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Abstract. Animating high-fidelity video portrait with speech audio is
crucial for virtual reality and digital entertainment. While most previous
studies rely on accurate explicit structural information, recent works ex-
plore the implicit scene representation of Neural Radiance Fields (NeRF)
for realistic generation. In order to capture the inconsistent motions as
well as the semantic difference between human head and torso, some
work models them via two individual sets of NeRF, leading to unnatu-
ral results. In this work, we propose Semantic-aware Speaking Portrait
NeRF (SSP-NeRF), which creates delicate audio-driven portraits using
one unified set of NeRF. The proposed model can handle the detailed
local facial semantics and the global head-torso relationship through two
semantic-aware modules. Specifically, we first propose a Semantic-Aware
Dynamic Ray Sampling module with an additional parsing branch that
facilitates audio-driven volume rendering. Moreover, to enable portrait
rendering in one unified neural radiance field, a Torso Deformation mod-
ule is designed to stabilize the large-scale non-rigid torso motions. Ex-
tensive evaluations demonstrate that our proposed approach renders re-
alistic video portraits. Demo video and more resources can be found in
https://alvinliu0.github.io/projects/SSP-NeRF

Keywords: Speaking portrait generation · Audio-Visual correlation

1 Introduction

Generating high-fidelity video portraits based on speech audio is of great impor-
tance to various applications like digital human and video dubbing. Many works
tackle the task of audio-driven talking face or video portrait generation by using
deep generative models. Some rely solely on learning-based image reconstruc-
tion, which typically synthesize static results of low-resolution [6,11,47,62,68,81].
Other methods utilize explicit structural intermediate representations such as 3D
facial models [5,51,60,66,69,76,83] or 2D landmarks [7,13,59]. Though some of
them can generate high-fidelity images [59,60], the errors in structured represen-
tation prediction (e.g., expression parameters of 3DMorphable Model (3DMM) [3])
lead to inaccurate face deformation [82].
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Recently, the implicit 3D scene representation of Neural Radiance Fields
(NeRF) [34] provides a new perspective for realistic generation. It enables free-
view control with higher image quality compared to explicit methods, which
is suitable for the video portrait generation task. Gafni et al. [16] first involve
NeRF in the dynamic human head modeling from single-view data in a video-
driven manner. However, an accurate explicit 3D model is still required in their
settings. Moreover, they model torso consistently with the head, which leads
to unstable results. Guo et al. [19] further propose AD-NeRF for audio-driven
talking head synthesis. In particular, they build two individual sets of NeRF for
head and torso modeling. Such a straightforward pipeline suffers from head-torso
separation during the render stage, making generated results unnatural.

Based on previous studies, we identify two key challenges for incorporating
NeRF into portrait generation: 1) Each facial part’s appearance and moving
patterns are intrinsically connected but substantially different, especially when
associated with audios. Thus weighing all rendering areas equally without seman-
tic guidance would lead to blurry details and difficulties in training. 2) While it is
easy to bind head pose with camera pose, the global movements of the head and
torso are in significant divergence. As the human head and torso are non-rigidly
connected, modeling them with one set of NeRF is an ill-posed problem.

In this work, we develop a method called Semantic-aware Speaking Por-
trait NeRF (SSP-NeRF), which generates stable audio-driven video portraits
of high-fidelity. We show that semantic awareness is the key to handle both local
facial dynamics and global head-torso relationship. Our intuition lies in the fact
that different parts of a speaking portrait have different associations with speech
audio. While other organs like ears move along with the head, the high-frequency
mouth motion that is strongly correlated with audios requires additional atten-
tion. To this end, we devise an Semantic-Aware Dynamic Ray Sampling module,
which consists of an Implicit Portrait Parsing branch and a Dynamic Sampling
Strategy. Specifically, the parsing branch supervises the modeling with facial se-
mantics in 2D plane. Then the number of rays sampled at each semantic region
could be adjusted dynamically according to the parsing difficulty. Thus more
attention can be paid to the small but important areas like lip and teeth for
better lip-synced results. Besides, we also enhance the semantic information by
anchoring a set of latent codes to the vertices of a roughly predicted 3DMM [3]
without expression parameters.

