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Abstract. Understanding emotion in context is a rising hotspot in the
computer vision community. Existing methods lack reliable context se-
mantics to mitigate uncertainty in expressing emotions and fail to model
multiple context representations complementarily. To alleviate these is-
sues, we present a context-aware emotion recognition framework that
combines four complementary contexts. The first context is multimodal
emotion recognition based on facial expression, facial landmarks, gesture
and gait. Secondly, we adopt the channel and spatial attention modules
to obtain the emotion semantics of the scene context. Inspired by so-
ciology theory, we explore the emotion transmission between agents by
constructing relationship graphs in the third context. Meanwhile, we pro-
pose a novel agent-object context, which aggregates emotion cues from
the interactions between surrounding agents and objects in the scene to
mitigate the ambiguity of prediction. Finally, we introduce an adaptive
relevance fusion module for learning the shared representations among
multiple contexts. Extensive experiments show that our approach out-
performs the state-of-the-art methods on both EMOTIC and GroupWalk
datasets. We also release a dataset annotated with diverse emotion la-
bels, Human Emotion in Context (HECO). In practice, we compare with
the existing methods on the HECO, and our approach obtains a higher
classification average precision of 50.65% and a lower regression mean
error rate of 0.7. The project is available at https://heco2022.github.io/.
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1 Introduction

Understanding human emotion plays an essential role in daily life as emotion
recognition has been applied in various complicated fields, such as medical care
[10], human-computer interaction [12], and robotics [76]. Benefiting from the
excellent performance of deep learning technologies in processing diverse sig-
nals [26, 71, 9, 37, 64, 35], many researchers [70, 50, 59, 58, 55, 38, 6] have improved
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Fig. 1. Examples of agents in four contexts. The red rectangles present the recognized
agent while the blue rectangles present the others. Discrete categories and continuous
dimensions labels of emotion shown under the images. VAD means emotional state
space: Valence, Arousal, and Dominance.

emotion recognition by combining diverse modalities (e.g., face, audio, and lan-
guage) from the recognized agent. Nevertheless, it is difficult to obtain the com-
plete modalities from the different data domains, especially in practical applica-
tions where simplicity and practicality are the goals. In this paper, we analyse
a wider view at the visual level to infer human emotion instead of focusing on
the agent only.

Recently, emotion recognition that combines the agent’s expression with the
emotion semantics of context has received considerable attention [30, 72, 31, 42,
41]. Researches in context awareness inspire us to explore meaningful contexts
from images and video frames to perceive emotion. There are some interesting
examples. In Figure 1(a)(Explicit context), the woman is lying on the grass with
a flexible posture, whose emotion tends to be peaceful. Emotion sociology works
[54, 19, 57] demonstrate that emotion is the maintenance and change of the re-
lationship between agents and their scene. In Figure 1(b)(Scene context), the
performance of expression recognition in dark scene is limited and poor. How-
ever, the emotional state reflected in the surrounding environment is consistent
with the agent, and it can be inferred from the scene context that the girl might
be in negative emotion. Furthermore, the emotion transmission between multiple
agents in the same scene can also affect the emotion change of the recognized
agent. In Figure 1(c)(Surrounding agent context), the man rushes to the ambu-
lance with an injured woman in his arms. Due to the woman’s condition, the
man feels fear. Moreover, inspired by emotion psychology studies [2, 43, 11], we
consider emotion cues provided by implicit representation, such as agent-object
interaction. In Figure 1(d)(Agent-object context), the man feels happy when he
sees his daughter have a good time with the hairdryer. The interaction between
the girl and the hairdryer is beneficial for understanding the man’s emotion. Cog-
nitive scientists [40, 17, 47] state that humans exist in a society whose emotions
can be affected by different contexts directly or indirectly. Learning the mul-
timodal representations from various contexts will effectively improve emotion
recognition performance.

In summary, our primary contributions are the following: (1) We present a
novel context-aware emotion recognition framework from a psychological and
sociological perspective, which incorporates four context information. (2) We
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propose an adaptive relevance fusion module that focuses on the interactions
among diverse contexts and adaptively assigns higher weights to beneficial con-
texts. (3) We release HECO, a new dataset for emotion recognition in context.
The HECO is annotated with discrete and continuous emotion labels and pro-
motes a more reasonable perception of human emotion.

