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Abstract. Multi-modal learning focuses on training models by equally
combining multiple input data modalities during the prediction process.
However, this equal combination can be detrimental to the prediction ac-
curacy because different modalities are usually accompanied by varying
levels of uncertainty. Using such uncertainty to combine modalities has
been studied by a couple of approaches, but with limited success because
these approaches are either designed to deal with specific classification
or segmentation problems and cannot be easily translated into other
tasks, or suffer from numerical instabilities. In this paper, we propose a
new Uncertainty-aware Multi-modal Learner that estimates uncertainty
by measuring feature density via Cross-modal Random Network Predic-
tion (CRNP). CRNP is designed to require little adaptation to translate
between different prediction tasks, while having a stable training pro-
cess. From a technical point of view, CRNP is the first approach to ex-
plore random network prediction to estimate uncertainty and to combine
multi-modal data. Experiments on two 3D multi-modal medical image
segmentation tasks and three 2D multi-modal computer vision classifica-
tion tasks show the effectiveness, adaptability and robustness of CRNP.
Also, we provide an extensive discussion on different fusion functions and
visualization to validate the proposed model®.

Keywords: Multi-modal Learning, Uncertainty-aware, Image Segmen-
tation, Image Classification

1 Introduction

Multi-modal data analysis, where the input data comes from a wide range of
sources, is a relatively common task. For instance, automatic driving vehicles
may take actions based on the fusion of the information provided by multiple
sensors. In the medical domain, automated diagnosis often relies on data from
multiple complementary modalities. Recently, we have seen the development of
successful multi-modal techniques, such as vision-and-sound classification [5],
sound source localization [4], vision-and-language navigation [35] or organ seg-
mentation from multiple medical imaging modalities [9,38,40]. However, current
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multi-modal models typically rely on complex structures that neglect the un-
certainty present in each modality. Although they can obtain promising results
under specific scenarios, they are fragile when facing situations where modalities
contain high uncertainties due to noise in the data or the presence of abnor-
mal information. Such issue can reduce their prediction accuracy and limit their
applicability in safety-critical applications [14].

Uncertainty is a crucial issue in many machine learning tasks because of the
inherent randomness of machine learning processes. For instance, the randomness
of data collection, data labeling, model initialization and training are sources of
uncertainty that can result in large disagreements between models trained under
similar conditions. According to [1,13,18], total uncertainty comprise: 1) aleatoric
uncertainty (also known as data uncertainty), representing inherent noise in the
data due to issues in data acquisition or labeling; and 2) epistemic uncertainty
(i.e., model or knowledge uncertainty), which is related to the model estimation
of the input data that may be inaccurate due to insufficient training steps/data,
poor convergence, etc. Total uncertainty is defined as:

Dpeyle0)[y] = Epop) [Dpeyle.0)[¥]] + Dpeo1p) [Epylz.0) 9] (1)
———

Total Uncertainty Aleatoric Uncertainty Epistemic Uncertainty

where D indicates the given dataset, x and y are the inputs and outputs of
the model, and D[] represents the measurement of disagreement (e.g., entropy).
The estimation of aleatoric uncertainty is considered as the expectation of the
predicted disagreement for each model on data points posterior parameterized
by 6; while the epistemic uncertainty is shown by the disagreement of different
models parameterized by 6 sampled from the posterior. In this paper, we focus
on estimating total uncertainty.

In multi-modal methods, existing methods typically assume that each modal-
ity contributes equally to the prediction outcome [9,27,33]. This strong assump-
tion may not hold if one of the modalities leads to a highly uncertain prediction,
which can damage the model performance. In general, deep learning models that
can estimate uncertainty [2,19,20] were not designed to deal with multi-modal
data. These models are usually based on Bayesian learning that have slow in-
ference time and poor training convergence, or on abstention mechanisms [32]
that may suffer from the low representational power of characterising all types
of uncertainties with a single abnormal class. Recently, there have been a cou-
ple of methods designed to model multi-modal uncertainty [14,26], but they are
limited to work with very specific classification and segmentation problems, or
they show numerical instabilities.

In this paper, we propose a novel approach to estimate the total uncer-
tainty present in multi-modal data by measuring feature density via Cross-modal
Random Network Prediction (CRNP). CRNP measures uncertainty for multi-
modal Learning using random network predictions (RNP) [3], where the model
is designed to be easily adaptable to disparate tasks (e.g., classification and
segmentation) and training is based on a stable optimization that mitigates nu-
merical instabilities. To summarize, the main contributions of this paper are:
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— We propose a new uncertainty-aware multi-modal learning model through a
feature distribution learner based on RNP, named as Cross-modal Random
Network Prediction (CRNP). CRNP is designed to be easily adapted to
disparate tasks (e.g. classification and segmentation) and to be robust to
numerical instabilities during optimization.

