. 4(a)) and generate unseen characters (see
Fig. 4(b)), when guided by the copying mechanism via cross-attention layers. We
find that the copying mechanism allows for better generation of shape and form
for less-frequent characters in PororoSV. Similarly, we identified non-recurring
characters in the FlintstonesSV dataset and observed the corresponding gener-
ated images, when StoryDALL-E has access to a previous frame where they
appear. StoryDALL-E succeeds at partially copying visual aspects of the char-
acters, such as the purple skirt (top) and blue uniform (bottom).
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Source Target Generated Source Target GeneratedSource Target w/o condition
Generated

(a) Generation in low-resource scenarios.

with condition
Generated

(b) Generation of unseen characters. (c) Visualization of attention heads in cross-attention layers of StoryDALLE.

Fig. 4. Examples of generation from StoryDALL-E in (a) low-resource scenarios and
(b) of unseen characters. (c) Plots of attention scores computed in retro cross-attention
layers for examples of source frames (x-axis) and target frames (y-axis).

7.2 Retro-fitted Cross-Attention

We examine the attention scores computed in the retro cross-attention layer
and present examples in Fig. 4(c). The cross-attention layer in StoryDALL-E
receives vector representations for the source image and computes the cross-
attention output using source frame as key/value and target frame as query.
In the first example (left), the target frame is copying visual attributes of the
pink bird with the most emphasis, as be seen from the higher attention scores
for the image tokens roughly in the center of the source frame. For the second
example (right), the source frame and target frames are nearly similar; the at-
tention scores are highest in the diagonal of the plot. The resulting images in
both samples contain many visual attributes already found in the source image,
demonstrating that the cross-attention layer is effective at enabling conditional
image generation. See supplementary for correlation scores between source image
and frames generated with and without condition using StoryDALL-E.

8 Conclusion

We introduce a new task called story continuation in order to make the story
visualization task more conducive for real-world use cases. We present a new
dataset DiDeMoSV, in addition to reformatting two existing story visualization
datasets for story continuation. Our model StoryDALL-E, based on a retro-
fitting approach for adapting pretrained transformers, out-performs GAN-based
models on the story continuation datasets. We hope that the dataset and models
motivate future work in this area.
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