2 Releated Work

Uni/Multimodal Emotion Recognition. Isolated modalities, such as facial
expression [74], voice [14], body gesture [44] and biological signal [3], have been
concerned in prior emotion recognition works. Recently, multimodal emotion
recognition [50, 59, 55, 38] has been a hot issue, where researchers are incorpo-
rating multiple modalities to perform emotion analysis. Mainstream multimodal
fusion strategies are classified as data-level [29, 34], feature-level [52, 70], and
decision-level fusion [16, 6]. In contrast, we propose a two-phase model-level fu-
sion strategy with cross-context fusion and adaptive fusion. Our strategy rein-
forces the shared representations among multiple contexts in the interaction and
assigns appropriate weights to the contexts based on their contributions.
Context-Aware Emotion Recognition. There have been several attempts at
context-aware emotion recognition in recent years. Kosti et al.[30] propose the
task of emotion understanding in context and build a two-stream Convolutional
Neural Network (CNN) that combines the body and the semantic information
from the scene. Zhang et al.[72] utilize the region proposal network to extract
scene semantics as node features, and then construct an emotion graph through
Graph Convolutional Network (GCN) to infer emotion. Lee et al.[31] use the
attention mechanism to find relevant context cues in the scene after the hidden
face. Mittal et al.[42, 41] adopt a multiplicative fusion to combine information
from various modalities and context interpretations. Hoang et al.[25] propose
an extra reasoning stream to quantify the interaction between primary agents
and objects. The aforementioned methods sub-optimally explore the emotion
relationships between agents and the effect of agent-object interactions. In com-
parison, the four contexts proposed by our method are more complementary and
synergistic in emotion recognition.

3 Proposed Method

3.1 Context 1: Explicit Multimodal Context

In the real world, the form of human emotion expression is usually multimodal.
These modalities include facial expression [67, 65], body posture [44, 63], gesture
[49, 36], and walking style. It is helpful to infer emotion by integrating various
modalities of emotion information [20, 55, 38]. To make full use of these emotion
cues, as shown in the tawny-bordered branch of Figure 2(a), context 1 utilizes
diverse modalities as mn from the recognized agent to extract multimodal rep-
resentations such as the facial expression, facial landmarks, gesture and gait,
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Fig. 2. (a) The proposed framework. We first extract features from face expression,
facial landmarks, gesture and gait via respective neural networks to obtain hf

1 , hl
1, hge

1

and hga
1 . Then we fuse these features to obtain hc1 in context 1. In contexts 2, 3 and

4, hc2 , hc3 and hc4 are obtained from different inputs via the corresponding context
awareness models. Immediately, the Adaptive Relevance Fusion (ARF) module fuses all
features and learns the multimodal representation hFin. Finally, two separate branches
perform the emotion classification and regression tasks. (b) The overall architecture of
the ARF module contains two phases: cross-context fusion and adaptive fusion.

which are defined as H1 =
{
hf
1 ,h

l
1,h

ge
1 ,h

ga
1

}
. Formally, mn from images or

video frames I are encoded through respective neural network structure and the
feature extraction process as follows:

hn
1 = F (mn;wn) ,∀hn

1 ∈ H1, (1)

where wn denotes the network parameters. Concretely, the ResNet-18 [22] is

used to encode facial expression m1 to obtain the vector hf
1 ∈ Rd from the

fully connected layer. Concurrently, we employ three independent dense layers
with a GeLU activation [24] to extract the features hl

1,h
ge
1 , and hga

1 for facial
landmarks m2, gesture m3, and gait m4, which have the identical dimension.
Based on the different importance of these modalities, we propose a multimodal
attention network to obtain the total vector hc1 ∈ Rd of context 1:

µn
1 = tanh(wµn · hn

1 + bµn), (2)

hc1 =

N∑
n=1

µn
1 ⊙ hn

1 , (3)

where wµn ∈ Rd×d and bµn ∈ Rd×1 are the learnable parameters. The coef-
ficient µn

1 dynamically adjusts the contribution of each modality to the final
representation of context 1.

3.2 Context 2: Scene Context

Exploring the surrounding semantics that affects the agent in a scene is indis-
pensable for understanding human emotion [30, 72, 42]. For example, the input
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I includes semantic components composed of the wine glass, dinner plate and
sunny day in Figure 2(a). These factors may contain the emotion outpouring
of the recognized agent. However, previous studies [31, 42, 41] have only masked
the recognized agent’s parts (e.g., face or body), which can bring potential am-
biguity of emotion generated by other agents in the same scene. To tackle this
issue, our key idea is to mask all agents in input I to generate scene image Is,
which is expressed as:

Is =

{
I(i, j) if I(i, j) /∈ bboxagent ,

0 otherwise ,
(4)

where bboxagent denotes the bounding box of the agent.
Inspired by visual attention [66], we utilize a scene-aware learning strategy

based on the Channel Attention Module (CAM) and Spatial Attention Module
(SAM) to capture the scene semantics that reflect emotion cues. The learning
strategy is expected to make the model focused on the event context that ef-
fectively affects the agent’s emotion. To encode the features in context 2, the
ResNet-18 [22] is used to obtain the scene semantic vector hc2 ∈ Rd from the fully
connected layer. The backbone is initialized by using the Places365-Standard
[73], labelled with scene semantic categories. Concretely, we alternately insert
the CAM and SAM in the eight residual blocks of the backbone. Given an inter-
mediate feature map x ∈ Rc×w×h as input, the CAM utilizes the global average
pooling operation to infer a 1D channel attention map M c

avg ∈ Rc×1×1, and
the SAM utilizes global max pooling operation to infer a 2D spatial attention
map Ms

max ∈ R1×w×h. The overall attention process can be summarized as
xc =

(
σ
(
δM c

avg(x)
))

