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1 Training details

We implement the audio encoder fa with the Resnet18 convolutional encoder [4]
pre-trained on ImageNet [2]. We adapt the raw 1D audio signal to fit the input
of a 2D encoder by generating Mel-frequency cepstral coefficients (MFCCs) of
the original audio clip, and then averaging the filters of the network’s first con-
volutional layer to adapt for a single channel input [11]. We create the MFCCs
with a sampling rate of 16 kHz and an analysis window of 0.025 ms. Our filter
bank consists of 26 filters and a fast Fourier transform of size 256 is applied, re-
sulting in 13 cepstrums. The visual encoder fv is based on the R3D architecture,
pre-trained on Kinetics-400 dataset [6]. For fair comparison with other methods,
we also implement fv as a 2D encoder by stacking the temporal and channel
dimensions into a single one, then we replicate the filters on the encoder’s first
layer to accommodate for the input of dimension (B,CT,H,W ) [12,11]. We also
rely on ImageNet pre-training [2] for this encoder.

Φ Embedding We assemble Φ on-the-fly with parallel forward passes of fa, fv,
and then map Φ into nodes of the Graph Convolutional Network and continue
with the GCN in a single forward pass. We design the GCN module using the
pytorch-geometric library [3] and use the EdgeConvolution operator [13] with
filters of size 128. Each layers on the spatio-temporal module contains a single
iGNN block. EdgeConvolution allows to build a sub-network that performs the
message passing between nodes, where every layer (spatial or temporal) in the
iGNN is built by a sub-network of two linear layers with ReLu [9] and batch
normalization [5]. Therefore, a single iGNN block contains 4 linear layers in
total.

Training EASEE. We Train EASEE for a total of 12 epochs3 using the ADAM
optimizer [7], and supervise every node in the final layer with the Cross-Entropy
Loss. We also apply intermediate supervision at the end of fa and fv encoders [11].

3 Similar to [1], we find that sampling every element in the tracklet leads to overfit.
For every training epoch, we randomly sample only 4 training examples inside every
tracklet.
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We empirically observe that this favors faster learning and provides a small per-
formance boost. The learning rate is set to 3 × 10−4 and is decreased with an-
nealing γ = 0.1 at epochs 6 and 8. This very same procedure is applied regardless
of the backbone. For every experiment we use a crop size of 160× 160.

2 Challenging Scenarios Analysis

We complement the analysis of EASEE, and assess its performance in known
challenging scenarios. We follow the procedure of [11], and evaluate EASEE in
the AVA-ActiveSpeakers dataset according to: i) number of visible faces, and ii)
the size of the face.

Table 1 shows the ablation of the performance of EASEE according to the
face size. Overall, EASEE shows a similar behavior to state-of-the-art methods,
where smaller faces (less than 64×64) are harder to classify (79.3 mAP). Medium
images (between 64 × 64 and 128 × 128) show an improvement in performance
over small images, and large faces report a the highest mAP at 97.7 mAP.

Faces Size EASEE-50 ASD [8] MAAS [10] ASC [1] AVA Baseline [11]

Small 79.3 74.3 55.2 44.9 56.2
Medium 93.2 89.8 79.4 68.3 79.0
Large 97.7 96.3 93.0 86.4 92.2

Table 1: AVA-ActiveSpeaker Face Size. We evaluate EASEE in the AVA-
ActiveSpeaker dataset according to the size of the faces. As observed in previous
works smaller faces are harder to classify. EASEE outperforms the state-of-the
art in every scenario

Table 2 evaluates the performance of EASEE according to the number of si-
multaneous faces. Just like other ensemble methods, EASEE shows an improved
performance in the mutli-speaker scenario when compared to the single speaker
baseline [11] (20.8 mAP improvement for two speakers, 29.5 mAP improvement
for 3 speakers).

Number
of Faces EASEE-50 ASD [8] MAAS [10] ASC [1] AVA Baseline [11]

1 96.5 95.7 93.3 91.8 87.9
2 92.4 92.4 85.8 83.8 71.6
3 83.9 83.7 68.2 67.6 54.4

Table 2: Performance evaluation by number of faces. We evaluate EASEE
in the AVA-ActiveSpeaker according to the number of visible faces (tracklets)
in the scene. Multi-speaker scenes are far more challenging, our method outper-
forms the current state-of-the-art in any scneario.
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3 Additional Ablation Experiments

We complement the ablation analysis of Section 4, and proceed to analyze two
extra architectural decisions in EASEE: i) The effect of the number of iGNN
modules, and ii) the size (number of neurons) in the linear layers in the iGNN
blocks.

We first analyze the effect of the number of iGNN blocks. We control this
hyper-parameter for the Resnet50 Backbone and the Resnet18 Backbone, and
evaluate from 2 to 7 iGNN modules. Table 3 summarizes the results. Deeper
GNN networks lead to higher performance, but this improvement stalls at 4
iGNN blocks for the Resnet50 backbone and 6 iGNN blocks for the Resnet18.

Backbone 2 iGNN 3 iGNN 4 iGNN 5 iGNN 6 iGNN 7 iGNN

EASEE-18 92.8 93.0 93.2 93.2 93.3 93.2
EASEE-50 93.6 93.8 94.1 94.0 93.8 93.8

Table 3: EASEE Performance By iGNN Depth.We analyze the effect of the
number of iGNN blocks in EASEE. Stacking blocks improves the performance
util 4 blocks are stacked (Resnet50) or 6 blocks are stacked (Resnet18)

We conclude by analyzing the effect of the size of the linear layers used in
iGNN. Our best models (EASEE-50 & EASEE-18) use linear layers of size 128.
In table 4 we ablate the size of this layer in the EASE50 architecture. We see
a smaller impact on this hyper-parameter, where a smaller net only losses 0.3
mAP, and iGNN blocvks with double the number of neurons only loose 0.2 mAP.

Backbone 64 128 224 256

EASEE-50 93.8 94.1 93.9 93.9

Table 4: Linear layer size. We assess the effect of the layer size in the iGNN
module. We find slightly reduced performance by altering the size of the iGNN
module.
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