On the other hand, since the head and torso motions are rigidly bound to-
gether in the current NeRF, a correctly positioned torso cannot be rendered even
with the portrait parsing results. We further observe the relationship between
head and torso: while they share the same translational movements, the orienta-
tion of torso seldom changes with head pose under the speaking portrait setting.
Thus we model non-rigid deformation through a Torso Deformation module.
Concretely, for each point (x, y, z) in the 3D scene, we predict a displacement
(∆x,∆y,∆z) based on the head-canonical view information and time flows. In-
terestingly, although there are local deformations on the face, the deformation
module implicitly learns to focus on the global parts. This design facilitates por-
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trait stabilization in one unified set of NeRF. Experiments demonstrate that our
method generates high-fidelity video portraits with better lip-synchronization
and better image quality efficiently.

To summarize, our work has three main contributions: (1) We propose the
Semantic-Aware Dynamic Ray Sampling module to grasp the detailed appear-
ance and local dynamics of each portrait part without using accurate structural
information. (2) We propose the Torso Deformation module that implicitly
learns the global torso motion to prevent unnatural head-torso separated re-
sults. (3) Extensive experiments show that the proposed SSP-NeRF renders
high-fidelity audio-driven video portraits with one unified NeRF in an efficient
manner, which outperforms state-of-the-art methods on both objective evalua-
tions and human studies.

2 Related Work

Audio-Driven Talking Head Synthesis. Audio-visual learning arouses great
research interest [29,28], where talking head generation facilitates real appli-
cations. Conventional works resort to stitching techniques [4,15], where a pre-
defined set of phoneme-mouth correspondence rules is used to modify mouth
shapes. With the rapid growth of deep neural networks, end-to-end frameworks
are proposed. One category of methods, namely image reconstruction-based
methods, generate talking face by latent feature learning and image reconstruc-
tion [11,46,47,57,62,65,81,82,84,24,20]. For example, Chung et al. [11] propose
the first end-to-end method with an encoder-decoder pipeline. Zhou et al. [81]
explicitly disentangle identity and word information for better feature extrac-
tion. Prajwal et al. [47] achieve synchronous lip movements with a pretrained
lip-sync expert. However, these methods can only generate fix-sized images
with low resolution. Another strand of approaches named model-based meth-
ods utilize structural intermediate representations like 2D facial landmarks or
3D representations to bridge the mappings from audio to complicated facial im-
ages [5,7,13,33,56,59,60,63,69,76,83]. Typically, Chen et al. [7] and Das et al. [13]
first predict 2D landmarks then generate faces. Thies et al. [60] and Song et
al. [56] infer facial expression parameters from audio in the first stage, then gen-
erate 3D mesh for final image synthesis. But errors in intermediate prediction
often hinder accurate results. In contrast to these two strands of works, our
method can render more realistic speaking portraits of high-fidelity without any
accurate structural information.
Implicit Representation Methods. Recent works leverage implicit functions
for learning scene representations [25,27,34,37,55,79], where multi-layer percep-
tron (MLP) weights are used to represent the mapping from spatial coordinates
to a signal in continuous space like occupancy [32,45,50,54], signed distance func-
tion [18,64,75,70], color and volume density [2,14,30,34], semantic label [22,80]
and neural feature map [8,36,9]. A recent popular work named Neural Radiance
Fields (NeRF) [34] optimizes an underlying continuous volumetric scene map-
ping from 5D coordinate of spatial location and view direction to implicit fields
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Fig. 1. Overview of Semantic-aware Speaking Portrait NeRF (SSP-NeRF)
framework. In Implicit Portrait Parsing Branch (yellow), the semantic-aware implicit
function F semantic

Θ takes latent code f , audio feature a, 3D coordinate x and view
direction d as input, then outputs the semantic logits s, density σ and color c of the
scene. In Dynamic Sampling Strategy (green), the RGB loss Lp and semantic loss
Ls are utilized to guide the distribution of rays sampled at each semantic region. In
particular, the Torso Deformation module (grey) uses an implicit function F deform

Φ to
map from the time t, head pose ph(t), canonical pose pc and 3D coordinate x into
the displacement ∆x, which generates the deformed 3D coordinate x + ∆x to model
non-rigid torso motions

of color and density for photo-realistic view results. Naturally, naive NeRF is
confined to static scenes, which triggers a branch of studies to extend NeRF
for dynamic scenes [16,26,38,39,40,41,43,48,49,58,61]. However, few works focus
on complicated dynamic scenes like speaking portraits [19]. The main difficulty
lies in the learning of cross-modal associations between different portrait parts
and speech audio. Typically, Guo et al. [19] synthesize talking head with two
individual sets of NeRF for head and torso, making generated results fall apart.
In this work, we take semantics as guidance to grasp each portrait part’s lo-
cal dynamics and appearances for fine-grained results efficiently. A deformation
module further enables us to synthesize stable video portraits using one unified
set of NeRF.