⊗ x and xs = (σ (δMs
max(x)))x, respectively, where ⊗ is

channel-wise multiplication, δ(·) is ReLU activation and σ(·) is sigmoid function.
During multiplication, the channel attention values are broadcasted along the
spatial dimension, and vice versa.

3.3 Context 3: Surrounding Agent Context

Motivated by emotion sociology studies [40, 54, 19, 57], we find that surrounding
agents with different intensities of emotion arousal and expression can help infer
the primary agent’s emotion. Nevertheless, previous works [23, 69, 42] mainly
describe various interaction forces between agents as a single system. These
methods are limited, which perfunctorily model the interaction distance and
proximity between agents. Distinct from them, we aim to thoroughly explore the
influence of surrounding agents’ emotions on the recognized agent’s expression.

Inspired by inductive learning [62], our core strategy is to construct dynamic
graph structure to model the emotion relationships between agents. As shown
in the blue-bordered branch of Figure 2(a), we define the recognized agent’s im-
age as Iagent and the surrounding agents’ images set as Ip =

{
Iip
}
, i = 1, ..., n

by bounding boxes. After that, the conceptual node features fagent ∈ Rds and

F p =
{
f i
p ∈ Rds

}
, i = 1, ..., n are extracted by final pooling layer in the ResNet-
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50 [22], respectively. Meanwhile, considering that individuals have different in-
fluences on emotion transmission [19], we assign different weights of emotion
intensity to surrounding agents by performing attention. Formally, we calculate
the emotion transfer coefficient ei with LeakyReLU to measure the effect of each
f i
p on fagent, denoted as ei = α([wafagent∥wpf

i
p]), where ∥ represents concate-

nation. The parameters wa,wp ∈ Rd×ds and the linear projection mapping α(·)
learn the emotion relationship. After performing the normalization via the soft-

max function, the final coefficient ai is computed as ai =
exp(ei)∑

j∈N exp(ej)
, where N

means the surrounding nodes. In practice, we set K = 3 to use the multi-head
attention to realize the fusion of surrounding node features. The final weighted
average feature hc3 ∈ Rd is obtained as follows:

hc3 = σ

(
1

K

K∑
k=1

∑
i∈N

akiw
k
pf

i
p +wk

afagent

)
. (5)

3.4 Context 4: Agent-Object Context

Emotion psychology researchers [45, 4, 53, 43, 11] emphasize that the interactions
of agents’ actions with objects induce emotion arousal of the primary agent in
the scene. More colloquially, the context of interactions between surrounding
agents and objects can trigger emotion cues that subliminally affect change in
the emotion of the recognized agent, like the girl having fun with the hairdryer
in Figure 1(d), and the smiling man with the cup in Figure 2(a). These inter-
actions facilitate the outpouring of positive emotions by the recognized agents.
Motivated by the above observations, our insight is to adopt an aggregation
strategy to model the context of surrounding agent-object interactions and thus
learn indirect representations.

More concretely, as shown in the red-bordered branch of Figure 2(a), drawing
on the success of Human-Object Interaction (HOI) task (detect the interactions
between a human and object pair, then localize them) [18], we first define the
bounding box set of agent-object interaction pairs obtained by input Imask via
the HOI Network [60] as Iu =

{
Iju
}
, j = 1, ..,m. Subsequently, the pre-trained

ResNet-50 [22] on ImageNet [15] separately encodes the interaction regions Iu to
obtain the intermediate features as F u =

{
f j
u ∈ Rds

}
, j = 1, ..,m. Immediately,

the proposed aggregation strategy models the emotion semantics for different
interaction pairs via learning dynamic weights:

βj
u = UT (wj

u · f j
u + bju), (6)

γju =
exp(βj

u)∑m
k=1exp(β

k
u)
, (7)

f̂u =
∑m

j=1 γ
j
u ⊙ f j

u, (8)

where U ∈ Rds×1, wj
u ∈ Rds×ds , and bju ∈ Rds×1 are the learnable parameters.

