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In this supplementary material, we provide more detailed descriptions for radio
frequency (RF) signal pre-processing and network architecture of the proposed
RF-vital model. We also provide detailed explanations on data acquisition and
error metrics, and present additional experimental results.

A1 Details for RF Signal and Pre-processing Pipeline

⋯

Fast Time

F
re

q
u

e
n

c
y

cf

fT

1/ PRF

2 /R c

Fast Time

⋯

BW

Tx f( )s t

Rx f( , )s t t

f( , )r t t

≈

≈

Slow Time

t

RF

Sensor

Fig. 1. Reflected FMCW sequences for radar sensor.

Our RF-vital model estimates human respiration based on radio reflections.
In this section, we introduce the basic principles of RF signals and our pre-
processing pipelines in detail.

Signal Modeling Our method is applicable to any signal data based on RF
transmission/reception, but in this work, we utilize a radar sensor whose trans-
mitter and receivers are localized at approximately the same point. The radar
periodically transmits a modulated radio signal, then receives the time-delayed
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reflections from its surroundings. We adopt a frequency-modulated continuous-
wave (FMCW) technique for signal modulation (Fig. 1). The transmitted and
received signals for FMCW radar can be expressed as [2,3]:
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where sTx denotes a transmitted FMCW signal (i.e., waveform with a linearly
increasing/decreasing frequency with respect to tf), and sRx denotes a received
signal represented by the linear combination form of time-delayed sTx(tf). tf and
t refer to the fast time and slow time (Fig. 1), each of which indicates the spatial
depth information with respect to the round-trip time-of-flight intervals (i.e.,
spatial dimension) and sampling time information with respect to the pulse rep-
etition frequency (PRF) of the sensor (i.e., temporal dimension), respectively. fc,
BW , Tf and c represent the operating frequency, bandwidth, pulse width, and
the speed of light, respectively; αi is the reflection coefficient of the i-th scat-
ter and R̄i is the corresponding radial depth. Removing the carrier component
through a frequency mixer, the received signal sRx(tf) becomes
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where ∗ denotes a conjugate operator and λ is the wavelength of the transmitted
signal (λ = c/fc). Note that r(tf , t) is a linear summation of monotone signals
with fundamental frequencies of 2BWR̄i(t)/ (Tfc), where BW , Tf , and c are
constant over time. Therefore, the radial distance of each object can be estimated
through the frequency analysis of r(tf , t) across the fast time domain tf . Using
a fast Fourier transform (FFT) algorithm, r(tf , t) can be transformed to:
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where Ftf {·} denotes the FFT operator along the fast time domain and δ in-
dicates an impulse-like signal envelope. R is a radial depth information from
the transmitter that can be estimated based on frequency analysis of r(tf , t),
and has the resolvability of ∆R = c/(2BW ) by ∆f = 1/Tf . It should be noted
that h(R, t) is represented as a linear combination of peak-like signals dependent
upon the radial depth of the surrounding objects, forming a 2D range-time RF
heatmap.

Doppler Effect The complex nature of the RF signal allows it to measure
not only the radial distance information for the targets of interest, but also
the instantaneous changes in the radial distance (i.e., radial velocity) based on
the Doppler characteristics. Following Eq. (4), the phase difference between the
consecutive RF signals can be represented as

∆θ (t) =
4π∆R̄

λ
=

4πv∆t

λ
, (5)

where v refers to the relative velocity in the radial direction between the sensor
and each body part of the individual. Namely, the sequential RF pulses in a short
time window contain some components that increase or decrease in coincidence
with v, and such periodicity converges to a certain Doppler shift fDoppler = 2v/λ
in the frequency domain. Therefore, it is possible to estimate the dominant
Doppler shift components by applying a frequency analysis technique such as
the FFT or short-time Fourier transform (STFT) on the time-windowed RF se-
quences, which can directly reflect the instantaneous change in radial distance
of each body part. In our model, the received continuous RF signals were trans-
formed into radio joint time-frequency (RJTF) maps using STFT based on a
Hann window of 300 ms duration, hop length of 60 ms, and FFT size of 256.

Clutter Suppression Meanwhile, h(R, t) involves not only the reflections from
the desired sources (i.e., reflections from human), but also the reflections from
clutters such as walls, ceilings, and furniture. Such clutter components do not
provide any favorable information for human vital signs while maintaining sig-
nificantly high electromagnetic reflectance, thereby obscuring large portions of
human-induced components. Considering that clutter objects remain stationary
with respect to slow time whereas a person tends to have a larger variance, it is
possible to suppress the clutter reflections through simple high-pass filtering in
the slow time direction [1]. We leverage a mean filter to obtain the final x(R, t)
as:

x(R, t) = h(R, t)−
t∑

t=t−Ts+1

h(R, t), (6)

where Ts is the slow-time window length for the mean filter, which is set to 10
s in our experiments.
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Fig. 2. Detailed network architecture. Each block represents the module type, kernel
size, number of output channels, and stride, respectively.