— This paper introduces a novel uncertainty estimation based on fitting the
output of an RNP, which from a technical viewpoint, represents a depar-
ture from more common uncertainty estimation methods based on Bayesian
learning or abstention mechanisms.

The adaptability of CRNP is shown by its application on two 3D multi-
modal medical image segmentation tasks and three multi-modal 2D computer
vision classification tasks, where the proposed model achieves state-of-the-art
results on all problems. We perform a thorough analysis of multiple CRNP fusion
strategies and present visualization to validate the effectiveness of the proposed
model.

2 Related Work

2.1 Multi-modal Learning

Multi-modal learning has attracted increasing attention from computer vision
(CV) and medical image analysis (MIA). In MIA, Jia et al. [16] introduced
a shared-and-specific feature representation learning for semi-supervised multi-
view learning. Dou et al. [9] proposed a chilopod-shaped multi-modal learning
architecture with separate feature normalization for each modality and a knowl-
edge distillation loss function. In CV, Shen et al. [4] defined a trusted middle-
ground for video-and-sound source localization. In video-and-sound classifica-
tion, Chen et al. [5] proposed to distill multi-modal image and sound knowledge
into a video backbone network through compositional contrastive learning. Also
in video-and-source classification, Patrick et al. [29,30] brought the idea of self-
supervision learning into multi-modal by training the networks on external data,
which boosted classification accuracy greatly. By exchanging channels, Wang et
al. [39] showed that the multi-modal features are able to fuse in a better manner.
Analyzing existing multi-modal learning methods, even though successful on sev-
eral tasks, they do not consider that when reaching a decision, some modalities
may be more reliable than others, which can damage the accuracy of the model.

2.2 Uncertainty-based Learning Models

Uncertainty also has been widely studied in deep learning. Corbiere et al. [7] pro-
posed to predict a single uncertainty value by an external confidence network
via training on the ground-truth class. Sensoy et al. [32] introduced the Dirichlet
distribution for an overall classification uncertainty measurement based on evi-
dence. Kohl et al. [19] proposed a probabilistic UNet segmentation architecture
to optimize a variant of the evidence lower bound (ELBO) objective. Based on
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the probabilistic UNet model, Kohl et al. [20] and Baumgartner et al. [2] further
updated the model in a hierarchical manner from either the backbone network
or prior/posterior networks. Jungo et al. [17] used two medical datasets to com-
pare several uncertainty measurement models, namely: softmax entropy [12],
Monte Carlo dropout [12], aleatoric uncertainty [18], ensemble methods [21] and
auxiliary network [8,31]. In MIA, multiple uncertainty measurements have been
proposed as well [22,24,36,37]. However, none of the methods above are designed
for multi-modal tasks and some of them contain long and complex pipelines that
are not easily adaptable to new tasks. Bayesian or ensemble-based methods de-
mand long training and inference times and have slow convergence. Evidential
methods have drawbacks too, where the main issue is the representational power
of the abstention class. In contrast, our proposed model, by introducing random
network fitting for cross-modal uncertainty measurement, is not only technically
novel, but it is also simple and easily adaptable to many tasks without requiring
any restrictive assumption about uncertainty representation.

2.3 Combining Uncertainty and Multi-modal Analysis

Some methods have studied the combination of uncertainty modeling and multi-
modal learning. For example, a trusted multi-view classification model has been
developed by modeling multi-view uncertainties through Dirichlet distribution
and merging multi-modal features via Dempster’s Rule [14]. However, it is rigidly
designed for classification problems, and cannot be easily translated to other
tasks, such as segmentation. Monteiro et al. [26] took pixel-wise coherence into
account by optimizing low-rank covariance metrics to apply on lung nodules
and brain tumor segmentation. Nevertheless, the method by Monteiro et al. [26]
requires a time-consuming step to generate binary brain masks to remove blank
areas, and the method is also numerically unstable when training in areas of
infinite covariance such as the air outside the segmentation target*. From an
implementation perspective, this method [26] is also memory intensive when
indexing the identity matrix to create one-hot encodings. Differently, in our
model, the uncertainty is measured by modeling the overall distribution directly
from features without constructing any second-order relation matrix, leading to
a numerically more stable optimization and a smaller memory consumption.

3 Cross-modal Random Network Prediction

Below, we first introduce the Random Network Prediction (RNP), with a the-
oretical justification for its use to measure uncertainties. Then we present the
CRNP model training and inference with the cross-modal uncertainty measur-
ing mechanism to take the RNP uncertainty prediction from one modality to
enhance or suppress the outputs for other modalities when producing a classifi-
cation or segmentation prediction.