3 Our Approach

We present Semantic-aware Speaking Portrait NeRF (SSP-NeRF) that
generates delicate audio-driven portraits with one unified set of NeRF. The whole
pipeline is depicted in Fig. 1. In this section, we first review the preliminaries
and the problem setting of video portrait synthesis with neural radiance fields
(Sec. 3.1). We then introduce the Semantic-Aware Dynamic Ray Sampling mod-
ule, which facilitates fine-grained appearance and dynamics modeling for each
portrait part with semantic information (Sec. 3.2). Furthermore, we elaborate
the Torso Deformation module that handles non-rigid torso motion by learn-
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ing location displacements (Sec. 3.3). Finally, the volume rendering process and
network training details are described (Sec. 3.4).

3.1 Preliminaries and Problem Setting

Given images with calibrated camera intrinsics and extrinsics, NeRF [34] rep-
resents a scene using a continuous volumetric radiance field F . Specifically, F
is modeled by an MLP, which takes 3D spatial coordinates x = (x, y, z) and
2D view directions d = (θ, ϕ) as input, then outputs the implicit fields of color
c = (r, g, b) and density σ. In this way, the MLP weights store scene information
by the mapping of F : (x,d) → (c, σ). To compute the color of a single pixel,
NeRF [34] approximates the volume rendering integral using numerical quadra-
ture [31]. Consider the ray r(v) = o + vd from camera center o, its expected
color Ĉ(r) with near and far bounds vn and vf is calculated as:

Ĉ(r) =

∫ vf

vn

T (v)σ(r(v))c(r(v),d)dv, (1)

where T (v) = exp(−
∫ v

vn
σ(r(u))du) is the accumulated transmittance along the

ray from vn to v. With the hierarchical volume sampling, both coarse and fine
MLPs are optimized by minimizing the photometric discrepancy.

In this work, we focus on audio-driven video portrait generation in a basic
setting: 1) The camera pose {R, τ} is given by the estimated rigid head pose,
where the rotation matrix R ∈ R3×3 and the translation vector τ ∈ R3×1 are
estimated by 3DMM [3] on the face; 2) The audio feature a ∈ R64 is extracted by
a pretrained DeepSpeech [1] model and further processed with a light-weight au-
dio encoder to get more compact representation. Therefore, the implicit function
of audio-driven portrait basic setting is:

F basic : (x,d,a) → (c, σ). (2)

Guo et al. [19] use an off-the-shelf parsing method [23] to divide training im-
ages into head and torso for individual NeRF modeling. Following their settings,
we assume that the semantic parsing maps are also available in our method.

3.2 Semantic-Aware Dynamic Ray Sampling

To avoid the unnatural head-torso separation problem described in Sec.1, we
render the whole portrait with one unified set of NeRF. However, two problems
remain: 1) The associations between different portrait parts and audio are dif-
ferent. For example, audio is more related to lip movements than torso motions.
How to grasp the fine-grained appearance and dynamics of each portrait part?
2) Since the rays are uniformly sampled over the whole image, how to make the
model pay more attention to small but important regions like mouth?
Implicit Portrait Parsing Branch. Our solution to the first problem is to
add a parsing branch. Since the portrait parts of the same semantic category
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share similar motion patterns and texture information, it will be beneficial for
the appearance and geometry learning in NeRF, which is also proven in recent
implicit representation studies [73,74,75,80]. As shown in Fig. 1, we extend the
original NeRF with an additional parsing branch that predicts the semantic
information. Note that since a certain 3D coordinate’s semantic label is view-
invariant, the parsing branch does not condition on view direction d. Specifically,
suppose there are totally K semantic categories, the parsing branch maps the
3D spatial coordinate x to semantic logits s(x) over K classes, which is further
conditioned on audio a. Hence the expected semantic logits Ŝ(r) along the ray
r(v) with near and far bounds vn and vf can be calculated as:

Ŝ(r) =

∫ vf

vn

T (v)σ(r(v),a)s(r(v),a)dv, (3)

where T (v) = exp(−
∫ v

vn

σ(r(u),a)du). (4)