After that, we perform a projection transformation on f̂u to obtain hc4 ∈ Rd.
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3.5 Feature Fusion and Learning Strategies

Considering the complementarity of diverse contexts and different levels of con-
tributions, we propose an Adaptive Relevance Fusion (ARF) module to learn
effective shared representations of contexts. As shown in Figure 2(b), the ARF
module consists of two phases: cross-context fusion and adaptive fusion. The
cross-context fusion phase (phase 1) focuses on the interactions among different
contexts, potentially adapting streams from one context to another. Note that
our fusion strategy can be extended to diverse contexts. In this paper, we take the
feature adaptation process about learning from hc2 (context 2) to hc1 (context
1) as an example to describe the details. Inspired by [61], the ARF module first
embeds hc1 into a space denoted as Gc1 = LN (hc1)W Gc1

, while embedding hc2

into two spaces denoted as Qc2 = LN (hc2)WQc2
and Sc2 = LN (hc2)W Sc2

,

respectively, where W Gc1
, WQc2

, W Sc2
∈ Rd×d are embedding weights, and

LN means layer normalization. Attention weights are obtained by applying the
softmax function to dot product of Gc1 and Qc2 . The information dissemination
from cross-context interaction is defined as:

Zcross
c2→c1 = softmax(Gc1QT

c2)Sc2 ∈ Rd×d. (9)

Immediately, the forward computation is expressed as:

hcross
c2→c1 = LN (hc1) +Zcross

c2→c1 . (10)

Assuming that the total set of context features as Hc = {hci} , i = 1, ..., n,
then the final interactions received by target context 1 as hcross

c1 =
∏n

i=2 h
cross
ci→c1 ,

where
∏

denotes concatenation operator as [·∥·] between features.
The adaptive fusion phase (phase 2) provides optimal fusion weights for each

context to highlight the potent contexts while suppressing the weaker ones. For-
mally, we learn the attention weights through the respective feed-forward net-
works with a GeLU activation [24] denoted as ψci = F(hcross

ci ;wci), i = 1, ..., n,
where wci are the network parameters. The softmax function makes the sum of
these attentions to be 1, i.e.,

∑
i ψci = 1. After that, we perform element-wise

multiplication of the learnable attention and the corresponding input. All out-
puts are concatenated and then fed to linear projection parametrized by wθ to
obtain the feature hFin, which is defined as follows:

hFin = σ

(
wθ ·

n∏
i=1

ψci ⊙ hcross
ci

)
. (11)

Finally, two separate branches follow the fully connected layers, one for the
discrete classification task and the other for the continuous regression task.

We use the MultiLabel-SoftMarginLoss as the classification loss of discrete
categories, which is expressed as Ldisc. The loss function of the continuous di-
mensions regression is formulated as Lcont = 1

C

∑
k∈C (ŷk − yk)

2
, where yk is

the ground-truth of the continuous dimension regression, ŷk is the output of
VAD [39] dimensions and C is the number of channel dimensions. Therefore, the
total training loss is defined as: Lcomb = λdiscLdisc + λcontLcont , where λdisc
and λcont are the trade-off coefficients.
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4 Datasets

EMOTIC. EMOTIC [30] dataset contains 23,571 images of 34,320 annotated
people in uncontrolled environments. These images are annotated for 26 discrete
categories and 3 continuous dimensions of emotion, with multiple labels assigned
to each image. The standard partition of the dataset is 7:1:2.
GroupWalk. GroupWalk [42] dataset consists of 45 videos that were captured
using stationary cameras in 8 real-world settings. The annotations consist of the
following discrete labels: Angry, Happy, Neutral, and Sad. The standard partition
of the dataset is 8.5:1.5.
HECO. HECO dataset consists of images from the HOI [8, 21] datasets, film
clips, and images from the Internet. The dataset contains a total number of
9,385 images and 19,781 annotated agents. These image samples contain rich
context information and diverse agent interaction behaviours. To improve the
robustness of models trained on the HECO, we add about 2% fuzzy images and
5% images with occlusion for agents. The dataset is randomly split into train-
ing (70%), validation (10%), and testing (20%) sets. The annotation process
involves 3 psychologists and 10 graduate students. The annotation is performed
blindly and independently, and we utilize the majority voting rule to determine
the final labels. The superiority of HECO is that it combines two types of emo-
tion labels. For discrete categories, we annotate with eight categories, including
Surprise, Excitement, Happiness, Peace, Disgust, Anger, Fear, and Sadness. For
continuous dimensions, we use the emotional state model of VAD [39], and an-
notate the Valence (V), Arousal (A) and Dominance (D) of agents on a scale
of 1-10. Inspired by emotion sociology studies [19, 57], we also design the novel
Self-assurance (Sa) and Catharsis (Ca) labels. These labels describe the degree
to which the agents interact with each other and adapt to the context.