* As stated by SSN implementation [26] at https://github.com/biomedia-mira/
stochastic_segmentation_networks.
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Fig.1. The input data M® and M@ are first processed by backbone models g, )
and g, that produce the features ™ and z(?. Then the RNP modules have a fixed-
weight random network fy(x) and a learnable prediction network fy(x) that tries to
fit the output of the random network. The prediction network will fit better (i.e., with
low predictive uncertainty) at more densely populated regions of the feature space, as
shown in the graph. Hence, the difference between the outputs by fy(z) and f(x) can
be used to estimate uncertainty when processing a test input data.
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3.1 Random Network Prediction

The uncertainty of a particular modality is estimated with the RNP depicted in
Fig. 1. Specifically, for each RNP, we train a prediction network to fit the outputs
of a weight-fixed and randomly-initialized network for feature density modeling.
The intuition is that the prediction network will fit better the random network
outputs of samples (i.e., with low uncertainty), populating denser regions of
the feature space; but the fitting will be worse (i.e., with high uncertainty) for
samples belonging to sparser regions. This phenomenon is depicted in the graph
inside Fig. 1.

Formally, we consider input images from two modalities M®) M@ e M,
where p and ¢ represent the modalities. After the input image M®) pass through
the encoder gy : M — X (similarly for gy (.)), the features of the two
modalities ("), 2(@ ¢ X ¢ RN are analyzed by each RNP module. The RNP
module feeds 2 and (%) to a randomly initialized neural network fo: X = Z,
where Z ¢ RM | with fixed weights 1) € ¥. Meanwhile, () and 2(9) are fed to a
learnable prediction network fy : X — Z with parameters ¢ € @. The prediction
network has the same output space but a different structure from the random
network, where the capacity of fg is smaller than f to prevent potential trivial
solutions. The cost function used to train the RNP module is based on the mean
square error (MSE) between the outputs of the prediction and random networks:

¢" = arg m;HZKMSE(fd)(xi)v Jo(x:)) + R(), ©)

where n denotes the number of training samples, {prsu(fo(2:), fu(x:)) = || fo(x:)—
fo(x:)||3, and R(¢) = ||#||3. The cost function in (2) provides a simple yet pow-
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Fig. 2. The overall framework of multi-modal fusion with our CRNP.

erful supervisory signal to enable the prediction network to learn the uncertainty
measuring function.

3.2 Theoretical Support for Uncertainty Measurement

The RNP has a strong relation with uncertainty measurement. Let us consider
a regression process from a set of perturbed data D = {(x;, %)}, ,. Considering
a Bayesian setting, the objective is to minimize the distance between the ground
truth §; and a sum made up of a generated prior fy(z;) randomly sampled from
a Gaussian and an additive posterior term fg(z;) with a regularization R(9).
Formally, the optimization is as follows:

¢ = argmmz 15: = [Fi (i) + folzo)]ll5 + R(9), ()

where, according to Lemma 3 in [28], the sum [fy (2;)+ f4(x;)] is an approximator
of the genuine posterior. If we fix the target g; with zeros, then the objective to
be optimized would be equivalent to minimize the distance between the posterior
fe(z;) and the randomly sampled prior fy(x;). Thus, each output element within
the randomized function or the predict function can be viewed as a member of a
set of weight-shared ensemble functions [3]. The predicted error, therefore, can
be viewed as an estimate of the variance of the ensemble uncertainty.

3.3 Training and Inference of CRNP

This section introduces our proposed CRNP, which fuses the multiple modalities
with their inferred uncertainties to produce the final predictions (e.g., classifica-
tion or segmentation), as shown in Fig. 2. During the multi-modal fusion phase,
the features of the two modalities 2(?) and x(9) are cross-attended by the uncer-
tainty maps produced by the RNP module from both modalities. The uncertainty
map for modality p is represented as:

u? = || f o0 (@) = fu @ D)3, (4)
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and similarly for (9 for modality ¢. The feature cross-attended by the uncer-
tainty maps is represented by:

7P — fusion(m(p), o® o m(p))’ (5)

where fusion(., .) represents the operator that fuses the original and cross-attended
features, @(?) is the channel-wise normalized CRNP uncertainty map, and © is

the element-wise product operator. #(@ is similarly defined as in (5). Different

fusion operations are thoroughly discussed in Sec. 4.5.