Such semantic awareness naturally distinguishes each portrait part from oth-
ers, thus figuring out different associations between audio and different regions.
Dynamic Ray Sampling Strategy. To generate delicate facial images with
lip-synced results, we have to care for each portrait part, especially those small
but crucial regions. Original NeRF uniformly samples rays on image plane [34].
Such an unconstrained ray sampling process focuses on big regions (e.g., back-
ground and cheek) yet ignores small regions (e.g., lip and teeth) that are im-
portant for fine-grained results. Therefore, we use semantic information to guide
the ray sampling process dynamically. In particular, we denote all the points
that are sampled on the image as Ω =

⋃K
i=1 Ωi, where K is the total number of

semantic categories in parsing map and Ωi is the set of points that are sampled
on the i-th semantic class. During the training stage, we calculate the average
loss of each category Li for the previous epoch (the sum of semantic loss and
RGB loss, which will be introduced in Sec. 3.4), and then dynamically sample
rays across K categories by:

NΩi
=

Li∑K
i=1 Li

·Ns, (5)

where NΩi
denotes the number of rays distributed to the i-th category and Ns

is the total number of sampled rays. We identify two benefits for such design:
1) The average loss of a semantic category is area-agnostic. Thus the learning
process will equally sample those small-area regions; 2) Some image parts are
comparatively easier to learn. For example, the texture of eye is more complicated
than that of background. This leads to lower loss of background category and
dynamically drives the implicit function to pay more attention to hard-to-learn
regions. Our experiment further shows that this design can accelerate training.
Structured 3D Information. 3D cues are crucial for NeRF to grasp better
spatial geometry information as proved in [14,64,71,78]. In our framework, we
identify that the awareness of rough 3D facial information can serve as guid-
ance for face semantic and geometry learning. Concretely, a 3D facial model is
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built with mean expression parameters. We take inspiration from [44,45,72] to
anchor a set of latent codes to the vertices of 3DMM model and diffuse to 3D
space with SparseConvNet [17] to extract latent code volume. We query the la-
tent code f ∈ R88 at each point by trilinear interpolation4 similar to Peng et
al. [44]. Such structured 3D information could enhance semantic learning by
giving similar features to the same semantic class while discriminative features
among different semantic categories. Till now, we can update the basic setting
in Eq. 2 to semantic-aware implicit function with parameters Θ:

F semantic
Θ : (x,d,a, f) → (c, σ, s). (6)

3.3 Torso Deformation Module

As mentioned in Sec. 3.1, the estimated head pose serves as camera pose. How-
ever, such straightforward treatment ignores the fact that head and torso motions
are inconsistent. To tackle this problem, we design a Torso Deformation module
to stabilize the large-scale non-rigid torso motions.
Torso Deformation Implicit Function. Concretely, an implicit function is
optimized to estimate the deformation field of ∆x = (∆x,∆y,∆z) at a specific
time instant t. Based on the observation that torso pose changes slightly and is
weakly related to speech audio, the head pose ph(t) at time t and a canonical
pose pc are further given as references to learn the displacement ∆x, while audio
feature a does not serve as input. Note that for convenience, the canonical pose
pc is set as the head pose of the first frame, thus the displacement ∆x = 0
when t = 0. The implicit function for torso deformation with parameters Φ is
formulated as:

F deform
Φ : (x, t,ph(t),pc) → ∆x. (7)

Notably, although such deformation is added to the whole image, we em-
pirically find that only the torso part tends to be deformed, while the facial
dynamics are naturally modeled by semantic-aware implicit function in Eq. 6.
Such disentanglement will be further analyzed in Sec. 4.5.
Overall Implicit Function. Combine the semantic-aware implicit function
with our proposed Torso Deformation module, we can model the overall implicit
function as:

F overall
Θ : (x+∆x,d,a, f) → (c, σ, s),

where ∆x = F deform
Φ (x, t,ph(t),pc). (8)

3.4 Volume Rendering and Network Training

Volume Rendering with Deformation. Since the Torso Deformation module
is proposed to compensate for non-rigid torso motions, we accordingly adapt the
NeRF’s original volume rendering formulas for color and semantic distribution

4 Please refer to the supplementary material for more details.
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in Eq. 1, Eq. 3 and Eq. 4. Consider a certain 3D point x(v) = o + vd located
on the ray emitted from center o on view direction d, its warped coordinate at
time t with head pose ph(t) and canonical pose pc is computed as:

x′(v, t) = x(v) + F deform
Φ (x(v), t,ph(t),pc). (9)

With the deformed 3D coordinate x′(v, t) along the modified ray path r′(v, t),
we can calculate the expected color Ĉ(r′(v), t) and semantic logits Ŝ(r′(v), t) with
near and far bounds vn and vf under semantic-aware setting as:

