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A Appendix

A.1 Into the Wild dataset

We introduce the Into the Wild dataset, a set of egocentric hiking videos for our
proposed audio-driven image stylization (ADIS), because hiking is featured with
a strong audio-visual association of nature.

We collected these videos on YouTube by searching for the keywords like
hike+POV, hike+footsteps, hike+ASMR, and hike+binaural. We employ YAM-
Net [13] to tag each associated soundtrack to ensure that they play the actual
sound and are not replaced by any other sounds, such as background music.

The duration statistics of the Into the Wild dataset are shown in Figure
1a. Specifically, it contains 94 untrimmed videos, some of which are already
presented in Figure 4 of the main paper. Please note that the category labels
of these videos are not labeled by humans, but acquired from the YAMNet
[13] predictions, which roughly consist of 8 categories: crunching snow, gravel,
and dirt; rain; birds chirping; ocean; stream and human speech. The detailed
categorical distribution is illustrated in Figure 1b.

A.2 Training Details

Training Setting Except for the batch size and audio network, we intention-
ally match the architecture and hyperparameter settings with CycleGAN [18]
and CUT [11]. We employ ResNet-based generator [8] with 9 residual blocks,
PatchGAN discriminator [7], Least Square GAN loss [10], ResNet18-based au-
dio encoder [5], with the batch size of 16, and the Adam optimizer [9] with 0.002
learning rate. Both λ and µ in Eq.(4) of the main paper are set to 0.5.

Our model is trained for 50 epochs, with the learning rate remaining constant
for the first 30 epochs and linearly decaying to zero over the last 20 epochs. The
encoder Genc follows the first half of the CycleGAN generator [18]. We also
extract features from 5 different scales to calculate the patch-based structure
discriminator loss: the input RGB pixels, the first and second downsampling
convolution features, and the first and fifth residual block features. We sample
256 random locations for each layer’s features and apply a 2-layer MLP to obtain
256-dimension features as the final output for computing the multi-scale patch-
wise contrastive loss.

https://tinglok.netlify.com/files/avstyle
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Fig. 1: Statistical analysis of the Into the Wild Dataset.

Fig. 2: A screenshot of AMT for rating the audio-visual correspondence.

Into the Wild dataset We divide all of the videos into 3-seconds video clips,
then uniformly sample 8 frames from each video clip to save as images, yielding a
total of 454560 images and 56820 audios. We then randomly sample 20% audios
as the test set.

The Greatest Hits dataset We first identify the videos by the type of object
being hit on, and then only the outdoor videos are used for training: dirt, grass,
gravel, leaf, and water, resulting in a total of 32172 images and 8043 audios. We
then select 15% audios at random as the test set.

A.3 Evaluation Details

Audio-visual Correspondence (AVC) A two-stream network is utilized to
compute AVC [1], with one stream extracting audio feature and the other ex-
tracting visual feature. Specifically, we apply OpenL3 [4] to obtain these features,
and then compute the average cosine similarity for each image-audio pair. To
be more explicit, we employ an “env” content type pre-trained model with 512-
dimensional linear spectrogram representation.

Fréchet Inception Distance (FID) FID [6] is calculated by scaling the images
to 299-by-299 using the PyTorch framework’s bi-linear sampling, and then take
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Table 1: Quantitative comparison for different pre-training methods on the Into
the Wild dataset.

Pre-training Method
Objective Evaluation

AVC (↑) FID (↓) CLIP (↑)

Ours (from scratch) 0.820 34.139 0.238
+ SeLaVi [2] 0.822 32.882 0.242
+ Wav2CLIP [16] 0.831 30.334 0.246

the activation of the last average pooling layer of a pre-trained Inception V3
[15]. We adopt Clean-FID [12] to circumvent the issue that FID computation
requires complicated and error-prone steps, such as the resizing functions in
different libraries often produce inaccurate results.

Contrastive Language-Image Pre-Training (CLIP) [14] is computed by
performing contrastive pre-training on a variety of image-text pairs. It’s widely
known for zero-shot prediction, but we use it as a feature extractor to compute
the cosine similarity between images and labels in order to assess conversion
quality. To calculate it, we leverage an off-the-shelf “ViT-B/32” CLIP model
[14].

Amazon Mechanical Turk (AMT) In addition to the objective evaluations
mentioned above, we employ AMT to study the relationship between audio and
visual from a subjective standpoint, i.e., human perspective. A screenshot of the
demo page is shown in Figure 2. The MTurker is required to rank such corre-
lations based on audios and images generated by our method and the baseline
methods, with the best earning 4 points and the worst earning 1 point. Thus,
the scores range from 1 to 4. Notably, twenty Mturkers were asked to rank a
total of 1000 random samples from the test set in our case. The final scores are
reported on average.

A.4 Additional Results

Additional qualitative comparisons Additional qualitative comparisons on
our method to the baselines and ablations are shown in Figure 3. It turns out
that our model produces better or competitive results, exhibiting its versatility
compared to label-based baselines.

Additional generalization results Additional qualitative results of the gen-
eralization experiment are shown in Figure 4. These are accomplished by using
images from the Places dataset [17] and the audios from the VGG-Sound dataset
[3]. Our model is able to generate plausible images that match the content of
the out-of-distribution audio.
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Additional pre-training comparisons We also use Wav2CLIP [16], an audio
representation learning method derived on CLIP [14], to fine-tune ADIS. To
transfer knowledge, it employs a frozen image model to bridge the gap between
a sophisticated language model and a scratch audio model. Wav2CLIP could be a
better pre-training method for ADIS than SeLaVi [2] since it is implicitly exposed
to numerous well-annotated image-text pairs. Table 1 shows the quantitative
comparison results. It appears that Wav2CLIP surpasses both training from
scratch and SeLaVi pre-training methods with respect to the AVC, FID, and
CLIP metrics, indicating that it has a stronger representation ability than the
others.
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Fig. 3: Randomly selected qualitative results of our model, baselines and abla-
tions. This is an extension of Figure 5 in the main paper.
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Fig. 4: Randomly selected qualitative results of generalization experiment. This
is an extension of Figure 8 in the main paper.
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