We utilize self-attention to further fuse features #(?) and #(@, taking both
uni-modal and cross-modal relations between feature elements into consider-
ation. As shown in Fig. 2 , we first concatenate ) and (9 to form the
query, key and value inputs for the self-attention module with Q = K =V =
concatenate(Z(?), £(9)). Then the output of the self-attention is denoted by:

(QW,) (KW)
Vi

where [ € £, W,,W} and W, are linear projection weights for queries, keys and
values, respectively. dj refers to the dimensions of queries, keys and values. The
decoder after the multi-modal fusion is denoted by hc(p) : L — Ac—1 (similarly
for h¢w) ), where L is the space of the output from the cross-modal RNP module
and input to the decoder, and A¢_1 is the classification simplex (output from
softmax). Note that although the annotations of multi-modal data are similar,
they can have significant differences, particularly in segmentation tasks. Hence,
without losing generality, we may need to have multiple separate decoders, one
for each modality. But multi-decoders are not needed in tasks where the multi-
modal annotation is exactly the same. For segmentation problems, the output of
h¢w) is the space Ac—1 per pixel. The training of CRNP alternates the training
of the RNP modules using (2) and the training of the whole model. During
RNP training, only the weights of the prediction network inside the RNP are
updated by minimising (2), and all other CRNP weights are kept fixed. During
the training of the whole model, all CRNP weights are updated, except for
the weights of the prediction network of the RNP. The whole model training
minimizes the multi-class cross-entropy loss for a classification problem or the
Dice and element-wise cross-entropy losses for a segmentation model.

During inference, CRNP receives multi-modal inputs, where each modality
branch estimates an uncertainty output that will weight the other modality,
and the results of both modalities will be fused to produce the final prediction.
CRNP works by assigning large weights to the other modality when the current
modality is uncertain. When both modalities have large uncertainties, the final
prediction will rely on a balanced analysis of both modalities. For the analysis
of more than two modalities, the uncertainty map for a particular modality,
say p, in (4) is computed by summing the MSE results produced by all other
modalities, with u(®) = > ap 1o (D) = fu (@D)|]3. The decoders gy (.)
and gy (.) from two modalities can be separated or share-weighted, depending
on the corresponding output requirements.

l = softmax < ) VW, (6)



8 H. Wang et al.

4 Experiments

4.1 Datasets

Medical Image Segmentation Datasets. We conduct experiments on two
publicly available multi-modal 3D segmentation datasets: Multi-Modality Whole
Heart Segmentation dataset (MMWHS) and Multimodal Brain Tumor Segmen-
tation Challenge 2020 dataset (BraTS2020). The MMWHS dataset contains 20
CTs and 20 MRs for training/validation and other 40 CTs and 40 MRs for
testing [41]. Seven classes (background excluded) are considered for each pixel.
The two modalities have individual ground-truth (GT) for each CT or MR. The
BraTS2020 dataset has 369 cases for training/validation and other 125 cases
for evaluation, where each case (with four modalities, namely: Flair, T1, TICE
and T2) share one segmentation GT. The evaluation is performed online’. Four
classes (background included) are considered for each pixel.

Computer Vision Classification Datasets. We also validate our method on
three computer vision classification datasets, namely: Handwritten®, CUB [34]
and Scenel5 [10]. Each sample of the Handwritten dataset contains 2000 samples
from six views and it is a ten-class classification problem, CUB contains 11,788
bird images from 200 different categories. Following Han et al. [14], we also adopt
the first ten classes and two modalities (image and text features) extracted
by GoogleNet and doc2vec. Three modalities are included in Scenel5, which
contains 4,485 images from 15 indoor and outdoor classes.

4.2 Implementation Details

Medical Image Segmentation Tasks. To keep a fair comparison, the imple-
mentation of all models evaluated on MMWHS and BraTS2020 is based on the
3D UNet (with 3D convolution and normalization) as our backbone network. On
MMWHS, we adopt the official test set proposed by Zhuang et al. [41] (40 CTs
and 40 MRs) for testing; on BraTS2020, we evaluate all models on the online
validation set. For overall performance evaluation, the models were trained for
100,000 iterations on MMWHS and 180,000 iterations on BraTS2020 without
model selection. Following Dou et al. [9], our hyper-parameter tuning and abla-
tion are conducted on MMWHS with 16 CTs and 16 MRs for training, 4 CTs
and 4 MRs for validation. The batch size is set to 2. Stochastic gradient de-
scent optimizer with a momentum of 0.99 is chosen for the model training. The
initial learning rate is set to 1072 on both datasets with cosine annealing [23]
learning rate tuning strategy. For the reproduction of Probability UNet [19], we
use prior/posterior mean instead of random sampling a latent variable z for pre-
diction. The evaluation of the methods is based on the Dice score and Jaccard
index for MMWHS; and the Dice score and Hausdorff95 index for BraTS2020.
For cross-modal RNP modules training, the randomized network is made up of

® https://ipp.cbica.upenn.edu/categories/brats2020
S https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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3 depth-wise convolutional hidden layers; the prediction network has 2 depth-
wise convolutional hidden layers. Between every two layers, both the randomized
network and the prediction network adopt Leaky-ReLU as their activation func-
tion, where the negative slope is set to 2.5 x 107!, We set 256 as RNP output
dimension for both tasks. For performance evaluation, the CRNP is placed at
the bottleneck of our 3D UNet backbone. For the ensemble version of CRNP
on both datasets, following Wang et al. [40], we average the logits of 3 CRNP
models to reduce the prediction variance.