Ĉ(r′) =

∫ vf

vn

T ′(v, t)σ(r′(v, t),a, f)c(r′(v, t),d,a, f)dv,

Ŝ(r′) =

∫ vf

vn

T ′(v, t)σ(r′(v, t),a, f)s(r′(v, t),a, f)dv,

and T ′(v, t) = exp(−
∫ v

vn

σ(r′(u, t),a, f)du), (10)

where T ′(v, t) is the accumulated transmittance along the ray path r′(v, t) from
vn to v. Note that the estimated semantic logits Ŝ(r′) are subsequently trans-
formed into multi-class distribution p(r′) through softmax operation.
Network Training. Similar to NeRF [34] that simultaneously optimizes coarse
and fine models with hierarchical volume rendering, we train the network with
following photometric loss Lp and semantic loss Ls:

Lp =
∑
r′∈R′

[∥∥∥Ĉc(r
′)− C(r′)

∥∥∥2
2
+

∥∥∥Ĉf (r
′)− C(r′)

∥∥∥2
2

]
,

Ls = −
∑
r′∈R′

[
K∑

k=1

pk(r′) log p̂kc (r
′) +

K∑
k=1

pk(r′) log p̂kf (r
′)

]
, (11)

where R′ is the set of deformed camera rays passing through image pixels; C(r′),
Ĉc(r

′) and Ĉf (r
′) denote the ground-truth, coarse volume predicted and fine vol-

ume predicted pixel color for the deformed ray r′, respectively; and pk(r′), p̂kc (r
′)

and p̂kf (r
′) denote the ground-truth, coarse volume predicted and fine volume

predicted multi-class semantic distribution for the deformed ray r′, respectively.
The overall learning objective for the framework is:

L = Lp + λLs, (12)

where λ is the weight balancing coefficient. At the training stage, the network
parameters Θ and Φ in Eq. 8 are updated based on the above loss function.

4 Experiments

4.1 Dataset and Preprocessing

Dataset Collection. Our method targets to synthesize audio-driven facial im-
ages. Hence a certain person’s speaking portrait video with audio track is needed.
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Table 1. The quantitative results of cropped setting on Testset A, B [60] and
C [59]. We compare the proposed Semantic-aware Speaking Portrait NeRF (SSP-
NeRF) against recent SOTA methods [7,19,47,59,60,82,83] and ground truth under
four metrics. For LMD the lower the better, and the higher the better for other metrics.
Note that the detailed comparison settings are elaborated in Sec. 4.3

Testset A Testset B [60] Testset C [59]

Methods PSNR ↑ SSIM ↑ LMD ↓ Sync ↑ LMD ↓ Sync ↑ LMD ↓ Sync ↑
Ground Truth N/A 1.000 0 6.632 0 5.973 0 6.204

ATVG [7] 24.125 0.725 5.261 4.708 5.074 6.208 5.869 4.419
Wav2Lip [47] 26.667 0.793 5.811 6.952 4.893 6.980 5.740 6.806
MakeitTalk [83] 25.522 0.704 7.238 3.873 6.704 4.105 6.512 3.925
PC-AVS [82] 25.712 0.756 5.406 5.834 5.247 6.113 5.771 5.983
NVP [60] - - - - 5.072 5.689 - -
SynObama [59] - - - - - - 5.485 5.938
AD-NeRF [19] 29.814 0.844 5.183 6.092 5.119 5.613 5.392 6.012

SSP-NeRF (Ours) 32.649 0.868 4.934 6.438 4.892 5.886 5.208 6.186

Unlike previous studies that demand large-corpus data or hours-long videos, we
can achieve high-fidelity results with short videos of merely a few minutes. In
particular, we extend the publicly-released video set of Guo et al. [19] and obtain
videos of average length 6,750 frames in 25 fps.
Training Data Preprocessing.We follow the basic setting [19] of audio-driven
video portrait generation to preprocess training data: (1) For the speech audio, it
is first processed by a pretrained DeepSpeech [1] model. Then a 1D convolutional
network with self-attention mechanism is adopted [19,60] for smooth feature
learning. The extracted audio feature a ∈ R64 is fed into the implicit function in
Eq. 8. (2) For the video frames, they are cropped and resized to 450×450 to make
talking portrait in the center. An off-the-shelf method [23] is leveraged to obtain
parsing maps of total 11 semantic classes. The background image and head pose
are estimated in a similar way to Guo et al. [19]. Note that the estimated head
pose ph(t) at time t is treated as camera pose and the canonical pose pc is set
as the starting frame’s head pose, i.e., pc = ph(0) in Eq. 8.