5 Implementation Details

5.1 Data Processing

To generate Iagent and Ip from I via the bounding boxes, we use the pedestrian
tracking method RobustTP [7] for the GroupWalk and the annotation infor-
mation in the EMOTIC and HECO, respectively. For Iagent in context 1, we
utilize the face detector [75] to implement face detection and clipping. The fa-
cial bounding boxes are used to get the facial input m1 and resize it to 64× 64.
We extract a 136-dimensional vector m2 ∈ R136 obtained through facial land-
marks. We adopt the Alphapose [68] to obtain 18 modified gesture coordinates
and 26 gait coordinates. In this case, the coordinates of key points are used to
compute the 1D gesture vector m3 ∈ R36 and the 1D gait vector m4 ∈ R52.
Then, the raw I is masked via the bounding boxes of Iagent to produce Imask,
and via the bounding boxes of Iagent and Ip to produce Is in context 2. In con-
text 3, the crop operation of the same size is performed from the middle and four
corners to obtain sub-images Icrop from Iagent and Ip, which consider the seman-
tic shape information. In context 4, we use the Faster RCNN [51] to generate



Emotion Recognition for Multiple Context Awareness 9

Table 1. Discrete classification results on the EMOTIC dataset.

Category Kosti et al.[30] Zhang et al.[72] Lee et al.[31] Mittal et al.[41]
Ours

Category Kosti et al.[30] Zhang et al.[72] Lee et al.[31] Mittal et al.[41]
Ours

Ldisc Lcomb Ldisc Lcomb

Peace 22.35 30.68 19.55 35.72 25.5 26.24 Affection 26.47 47.52 22.36 38.55 41.61 37.66
Esteem 17.86 12.05 15.38 25.75 21.98 20.29 Anticipation 57.31 63.2 52.85 60.73 62.75 63.31
Engagement 86.69 87.31 73.71 86.23 74.69 75.23 Confidence 80.33 74.83 72.68 68.12 72.22 74.42
Happiness 58.92 72.9 53.73 80.45 83.58 85.25 Pleasure 46.72 48.37 34.12 67.31 67.26 67.68
Excitement 78.05 72.68 70.42 80.75 85.64 86.56 Surprise 22.38 8.44 17.46 19.6 25.31 27.03
Sympathy 15.23 19.45 14.89 16.74 24.7 25.87 Doubt/Confusion 31.88 19.67 26.07 38.43 23.44 24.96
Disconnection 20.64 23.17 22.01 28.73 27.64 28.95 Fatigue 8.87 12.93 6.29 19.35 32.35 33.58
Embarrassment 3.05 1.58 1.88 10.31 9.63 10.57 Yearning 9.22 9.86 4.84 15.08 10.88 11.12
Disapproval 16.14 12.64 15.37 18.55 23.41 23.52 Aversion 7.44 6.81 3.26 11.33 13.19 15.28
Annoyance 15.26 12.33 14.42 24.68 28.98 29.02 Anger 11.24 11.27 12.88 14.69 15.47 17.84
Sensitivity 9.05 4.74 6.94 13.94 22.53 24.89 Sadness 18.69 23.9 17.75 40.26 46.75 47.8
Disquietment 19.57 17.66 10.84 22.14 19.36 21.17 Fear 15.7 6.15 7.47 16.99 36.06 36.68
Pain 9.46 8.22 8.16 14.68 18.26 19.27 Suffering 17.67 23.71 14.85 48.05 45.37 46.74

mAP 27.93 28.16 23.85 35.28 36.87 37.73

Table 2. Discrete classification results on
the GroupWalk dataset.

Category Kosti et al.[30] Zhang et al.[72] Lee et al.[31] Mittal et al.[41] Ours

Anger 57.65 51.92 45.18 68.85 70.54
Happy 71.32 63.37 56.59 72.31 72.38
Neutral 43.1 40.26 39.32 50.34 52.54
Sad 61.24 58.15 52.96 70.8 71.42

mAP 58.33 53.43 48.51 65.58 66.72

Table 3. Discrete classification results on
the HECO dataset.

Category Kosti et al.[30] Zhang et al.[72] Lee et al.[31] Mittal et al.[41]
Ours

Ldisc Lcomb

Surprise 28.45 34.87 24.27 38.37 38.04 38.12
Excitement 42.16 45.74 37.97 48.59 53.2 55.04
Happiness 62.82 63.26 55.81 66.53 67.26 69.16
Peace 51.64 54.17 47.57 55.97 57.23 57.31
Disgust 45.37 49.43 41.74 50.48 52.28 54.95
Anger 40.76 45.22 38.39 51.29 53.04 53.43
Fear 32.74 35.67 30.51 40.81 40.08 40.27
Sadness 22.53 27.28 20.92 32.65 34.17 36.94

mAP 40.81 44.46 37.15 48.09 49.41 50.65

available bounding boxes of agents and objects, which are then fed into the HOI
network [60] to obtain the agent-object pairs with interaction relations. After
that, we obtain the union bounding boxes that contain the specific agent-object
pairs based on the coordinate transformation. The above images are resized to
224×224. All backbones employed are empirical.