Computer Vision Classification Tasks. For the model evaluation on com-
puter vision datasets, we follow [14] to split the data into 80% for training and
20% for testing. To keep a fair comparison, we uniformly trained all models for
500 epochs without model selection and then evaluated them on the test set. The
learning rate is set to 3 x 10~%; Adam optimizer with 1 x 10~® weight decay and
coefficients (0.9, 0.999) are adopted. Following Han et al. [14], we apply accuracy
and multi-class AUROC as evaluation metrics. We used similar setups for cross-
modal RNP modules as on the medical data, with the following differences: the
RNP output dimension is set to 32 for computer vision classification tasks and
CRNP is placed at the layer before the fully connected layer. The training of
CRNP model is conducted in an end-to-end manner without any pre-training or
post-processing. Also, the hyper-parameters do not require much effort to tune.

4.3 Medical Image Segmentation Model Performance

Performance on MMWHS Dataset. We compare our approach with: Indi-
vidual (CT or MR single modality segmentation with separate 3D UNet), 3D
UNet (multi-modal fusion by concatenation), the multi-modal learning model
Ummkd [9], and the uncertainty model Probability UNet” [19], which proposes
a prior net to approximate the posterior distribution, combining the knowledge
of inputs and ground truth, in a latent space. The evaluation is based on the
Dice scores of the segmentation of the left ventricle blood cavity (LV), the my-
ocardium of the left ventricle (Myo), the right ventricle blood cavity (RV), the
left atrium blood cavity (LA), the right atrium blood cavity (RA), the ascending
aorta (AA), the pulmonary artery (PA) and Whole Heart (WH). All results on
MMWHS data are obtained by using the official evaluation toolkit®.

As shown in Tab. 1, our proposed CRNP and its ensemble version have 7
out of the 8 best Dice results on both CT and MR. On CT (Tab. 1), CRNP
raises LV Dice score from 0.9297 to 0.9369 and PA Dice score from 0.8425 to
0.8628, when compared to the second-best models. On whole heart segmentation
Dice score, CRNP outperforms the second-best model by 1.9%. The ensemble
version of CRNP further improves segmentation accuracy. A similar result is
observed on MR. On LV, CRNP raises the Dice score from 0.8850 to 0.8962 and
AA Dice score from 0.8551 to 0.8736 when compared to the second-best models.

" We also tried SSN [26], but it requires the creation of one-hot encodings that are
memory intensive for seven classes on MMWHS dataset.
8 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
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Table 1. The performance of different models on CT/MR segmentation of MMWHS
dataset. The best results for each column within either CT or MR section are in bold.
* indicates the result with the ensemble model.

Models LV Myo RV LA RA AA PA WH
Individual 0.9297 0.8943 0.8597 0.9254 0.8701 0.9335 0.7833 0.8989
3D UNet 0.9138 0.8781 0.8822 0.9274 0.8680 0.9088 0.8239 0.8957
oT Ummkd 0.9145 0.9066 0.8410 0.9157 0.8853 0.8928 0.7579 0.8734

Prob-UNet 0.9071 0.8775 0.8978 0.9262 0.8657 0.9318 0.8425 0.8997
CRNP (Ours) [0.9369 0.9036 0.9076 0.9375 0.8885 0.9538 0.8628 0.9187
CRNP* (Ours)|0.9373 0.9060 0.9085 0.9366 0.8910 0.9503 0.8629 0.9193

Individual 0.8777 0.7923 0.6146 0.5686 0.7528 0.5854 0.3993 0.6729
3D UNet 0.8850 0.7723 0.8559 0.8548 0.8676 0.8551 0.7964 0.8535
MR Ummkd 0.8721 0.7966 0.8086 0.8577 0.8278 0.7998 0.7224 0.8211

Prob-UNet 0.8742 0.7389 0.8332 0.8495 0.8531 0.8537 0.7895 0.8386
CRNP (Ours) [0.8962 0.7787 0.8605 0.8637 0.8748 0.8736 0.7969 0.8615
CRNP* (Ours)|0.8963 0.7811 0.8742 0.8850 0.8688 0.8692 0.8329 0.8758

Table 2. The performance comparison of CRNP and different challenge models on
both CT and MR segmentation of MMWHS dataset. The best results for each column
are in bold. 1 sign indicates the higher value the better.