4.2 Experimental Settings

Comparison Baselines. We compare our method with recent representative
works: (1) ATVG [7], which uses 2D landmark to guide facial image synthesis;
(2) Wav2Lip [47] that achieves state-of-the-art lip-sync performance by pre-
training a lip-sync expert; (3) MakeitTalk [83], a representative 3D landmark-
based approach; (4) PC-AVS [82] which generates pose-controllable talking face
by modularized audio-visual representation; (5) NVP [60] that first infers ex-
pression parameters from audio, then generates images with a neural renderer;
(6) SynObama [59] which learns mouth shape changes for facial image warp-
ing; (7) AD-NeRF [19], which is the first work that uses implicit representation
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Table 2. The quantitative results of full resolution setting on Testset A. We
compare our method with AD-NeRF [19] that also generates whole portrait with full
resolution of 450×450. We evaluate image quality and lip-sync accuracy of synthesized
results. The number of parameters for each model is shown in table

Testset A (450× 450)

Methods PSNR SSIM LMD Sync # of params
GT N/A 1.000 0 5.291 -

AD-NeRF 29.186 0.827 4.892 4.237 2.69M
Ours 32.785 0.876 4.495 4.993 1.10M

of NeRF to achieve arbitrary-size talking head synthesis. In particular, we also
show the evaluations directly on the Ground Truth for a clearer comparison.
Implementation Details. The F semantic

Θ and F deform
Φ together with their as-

sociated fine models all consist of simple 8-layers MLPs with hidden size of 128
and ReLU activations. Following NeRF [34], positional encoding is applied to
each 3D coordinate x, view direction d and time instant t to map the input into
higher dimensional space for better learning. The positional encoder is formu-
lated as: γ(q) =< (sin(2lπq), cos(2lπq)) >L

0 , where we use L = 10 for x, and
L = 4 for d and t. For the parsing maps, we use K = 11 categories for semantic
guidance, including cheek, eye, eyebrow, ear, nose, teeth, lip, neck, torso, hair
and background. The structured 3D feature extractor is borrowed from [44] that
processes feature volume with 3D sparse convolutions and outputs latent code
with 2×, 4×, 8×, 16× downsampled sizes. The semantic weight λ is empirically
set to 0.04. The model is trained with 450 × 450 images during 400k iterations
with a batch size of Ns = 1024 rays. The framework is implemented in Py-
Torch [42] and trained with Adam optimizer [21] of learning rate 5e − 4 on a
single Tesla V100 GPU for 48 hours.

4.3 Quantitative Evaluation

Evaluation Metrics. We employ evaluation metrics that have been previously
used in talking face generation. We adopt PSNR and SSIM [67] to evaluate the
image quality of generated results; Landmark Distance (LMD) [6] and Sync-
Net Confidence [10,12] to account for the accuracy of mouth shapes and lip
sync. Other metrics such as CSIM [5,77] for measuring identity preserving and
CPBD [35] for result sharpness are shown in supplementary material.
Comparison Settings. The reconstruction/model-based methods require large-
corpus training data or long videos, hence we directly inference their released
best models. Note that all baseline methods except for [19] fail to generate the
whole portrait with full resolution, we divide our comparisons into two settings:
1) The cropped setting in Table 1, where we crop the generated facial image with
same region and resize into same size for fair evaluation metric comparison. 2)
The full resolution setting in Table 2, where we compare with AD-NeRF [19]
that could also synthesize the whole portrait with full resolution of 450× 450.
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Fig. 2. The qualitative comparisons on Testset A. We show the synthesized
talking heads of ground truth, baseline methods [7,19,47,82,83] and ours. Please zoom
in for better visualization. More qualitative results can be found in demo video

In the first setting, since NVP [60] and SynObama [59] do not provide pre-
trained models, we conduct comparisons on three datasets: (1) Testset A, the
collected dataset mentioned in Sec. 4.1; (2) Testset B, where we extract speech
audio from the demo of NVP to drive other baselines; (3) Testset C, where
the audio from SynObama’s demo is used for animation. Note that the metrics
for measuring image quality (PSNR and SSIM) are not evaluated on Testset B
and C due to the low image quality of original videos. In the second setting, the
experiment is only conducted on Testset A. We further compare the number of
model parameters against AD-NeRF [19] to show the efficiency.

