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1 Network Architecture

1.1 Generator

The following Table 1, Table 2, Table 3 and Table 4 show the detailed model
architectures of the motion encoder, high-level VQ generator, low-level VQ gen-
erator and the residual block, respectively.

Table 1. Architecture for the motion encoder.

6 x 1, stride=1, Conv 256, LeakyReLLU
Residual Stack 256

3 x 1, stride=1, Conv 512, LeakyReLU
Residual Stack 512

3 x 1, stride=1, Conv 1024, LeakyReLU
Residual Stack 1024

3 x 1, stride=1, Conv 1024, LeakyReLLU

4 x 1, stride=1, Conv 1

1.2 Discriminator

We adopt the multi-scale discriminator design for the proposed D2M-GAN,
where is formed by a stack of 3 discriminator blocks that operates on the orig-
inal VQ sequence, and its downsampled features based on the window-based
objective functions as introduced in the main paper. The architecture of each
discriminator block is shown below in Table 5.

* This work was mainly done while the author was an intern at Snap Inc.
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Table 2. Architecture for the high-level VQ generator.

6 x 1, stride=2, Conv 32, LeaklyReLU
Residual Stack 32

41 x 1, stride=2, Conv 64, LeakyReLLU
Residual Stack 64

41 x 1, stride=1, Conv 128, LeakyReLU
Residual Stack 128

41 x 1, stride=1, Conv 256, LeaklyReLLU
Residual Stack 256

41 x 1, stride=1, Conv 512, LeakyReLLU
Residual Stack 512

40 x 1, stride=1, Conv 64
Tanh()

Table 3. Architecture for the low-level VQ generator.

6 x 1, stride=2, Conv 32, LeakyReLU
Residual Stack 32
4 x 1, stride=1, Conv 64, LeakyReLU
Residual Stack 64
40 x 1, stride=2, Conv 128, LeakyReLLU
Residual Stack 128
40 x 1, stride=1, Conv 256, LeakyReLLU
Residual Stack 256
40 x 1, stride=1, Conv 512, LeakyReLLU
Residual Stack 512
40 x 1, stride=1, Conv 1024, LeakyReLLU
Residual Stack 1024
40 x 1, stride=1, Conv 1024, LeakyReLLU
40 x 1, stride=1, Conv 64, LeakyReLU
Tanh()

2 Experimental Details

We implement the entire framework using the PyTorch [5] framework for auto-
matic differentiation and GPU-accelerated training and inference.

Pre-learned Codebook. We adopt two independently pre-trained codebooks
for two levels in our D2M-GAN. Specifically, the original JukeBox [1] contains
three levels of VQ-VAE [4] based models, which are defined as top, middle and
bottom levels with hop lengths of 128, 32, and 8, respectively. We adopt the
top level codebook for the high-level D2M-GAN, and the middle level codebook
for the low-level D2M-GAN. Therefore, for a two-second audio sequence with a
sampling rate of 22050 Hz, the generated VQ sequences from the high-level and
low-level VQ generators are in dimension of 64 x 344 and 64 x 1378, respectively,
where 64 is the dimension of the codebook entry, 344 and 1378 are the sequence
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Table 4. Architecture for the residual stack.

LeakyReL.U, dilation=1, Conv
LeakyReLU, dilation=1. Conv
Shortcut Path
LeakyReL.U, dilation=3, Conv
LeakyReLU, dilation=1, Conv
Shortcut Path
LeakyReLU, dilation=9, Conv
LeakyReLU, dilation=1, Conv
Shortcut Path
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(a) Adv. loss for generator. (b) Adv. loss for discriminator. (c) Feature matching loss.
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(d) Codebook commitment loss. (e) Audio waveform loss. () Audio mel-spectrogram loss.

Fig. 1. Training losses for the proposed D2M-GAN. Adv. stands for adversarial.

lengths. It is worth noting that the hop length is a key factor that influences the
trade-off between the generated audio quality and model scale in general audio
generation works. Specifically, a larger hop length represents higher compression
and abstraction ability in the bottleneck layers with codebooks, but leads to
relatively high level of noises in the synthesized musical samples. Actually, only
the bottom level from the original JukeBox model [1] is able to generate music
with high audio quality, however, it takes 3 hrs to sample a 20s musical sequence,
which is extremely time-consuming. Considering the primary goal of our task,
which is to the capture the correlations between dance input and music output,
we only test the model with hop lengths of 128 and 32 in our main experiments.

Training Losses. Since our proposed D2M-GAN includes multiple loss terms
in the overall training objective, we show the change of each loss term during
the training process in Figure 1. It is worth noting the model architectures and
techniques described in our main paper are crucial for D2M-GAN to maintain a
stable training. Notably, the codebook commitement loss, audio waveform loss
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Table 5. Architecture for the discriminator block.

15 x 1, stride=1, Conv 16, LeakyRelLU
41 x 1, stride=4, Groups=4, Conv 64, LeakyReLLU
41 x 1, stride=4, Groups=16, Conv 256, LeakyReLLU
41 x 1, stride=4, Groups=64, Conv 1024, LeakyReLLU
41 x 1, stride=4, Groups=256, Conv 1024, LeakyReLLU
5 x 1, stride=1, Conv 1024, LeakyReLLU
3 x 1, stride=1, Conv 1

and audio mel-spectrogram loss can reach the comparable levels with the GT
audio samples after convergence.

3 TikTok Dance-Music Dataset

The current version of our TikTok dance-music dataset contains in total 445
videos, which we annotate from 15 TikTok dance video compilations. There are
85 different songs, with majority of videos having a single dance performer, and a
maximum of five performers. The average length of each video is approximately
12.5s. We split the training and testing set based on the music IDs, and ensure
that there are no overlapping songs for two splits.

Compared to the existing music and dance datasets such as AIST++ [6, 3],
our dataset is closer to the real-world scenario with various background, which
is also our initial motivation to introduce this dataset. Additionally, majority of
the current datasets available are not initially proposed for the dance to music
generation task, AIST [6] is designed for dance music processing, AIST++ [3]
provides the extra annoations for the subset of AIST for generating dance mo-
tions conditioned on music, some other similar datasets for motion generation
have also been introduced [2]. Therefore, we hope that our proposed TikTok
dance-music dataset can serve as a starting point for relevant future researches.

4 Subjective Evaluations

We conduct the Mean Opinion Scores (MOS) test for the subjective evaluations.
In total, 26 subjects participated our MOS tests, among which 9 of them are
females, the rest are males.

Two of our music evaluation protocols are based on the human subjective
evaluations, which are the dance-music coherence test and the music overall
quality test. For the dance-music coherence test, each evaluator is asked to rate
15 dance videos that are post-processed by fusing the original visual frames and
generated music samples from different models. Specifically, the evaluators are
asked to rate from the coherence aspect of the dance video (i.e., whether they
feels the music is coherent with the dance moves) with reference to the GT videos
and original music. For the overall quality test, 15 audio samples (without video
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frames) are played during the test for each evaluator, after which the evaluator is
asked to rate the sound quality from the score range of 1 to 5. It is worth noting
that for the overall quality test, we do not compare with the music samples
obtained from the symbolic MIDI representation based methods. This is due to
the reason that the symbolic representations and pre-defined music synthesizers
in nature do not introduce audio noises to the generated signals, which makes
the music samples sound rather “clean and high-quality”, while the continuous
or VQ audio representations can hardly achieve the similar effects with a learned
music synthesizer (samples included in our demo video). Therefore, we do not
include the MIDI-based methods as our baselines for fairness considerations.
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