CT MR
Models | Dice T Jaccard 1| Dice 1 Jaccard 1
GUT 0.9080 0.8320 |0.8630 0.7620
KTH 0.8940 0.8100 |0.8550 0.7530
CUHK1|0.8900 0.8050 |0.7830 0.6530
CUHK2| 0.8860 0.7980 |0.8100 0.6870
UCF 0.8790 0.7920 |0.8180 0.7010
SIAT [0.8490 0.7420 |0.6740 0.5320
UuT 0.8380 0.7420 |0.8170 0.6950
UB1 0.8870  0.7980 |0.8690 0.7730
- - 0.8740 0.7780
UOE 0.8060 0.6970 |0.8320 0.7200
Ours 0.9193 0.8486 [0.8758 0.7814

On whole heart segmentation, CRNP increases MR Dice from 0.8535 to 0.8615.
Model ensemble further improves the performance.

Interestingly, the Individual model obtains accurate results on CT (0.8989
for WH score). However, performance (0.6729 for WH score) drops drastically on
MR evaluation, with particularly poor accuracy on RV, AA and PA. But when
considering both modalities (3D UNet model), the model performance increases
substantially. This shows the bounds of considering a single modality, especially
for MR segmentation. The proposed CRNP outperforms the 3D Unet by a large
margin. Ummkd [9] performs consistently well on Myo on both CT and MR. We
hypothesize that the domain-specific normalization and knowledge distillation
loss contribute more to Myo segmentation than to other organs. Probability
UNet tries to model posterior latent space rather than a deterministic prediction,
which may explain its performance. In general, we note that the CT segmentation
results are better than MR, which resonates with the conclusion from [41].

From the number of parameters perspective, the randomized network is
made up of 3 convolutional hidden layers and the prediction network has 2
convolutional hidden layers. So the change in number of parameters is minimal.
More specifically, the number of parameters of competing methods are: 1) UNet:
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Table 3. The performance of different models on BraTS2020 Online validation set.
The best results for each column are in bold. * indicates models with ensemble. 1 sign
indicates the higher value the better; while | means the lower value the better.

Dice T Hausdorff95 |
Models ET WT TC ET WT TC
3D UNet [6] 0.6876 0.8411 0.7906 | 50.9830 13.3660 13.6070

Basic VNet [25] 0.6179 0.8463 0.7526 | 47.7020 20.4070 12.1750
Deeper VNet [25] |0.6897 0.8611 0.7790 | 43.5180 14.4990 16.1530
Residual 3D UNet |0.7163 0.8246 0.7647 | 37.4220 12.3370 13.1050

ProbUNet [19] 0.7392 0.8782 0.7955 | 36.2458 6.9518 7.7183
SSN [26] 0.6795 0.8420 0.7866 | 43.6574 14.6945 19.5171
Modal-Pairing* [40]| 0.7850 0.9070 0.8370 | 35.0100 4.7100 5.7000
TransBTS [38] 0.7873 0.9009 0.8173|17.9470 4.9640 9.7690
CRNP (Ours) 0.7887 0.9086 0.8372 | 26.5972 4.0490 6.0040

CRNP* (Ours) 0.7902 0.9109 0.8550| 26.4682 4.1096 5.3337

41.05M, 2) Ummkd (with UNet backbone for fair comparison): 41.05M, and 3)
ProbUNet: 57.44M. Our CRNP has 42.18 M parameters, where the RNP module
has 0.29M, and the attention module has 0.84M parameters.

We also compare the proposed CRNP model with the state-of-the-art models
reported by the official challenge report [41]. The results are shown in Tab. 2.
On whole heart segmentation, CRNP has a particularly accurate Dice score and
Jaccard index for CT and MR. Compared to the second-best models, our CRNP
model increases the Dice score from 0.9080 to 0.9193 and from 0.8740 to 0.8758
on CT and MR, respectively. Similar results are shown forJaccard index.

Performance on BraTS2020 dataset. Developing automated segmentation
models to delineate intrinsically heterogeneous brain tumors is the main goal of
BraTS2020 Challenge. Following [38], we compare the proposed CRNP model
with many other strong methods, including 3D UNet [6], Basic VNet [25], Deeper
VNet [25], Residual 3D UNet, Modal-Pairing [40], TransBTS [38], as well as
uncertainty-aware models ProbUNet [19] and SSN [26] that models aleatoric
uncertainty by considering spatially coherence. We evaluate the Dice and Haus-
dorff95 indexes of all models on four organs: enhancing tumor (ET); tumor core
(TC) that consists of ET, necrotic and nonenhancing tumor core; and whole
tumor (WT) that contains TC and the peritumoral edema.