Evaluation Results. The results of the cropped setting and full resolution set-
ting are shown in Table 1 and Table 2, respectively. It can be seen that the
proposed SSP-NeRF achieves the best evaluation results in most metrics: (1)
In the cropped setting, we synthesize fine-grained facial images with detailed
local appearance and dynamics of each portrait part. Note that Wav2Lip [47]
uses SyncNet [10,12] for pretraining, which makes their results on SyncNet Con-
fidence even better than the ground truth. Our performance on the LMD metric
is the best, and the SyncNet Confidence of our model is close to the ground truth
on all three datasets, showing that we can generate accurate lip-sync video por-
traits. (2) In the full resolution setting, the human face as well as torso part is
evaluated. Different from AD-NeRF’s separated rendering pipeline, our design
of Torso Deformation module facilitates steady results. The statistics on both
model’s parameter number are shown in Table 2. Notably, the training curves of
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Fig. 3. Left: We show the visualized ablation results of w/o dynamic sampling strat-
egy and w/o torso deformation respectively, where the blurry regions are highlighted.
Right: We show the training curves of (1) Ours (red), (2) w/o dynamic sampling
(green) and (3) AD-NeRF (blue). Note that the vertical axis stands for PSNR value
and the horizontal axis stands for the number of sampled rays (103 ×Ns)

both methods are shown in Fig. 3 (right), where our approach (red curve) uses
400k × 1024 sampled rays, while AD-NeRF [19] (blue curve) uses 400k × 2048
rays for training each model. Hence we generate portraits of better image quality
and better lip-synchronization in a more compact model with fewer iterations,
proving the effectiveness and efficiency of SSP-NeRF.

4.4 Qualitative Evaluation

We compare the generated key frames of each method in Fig. 2. It shows that
our video portraits are more lip-synced with higher image quality. In particular,
ATVG [7] and MakeitTalk [83] rely on precise facial landmarks, which leads to in-
accurate mouth shapes (green arrow); Wav2Lip [47] creates static talking heads;
PC-AVS [82] fails to preserve the speaker’s identity, making results unrealistic.
Moreover, all the image reconstruction-based methods [47,82] or model-based
methods [7,83] fail to synthesize the whole portrait of high-fidelity simultane-
ously. Although AD-NeRF [19] manages to create full-resolution results, the
separated rendering pipeline with uniform ray sampling leads to head-torso sep-
aration (as highlighted by blue arrows) and blurry results (orange arrow).
User Study. A user study is further conducted to reflect the quality of audio-
driven portrait. Specifically, we sample 30 audio clips from Testset A, B and
C for all methods to generate results, and then involve 18 participants for user
study. The Mean Opinion Scores rating protocol is adopted for evaluation, which
requires the participants to rate three aspects of generated speaking portraits:
(1) Lip-sync Accuracy ; (2) Video Realness; (3) Image Quality. The rating is
based on a scale of 1 to 5, with 5 being the maximum and 1 being the minimum.

The results are shown in Table 3. Since NeRF enables full-resolution whole
portrait generation, both AD-NeRF [19] and our method score comparatively
high on Image Quality and Video Realness. Besides, the users prefer our gener-
ated speaking portraits to AD-NeRF’s [19] due to the fine-grained local render-
ing and stable torso motions provided by our framework design. Although PC-
AVS [82] also creates pose-controllable talking faces, the inaccuracy of implicit
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Table 3. User study results on the generation quality of audio-driven por-
trait. The rating is of scale 1-5, with the larger the better. We compare the lip-sync
accuracy, video realness and image quality to baseline methods [7,47,83,82,19,60,59]

Methods ATVG Wav2Lip MakeitTalk PC-AVS NVP SynObama AD-NeRF Ours

Lip-sync Acc. 3.02 4.23 2.89 4.05 4.26 4.21 4.16 4.26
Video Real. 1.63 2.86 2.45 3.83 3.89 3.93 4.09 4.28
Image Qua. 1.72 2.42 2.78 2.36 4.02 3.86 4.18 4.43

(a) (b) (c)
0

1

Fig. 4. The visualized deformation heatmap. From left to right, we show the
predicted displacements over the whole portrait image under three cases of small,
medium and large pose. We can observe that: 1) The deformations are mostly on the
torso region; 2) The larger head pose is, the more displacements our model will predict

pose code extraction weakens their realness. Note that Wav2Lip [47], NVP [60]
and SynObama [59] achieve competitive scores on Lip-sync Accuracy. However,
they rely on large corpus or long training videos, while we merely take a short
video as input, showing the efficacy of our method. To further measure the
disagreement on scoring among participants, the Fleiss’s-Kappa statistic is cal-
culated. The Fleiss-Kappa value is 0.816, indicating “almost perfect agreement”.