5.2 Training Details and Evaluation Metric

Our method is built on the Pytorch toolbox [48], and all models are trained on
four Nvidia Tesla V100 GPUs. We extend the proposed method to video by av-
eraging the prediction vectors of all frames in the GroupWalk. For the EMOTIC,
GroupWalk, and HECO, the training batch sizes and epochs are {64, 1, 32} and
{120, 75, 100}, respectively. The Adam optimizer [27] is adopted for network op-
timization with an initial learning rate of

{
1e−3, 1e−4, 2e−3

}
. To train the previ-

ous models on the HECO, we use the implementation provided by [30]. Limited
by open source, we re-implemented [72, 31, 41] based on the reported details.
Following [30, 72], we use the Average Precision (AP) to evaluate classification
results. To evaluate regression results, we employ the Error Rate (ER).

6 Experimental results

6.1 Comparison with state-of-the-art Methods

Discrete Classification Results. In Tables 1 to 3, we report the AP scores
for all categories and mean AP (mAP). Our method achieves the best results
of 37.73%, 66.72% and 50.65% on the EMOTIC, GroupWalk and HECO, re-
spectively, significantly improving 2-8% over the prior methods. Concretely, we
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Fig. 3. Visualization results. We respectively show three examples of classification and
regression results from the HECO, EMOTIC, and GroupWalk datasets. Column 1 is the
input images marked with the recognized agent. Column 2 shows the facial expression,
facial landmarks, gesture and gait extracted from the agent. Column 3 shows the
corresponding attention maps. Column 4 shows the recognized emotion labels.

Table 4. Continuous regression results on the EMOTIC and HECO datasets.

Method Dataset Valence Arousal Dominance mER Dataset Valence Arousal Dominance mER

Kosti et al.[30](Lcont)

EMOTIC

1.0 1.5 0.8 1.1

HECO

0.9 1.3 0.8 1.0
Kosti et al.[30](Lcomb) 0.9 1.2 0.9 1.0 0.9 1.2 0.6 0.9
Zhang et al.[72](Lcont) 0.8 1.6 1.2 1.2 0.9 1.1 1.0 1.0
Zhang et al.[72](Lcomb) 0.7 1.0 1.0 0.9 0.6 1.1 0.7 0.8

Ours(Lcont) 0.6 1.3 0.8 0.9 0.8 1.0 0.6 0.8
Ours(Lcomb) 0.8 0.9 0.7 0.8 0.7 0.8 0.6 0.7

observe that the AP scores of some categories is generally low, such as Sensitivity
from the EMOTIC and Sadness from the HECO. However, our method remains
competitive in these categories. Furthermore, we train different models by the
combined loss Lcomb and the discrete loss Ldisc respectively for testing. Except
for the categories Affection and Esteem on the EMOTIC, the results of Lcomb

are superior, showing that combining different emotion expressions is beneficial
in depicting emotions.
Continuous Regression Results. Table 4 shows the evaluation results for the
continuous dimensions using the mean ER (mER). We compare methods for sup-
porting regression task on the EMOTIC and HECO. Note that the GroupWalk
has only discrete emotion labels. On both datasets, our method outperforms
the previous methods [30, 72] with the lowest mER. We notice that the mER of
Lcomb is lower than that of Lcont for each method, which indicates that learning
discrete classification contributes to infer emotional state of continuous dimen-
sions. Additionally, all methods have lower mER on the HECO than EMOTIC,
which mainly benefit from diverse sample sources and rich agent interaction
instances in the HECO to assist the models in recognizing emotion.

6.2 Visualization and Analysis

Case Study of Multimodal Attention. To verify the effectiveness of the
proposed multimodal attention in context 1, we visualize several detected sam-
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Fig. 4. (a) Heat map of attention weights for multiple modalities from different samples
in context 1. The darker colour indicates the higher weights. (b) Jaccard coefficients for
samples containing multiple agents in the testing set (sorted). The higher values denote
the existence of emotion co-occurrence between the recognized agent and surrounding
agents in context 3. (c) For context 4, we provide dynamic weight analysis of agent-
object interaction pairs in the aggregation strategy. γj

u come from Equation 7.