In Tab. 3, our models have 5 out of the 6 best results. The CRNP improves
the ET Dice score, compared with the second-best model, from 0.7873 to 0.7887;
and from 0.9070 to 0.9086 on WT. Similar results are shown on Hausdorff95
indexes. Note that the Modal-Pairing model adopts an ensemble strategy. When
applying the ensemble strategy to CRNP, the results improved even further. The
WT Dice of CRNP* can reach 0.9109; the TC Dice can reach 0.8550, which is
one more percent increment; and improves the TC Hausdorff95 to 5.3337. The
performance improvements show the effectiveness of the proposed CRNP model.

4.4 Computer Vision Classification Model Performance

In this section, we show results that demonstrate the effectiveness of CRNP
on multiple CV classification tasks. The evaluation metrics include accuracy
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Table 4. The performance of different models on computer vision classification
datasets. The best results for each row are in bold.

Data Metric |MCDO [11] DE [21] UA [15] EDL [32] TMC [14]] CRNP
Hendwritten| A€¢ 0.9737 09830 0.9745 0.9767 0.9851 |0.9925
AUROC| 0.9970 0.9979 0.9967 0.9983 0.9997 |0.9996
cUB Acc 0.8978  0.9019 0.8975 0.8950  0.9100 |0.9167
AUROC| 0.9929  0.9877 0.9869 0.9871 0.9906 |0.9961
Seonels  |Ace 05296  0.3912 0.4120 04641 0.6774 |0.7057
AUROC| 09290 0.7464 0.8526 09141 0.9594 |0.9734

and multi-class AUROC on Handwritten, CUB and Scenel5 datasets. Follow-
ing Han et al. [14], the comparison models include multiple uncertainty-aware
models: Monte Carlo dropout (MCDO) [11] that adopts dropout at inference
as a Bayesian approximator; deep ensemble (DE) [21], which uses an ensemble
strategy to reduce uncertainty; uncertainty-aware attention (UA) [15] that cre-
ates uncertainty attention maps from a learned Gaussian distribution; evidential
deep learning (EDL) [32] that predicts an extra Dirichlet distribution for all log-
its based on evidence; and trusted multi-view classification (TMC) [14], which
is a multi-view version of EDL.

As shown in Tab. 4, CRNP model can outperform its counterparts on 5 out
of 6 measures across datasets. CRNP performs particularly well on Scenelb,
increasing the accuracy from 0.6774 to 0.7057 (a 2.83% improvement) and AU-
ROC from 0.9594 to 0.9734 (a 1.4% improvement). CRNP also has promising
results on Handwritten and CUB data. On AUROC of Handwritten, CRNP gets
slightly worse but comparable results than TMC (0.9996 vs. 0.9997).

4.5 Ablation Study

Effectiveness of Each Component In the ablation study, we examine each
component of the proposed CRNP. The “Base” model is the plain multi-modal
3D UNet with dual branches; “CA” means cross-attention by assigning the query
from one modality, while keep the key and value the other modality; “SA” means
applying self-attention as we propose. We conducted the ablation on the valida-
tion set split of the MMWHS dataset and we measured the average Dice scores
of each organ on CT and MR. As shown in Tab. 5, compared with the Base 3D
UNet model, the CRNP model is able to improve (around 1% increment of Dice
scores) the performance across multiple organs, where the improvements are es-
pecially obvious on Myo, LA, RA, AA and WH. From the table, we can perceive
that, with the help of either cross-attention or self-attention, the model per-
formance can be further boosted. But applying the self-attention as described
in Sec. 3.3, causes the model to produce the best results (6 best results out
of 8) across multiple organs. This is mainly because the self-attention on the
multi-modal feature fusion not only models the cross-modal relations, but also
considers uni-modal attentions.

Discussion of Different CRNP Fusion functions In terms of different
CRNP fusion functions that can be applied in fusion(.,.) (Sec. 3.3), we com-
pare and discuss three types, as shown in Tab. 6: (a) “Replace” represents a
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Table 5. Ablation study on MMWHS dataset. Best results per row are in bold.

Models LV Myo RV LA RA AA PA WH
Base 0.9334 0.8596 0.8876 0.8932 0.8794 0.8239 0.8168 0.8706
CRNP 0.9324 0.8685 0.8644 0.9007 0.8957 0.9216 0.8225 0.8865

CRNP+CA|0.9323 0.8683 0.8802 0.9147 0.9116 0.9098 0.8194 0.8909
CRNP+SA |0.9356 0.8891 0.8814 0.9232 0.8987 0.9148 0.8277 0.8958

Table 6. Analysis of different fusion functions of CRNP on MMWHS dataset. Best
results per row are in bold.