4.5 Ablation Study

Torso Deformation Module. We conduct ablation experiments under two
settings: (1) w/o F deform

Φ , where we directly synthesize the whole portrait with-
out deforming 3D coordinates. The results are shown in Table 4 (left, first line),
where the ill-posed rendering leads to blurry torso with low image quality. To
further investigate the efficacy of Torso Deformation module, we visualize the
heatmap of learned displacements in Fig. 4. Since audio feature is not input
to the deformation implicit function, it tends to warp the weakly audio-related
torso part, while the strongly audio-related mouth movements are mostly mod-
eled by F semantic

Θ . The marginal drop in lip-sync metrics also suggests that the
deformation module majorly takes effect on the torso part.

Another ablation setting is: (2) deform by a, where the audio input a is fed
to F deform

Φ rather than F semantic
Θ , i.e., the audio feature a, head pose ph(t) and

canonical pose pc are leveraged to deform both the human face and torso part
simultaneously. The lip-sync performance drops dramatically as shown in Table 4
(left, second line). We guess the reason lies in distinct correlations between audio
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Table 4. Left: Ablation study of Torso Deformation module. Right: Ablation study
of Semantic-Aware Dynamic Ray Sampling module. Settings are elaborated in Sec. 4.5

Methods PSNR ↑ SSIM ↑ LMD ↓ Sync ↑

w/o F deform
Φ 27.472 0.791 4.635 4.744

deform by a 28.013 0.802 5.329 3.871
SSP-NeRF 32.785 0.876 4.495 4.993

Methods PSNR↑ SSIM↑ LMD↓ Sync↑

w/o semantic branch 29.479 0.832 4.886 4.562
w/o dynamic sample 29.514 0.826 4.916 4.490
w/o 3D information 31.059 0.845 4.683 4.739
SSP-NeRF 32.785 0.876 4.495 4.993

and different portrait parts. It is hard for deformation module to handle audio
synchronization and portrait parts deformation at the same time.
Semantic-aware Dynamic Ray Sampling Module. The ablative experi-
ments contain: (1) w/o semantic branch, which means the semantic supervision
Ls is not used; (2) w/o dynamic sample, where the rays are uniformly sampled
over image plane; (3) w/o 3D information, which means the 3D feature f is elim-
inated. The results in Table 4 (right) verify that the semantic awareness enables
the model to better grasp each part’s appearance and geometry. The dynamic
ray sampling further facilitates fine-grained results.

We further show visual ablation of original, “w/o dynamic sampling strat-
egy” and “w/o torso deformation” in Fig. 3 (left). We can see that dynamic
sampling facilitates small but important region (compare to the blurry mouth).
Besides, torso deformation guarantees stable rendering (compare to the blurry
torso). In the Fig. 3 (right), we present training curves of “w/o dynamic sampling
strategy”(green). Dynamic strategy can sample more on hard-to-learn regions to
boost training (compare red curve to green curve), and other components also
facilitate model learning process (compare green curve to blue curve).

5 Conclusion and Discussion

Conclusion. In this paper, we propose a novel framework SSP-NeRF for
audio-driven portrait generation. We introduce Semantic-Aware Dynamic Ray
Sampling module to grasp the detailed appearance and the local dynamics of
each portrait part without using accurate structural information. We then pro-
pose a Torso Deformation module to learn global torso motion and prevent
head-torso separated results. Extensive experiments show that our approach can
synthesize more realistic video portraits compared to the previous methods.
Ethical Consideration. Animating realistic talking portrait has extensive ap-
plications like digital human and film-making. On the other hand, it could be
misused for malicious purposes such as identity theft, deepfake generation, and
media manipulation. Recent studies have shown promising results in detecting
deepfakes [52,53]. However, the lack of realistic data limits their performance. As
part of our responsibility, we feel obliged to share our generated results with the
deepfake detection community to improve the model’s robustness. We believe
that the proper use of this technique will enhance the healthy development of
both machine learning research and digital entertainment.
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52. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics: A large-scale video dataset for forgery detection in human faces. arXiv
preprint arXiv:1803.09179 (2018)

53. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: Learning to detect manipulated facial images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 1–11 (2019)

54. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
ICCV (2019)
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