ples in Figure 4(a). Each recognized agent in the sample has the multimodal
representations, including facial expression, facial landmarks, gesture and gait.
We calculate the average L2-normalization of the vector attention for multi-
ple modalities. The heat map matrix represents the attention intensity of each
modality from different samples. For instance, in the first row, the girl’s clear face
conveys joy more clearly than the other modalities, so the facial expression and
landmarks have the higher weights. In contrast, the lady’s face in the third row is
incomplete, but we can reasonably infer emotion by her body language (the ges-
ture about caresses). As a result, the gesture feature obtains the highest weight.
The above observations show that the multimodal attention can effectively learn
the dynamic contribution of different modalities to the final representation.
Emotion Semantic Capture of Scene. Figure 3 presents the visualization
results of three examples for each dataset. The attention maps show the scenes’
emotion semantics learned from the network. For example, in the samples of the
second row (middle) and the last row (left), the semantic context of fire and
crashed car are interpreted, implying fear and sadness, respectively. Meanwhile,
although agents in the first row (middle) and the second row (left) have same
discrete emotion Happiness, different continuous emotions inspire us better un-
derstand agents’ adaptability in the scene and physiological arousal level. More-
over, other contexts can contribute to making predictions when some agents’
features are difficult to extract due to occlusion or ambiguity, such as gesture.
Emotion Co-occurrence. To explain the emotion relationship between agents,
we calculate the Jaccard coefficient [46] for each sample of multiple agents con-
taining annotations on the EMOTIC and HECO datasets, respectively. Con-
cretely, we define the set of predicted categories (the recognized agent) in each
sample as Spred and the set of the ground truth of surrounding agents in same
sample as

(
S1
a, S

2
a, ..., S

n
a

)
⊆ Sa. n denotes the number of agents. The Jaccard

coefficient is computed as (Sa ∩ Spred)/(Sa ∪ Spred). In Figure 4(b), we observe
that over 64% of the samples in both datasets have values above 0.6, i.e., the
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Fig. 5. Complementarity analysis. (Left) We select a sample from each of three datasets
and then perform the recognition by gradually adding context network branches.
(Right) When the above samples use four context branches, we plot the attention
matrix (a), (c) and (e) for the cross-context fusion phase and the corresponding atten-
tion matrix (b), (d) and (f) for the adaptive fusion phase.

emotional states of the recognized agents are consistent with or similar to the sur-
rounding agents. This observation proves that learning the emotion relationship
between agents in the same scene can assist in inferring the primary emotion.

Analysis of Aggregation Strategy. In Figure 4(c), we show several samples
to understand the effect of different agent-object interactions. γju are the weight
coefficients obtained by the corresponding interaction pairs Iju in the sample
through the aggregation strategy. Some interesting observations are as follows.
The effect of the agent-object interaction pairs is significant when the recognized
agent and surrounding agents are involved in the same or similar event, and
vice versa. For example, in the first row, I1u and I2u in the game playing case
correspond to higher coefficients γ1u = 0.45 and γ2u = 0.37. In contrast, I4u in
the food-taking case has the lowest coefficient. A similar pattern is found in the
second row, where the coefficient for γ3u = 0.12 in the case of drinking water is the
lowest. Furthermore, we find that the effect tendency of agent-object interaction
pairs to generally conform to a gradual decay outwards centred on the recognized
agent. These observations align with the psychology theories [53, 11].

Complementarity Analysis. To prove the complementary recognition ability
of four contexts (referred to as C1, C2, C3, and C4), we select a sample from
each of three datasets and then perform inference by gradually adding context
network branches. Figure 5 shows the dynamic recognition results during the
addition of context branches. On the EMOTIC, positive semantics of scene from
C2, relaxed other agents from C3, and pleasant interactions from C4 gradually
remove the emotion ambiguity recognized by C1 only. On the HECO, the seman-
tics of the intrusive boy-toy interaction from C4 enhances the emotion judgment
of Disgust in C1. That is, the superior performance benefits from combining
multiple context information to complement the emotion cues.
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Table 5. Ablation study results on the EMOTIC, GroupWalk, and HECO datasets.

Model Design
Dataset

Model Design
Dataset

EMOTIC GroupWalk HECO EMOTIC GroupWalk HECO
mAP mER mAP mER mAP mER mAP mER mAP mER mAP mER

Full (ours) 37.73 0.8 66.72 - 50.65 0.7 C3 (GCNs) [28] 35.25 1.2 63.94 - 48.84 1.1
C1 22.51 1.6 44.76 - 37.27 1.4 C3 (Depth) [32] 36.39 1.0 65.19 - 49.02 0.9
C1 + C2 29.23 1.1 54.42 - 41.93 1.0 Concatenation [52] 30.47 1.2 59.87 - 43.6 1.1
C1 + C3 27.56 1.3 57.36 - 39.62 1.1 Multiplication [41] 36.52 0.9 65.24 - 50.22 0.7
C1 + C4 26.29 1.2 52.09 - 37.93 1.2 ARF (phase 1) 36.27 0.9 65.33 - 49.73 0.8
C1 + C2 + C3 36.18 0.8 64.34 - 48.07 0.8 ARF (phase 2) 34.65 1.0 64.13 - 47.51 0.9
C1 + C2 + C4 34.93 0.9 60.27 - 47.25 0.8 C1 (OpenFace [1]+OpenPose [5]) 37.45 0.8 66.39 - 50.28 0.8
C1 + C3 + C4 33.45 1.0 62.61 - 44.23 0.9 C4 (R-FCN [13]+HOI-Net [33]) 37.52 0.9 66.45 - 50.34 0.7
C2 (Mask Face) 35.57 1.0 64.34 - 47.71 1.0 VGG19 [56] (C1, C2)+Res101 [22](C3, C4) 37.76 0.9 66.68 - 50.87 0.7
C2 (Mask Body) 37.02 0.9 65.12 - 49.46 0.8 Res34[22] (C1, C2)+Res152 [22](C3, C4) 36.83 0.8 65.85 - 50.24 0.8