Models LV Myo RV LA RA AA PA WH

Replace |0.9342 0.8688 0.8688 0.897 0.8812 0.9074 0.8128 0.8815
Concat | 0.9327 0.8676 0.8798 0.9031 0.8781 0.9098 0.8042 0.8822
Residual| 0.9324 0.8685 0.8644 0.9007 0.8957 0.9216 0.8225 0.8865

naive replacement of the original modality features by the uncertainty map at-
tended features; (b) “Concat” applies the concatenation operation on the original
modality features and the uncertainty map attended features; and (c¢) “Resid-
ual”, which is the default fusion strategy of the proposed CRNP, denotes an
addition operation performed between two feature tensors. This experiment is
conducted on the MMWHS dataset and averages both CT and MR Dice results.
From the results, we note that all three types of fusion functions have pros and
cons. However, the “Residual” model performs better (4 best results out of 8)
than other functions. This advantage is more noticeable on RA, AA and PA, on
which more than 1% improvement is gained on Dice score.

4.6 Visualization

/@ Out of Distribution . i
m @ In Distribution ’ <
J : '-..' * : ._',.- . 4 v L
) ] Sare o w WM * 1
. e Rl @ '
1) Lantield :
z ') s B
(c) (d)

Sub Fig. (1) Sub Fig. (2) Sub Fig. (3)

Fig. 3. Visualization experiments of CRNP. Sub Fig.(1) shows a comparison between
the segmentation of the proposed CRNP ((b) and (d)) and its Base model ((a) and
(c)). Sub Fig.(2) shows the T-SNE graph of the in and out of distribution data points
produced by the cross-modal RNP module. In the Sub Fig.(3), we show the CRNP
uncertainty heat-maps.

We also conduct a visualization experiment in Fig. 3 that shows the MMWHS
segmentation visualization (Sub Fig.1), T-SNE visualization of in and out of dis-
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tribution data points produced by the uncertainty maps from the RNP module
on the CT images from MMWHS (Sub Fig.2), and the CRNP uncertainty heat-
maps for BraTS2020 images (Sub Fig.3). As the two cases from validation set
shown in Sub Fig.(1), (a) (c) are segmented by the Base model and (b) (d) are
from CRNP. The color masks denote the segmentation results (e.g., pink) over-
laid on the ground truth (e.g., purple). The obvious segmentation differences
are highlighted by yellow boxes. When comparing segmentation from two mod-
els, we can notice that our CRNP has better segmentation results, especially
on the organ edges. This is mainly because organ edges contain more uncer-
tain regions. The proposed CRNP can perceive uncertain segmented regions
within one modality and assign more weights to the other one. By leveraging
this information, CRNP is able to alleviate segmentation uncertainties in organ
edges. Moreover, we visualize the in and out of distribution uncertainty maps
processed by T-SNE in Sub Fig.(2). Following Han et al. [14], we consider the
original features as the in distribution data and noisy features modified by addi-
tive Gaussian noise as the out of distribution data. Then, these samples are fed
into the cross-modal RNP modules to get the uncertainty map predictions. The
T-SNE is able to clearly split these uncertainty predictions into two clusters.
This shows further evidence of the effectiveness of our CRNP model to estimate
uncertainties. In Sub Fig.(3), we show the CRNP uncertainty heat-maps for a
BraT§S image, where the maps are estimated in the feature space and mapped
back to the original image space. In this figure, (a)(c)(e)(g) are the flair, t1, t1ce
and t2 modalities; (b)(d)(f)(h) are the CRNP uncertainty maps for the modali-
ties above (brighter pixel = higher uncertainty); and (i)(j) are the ground truth
(GT) segmentation and CRNP prediction. Note that the high uncertainty re-
gions are concentrated around the areas with brain tumors, which is reasonable
since tumors are sparsely represented in the feature space, resulting in a large
difference between RNP’s random and prediction networks. Also note that the
flair image has a stronger tumor signal than the other modalities, producing a
larger uncertainty for the other modalities. In particular, this larger uncertainty
will notify the other modalities to pay more attention to these areas.

5 Conclusions

In this paper, we proposed the Uncertainty-aware Multi-modal Learning model,
named Cross-modal Random Network Prediction (CRNP). CRNP measures the
total uncertainty in the feature space for each modality to better guide multi-
modal fusion. Moreover, technically speaking, the proposed CRNP is the first
approach to explore random network prediction to estimate uncertainty and
fuse multi-modal data. CRNP has a stable training process compared with a
recent multi-modal approach that uses potentially unstable covariance measures
to estimate uncertainty [26], and CRNP can also be easily translated between
different prediction tasks. Through experiments on two medical image segmenta-
tion datasets and three computer vision classification datasets, the effectiveness
of the proposed CRNP model is verified. Also, ablation and visualization studies
further validate CNRP as an effective multi-modal analysis method.
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