Interpreting Cross-Context Fusion Attention. We plot the attention ma-
trices for the cross-context fusion phase when using four contexts for the above
samples illustrated in Figure 5(a, c, e). The attention matrix shows the adapta-
tion and interaction of features on the vertical axis to features on the horizontal
axis. The brighter areas represent the higher correlation among context features
that can collectively improve emotion expression. For a reasonable example, on
the HECO, the correct recognition bring about by the C1 and C4 branches cor-
respond to the brighter areas in Figure 5(c) w.r.t. hcross

c1→c4 and hcross
c4→c1 .

Interpreting Adaptive Fusion Attention. In Figure 5(b, d, f), we visualize
the attention weights of the adaptive fusion phase for the above samples when
using four contexts. The vertical axis of the attention matrix denotes the features
in different contexts, and the horizontal axis denotes the partial dimension. A
higher number of bright areas in a feature indicate that the feature contributes
more to emotion recognition. As an example on the GroupWalk, since the branch
of C2 successfully captures the sadness shown by the agent walking out of the
hospital, which corresponds to the brightest areas contained by hcross

c2 in Fig-
ure 5(f). Obviously, ψc2 = 0.56 is the highest weight coefficient.

6.3 Ablation Study

We perform thorough ablation study of all components to demonstrate the ef-
fectiveness and robustness of our method. Table 5 shows the results for discrete
categories and continuous dimensions on three datasets.
Effectiveness of Context Branches. For context branches, we keep context
1, which only captures information from the recognized agent itself, and then
gradually remove other context networks. Note that the best result is to combine
four context branches (Full). For discrete categories, contexts 1 and 2 are the
most competitive of two combinations. Such advantage comes from the fact that
most of the samples on the EMOTIC and HECO have rich scene elements. The
equally good results of contexts 1 and 3 on the GroupWalk may benefit from vast
agent flows, which is consistent with the observations of [42, 41]. Furthermore,
similar results are observed for continuous dimensions.
Different Masking Strategies. When using full branches, we provide two
strategies to replace masking all agents of Is in context 2, i.e., masking only the
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face of the agent proposed in [31] and only the body of the agent proposed in
[41]. The results show that the previous strategies of masking only the part of
the recognized agent clearly hurt the model’s performance, which suggests that
masking all agents is essential.

Modelling of Interaction Between Agents. For context 3, we present the
alternatives to evaluate the rationality of the chosen structure. More concretely,
we replace the branch in context 3 with the GCNs-based [28] and Depth-based
[32] methods used in [41] to model the social dynamics of interactions between
agents. Our method outperforms the alternative versions as the emotion relation-
ships of surrounding agents are modelled through attention weights explicitly,
rather than simply as a system.

Different Fusion Strategies. To show the advantages of the ARF module, we
perform comparison experiments with the concatenation [52] and multiplicative
fusion [41] of the final features from different contexts. The results show that
the ARF module is more competitive, proving that capturing correlations across
contexts can provide effective multimodal representations. Moreover, we retain
one phase of the ARF module separately for testing. It is observed that the
fusion mechanisms from both phases provide the indispensable contributions.

Effect of Detectors. We replace the detectors with alternative components
(OpenFace [1] and OpenPose [5] in C1, R-FCN [13] and HOI-Net [33] in C4) to
explore whether there is an effect on the model’s performance. The results in
Table 5 show that replacing detectors has a slight effect on the mER and that
the errors in the mAP scores are both less than 0.35. The above observations
prove that our method is robust, i.e., the detectors barely affect performance.

Analysis of Backbone CNNs. In addition, we use different backbones to im-
plement the proposed framework. Table 5 shows that a deeper network structure
does not necessarily obtain better results, i.e., the performance improvement
does not depend entirely on the backbones.

7 Conclusion

In this paper, we propose a novel context-aware emotion recognition framework,
which employs four meaningful context branches to understand human emotion
in a boosting and synergistic manner. Inspired by emotion sociology and psy-
chology, we explore emotion-rich representations from contexts at the visual level
to advance the development of effective visual-only driven emotion recognition
applications. Moreover, learning multimodal shared representations through the
proposed adaptive relevance fusion module allows for extending our approach to
more contexts. Numerous qualitative and quantitative analyses clearly demon-
strate the superiority of our approach.
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