A2 Implementation Details on Network

RF-vital model predicts human respiration based on a 10-s RJTF map formed
from the STFT on α (t) = {αm (t)}4m=1 and exp (jθ (t)) = {exp (jθm (t))}4m=1,
where α (t) and θ (t) are the magnitude and phase components of the radio-
projected profiles, respectively (Section 4.1). In the experiments, we crop the
RJTF map around the frequency band corresponding to the respiratory motion
(RM) and global motion (GM) of a person, and then resize all images to 256×256,
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resulting in the final network input with a size of 8×256×256. Regarding ground-
truth of the network, we utilize respiration signals recorded from the contact
chest belt, participant identification (ID), and GM signals obtained from coarse
range detections (i.e., magnitude thresholding) on x(R, t) (Section 4.2). The
RM and GM ground-truth signals are also resized to 256 length to match the
temporal dimension of the final RJTF map, then become normalized between -1
and 1.

Our RF-vital network adopts the U-Net style backbone architecture [6], which
is configurated to take the RJTF map of 8×256×256 dimensions as its input
and separately predict the 256-length RM and GM signals, and human ID. We
leverage 2D and 1D convolutional modules for image encoding and 1D decoding,
respectively, and use rectified linear units (ReLU) as layer activation functions.
Full details of the RF-vital network are illustrated in Fig. 2.

A3 Details for Data Acquisition

Radar

Camera

Fig. 3. Experimental environment for
RRM-static dataset where a person looks
forward while sitting in a chair.

Radar

Camera

Fig. 4. Experimental environment for
RRM-moving dataset where a person is al-
lowed to move around freely.

Because there exists no public dataset for the RF-based non-contact respira-
tion rate measurement (nRRM) task (especially in large motion scenarios), we
collected our own dataset in two different conditions, which we refer to as RRM-
static and RRM-moving for stationary and moving conditions, respectively.

Specifically, the RRM-static and RRM-moving datasets consist of synchro-
nized FMCW radar echoes (i.e., RF signals), RGB videos, and ground-truth
respiration signals (Table 1), each of which was collected in a situation where
a person faces forward while sitting in a chair or freely walks around the inte-
rior room, respectively. For static cases, we placed a chair about 70 cm away
from the radar and camera, and then requested each participant to look straight
ahead while holding her/his breath intermittently (Fig. 3). For moving cases,



6 J.-H. Choi et al.

Sensor Description

RF sensor Texas Instruments Inc. IWR1443BOOST radar: FMCW modu-
lation, 77 GHz operating frequency, 1.5 GHz bandwidth, 25 µs
pulse width, 1 kHz PRF

Camera Razer Kiyo Pro webcam: 1280×720 resolution, uncompressed
YUY2 format, 30 Hz FPS

Contact sensor Vernier GDX-RB respiration belt, wireless connection via Blue-
tooth technology, 10 Hz FPS

Table 1. Specifications of each measurement sensor.

as shown in Fig. 4, we obtained FMCW radar reflections in moving scenarios
where each person was allowed to walk around freely except for irregular move-
ments such as a person running or falling, within a space of about 4 m × 5 m
(in this case, RGB videos from the camera were leveraged as visual reference).
Moreover, some additional samples were collected in more challenging settings
such as measurements under no lighting, a person wearing a mask, and a person
bowing her/his head, all of which were used only for qualitative evaluation of
our RF-vital model.

A4 Error Metrics

To evaluate the nRRM performance of our RF-vital model, we estimate the
respiration rates (RRs) of each individual by post-processing the output signals
of the network through a band pass filter with a [0.08 Hz, 0.6 Hz] passband range.
The predicted RRs are then compared with the ground-truth RR measurements
for each 10-s time window. Following [4], we adopt widely utilized error metrics,
i.e., mean absolute error (MAE), root mean squared error (RMSE), Pearson’s
correlation (ρ), and standard deviation (Std), which are described below.
Mean absolute error (MAE):

MAE =
1

M

M∑
i=1

∣∣RRi −RR′
i

∣∣ , (7)

Root mean squared error (RMSE):

RMSE =

√√√√ 1

M

M∑
i=1

(
RRi −RR′

i

)2
, (8)

where M is the total number of window samples, RRi is the ground-truth RR
obtained from contact signal, and RR′

i is the estimated RR.
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Pearson’s correlation coefficient (ρ): can be obtained by computing the
normalized covariance between the real RRs for each time instant, i.e., RR =
[RR1, RR2, . . . , RRM ], and the estimations RR′ =

[
RR′

1, RR′
2, . . . , RR′

M

]
.

Standard deviation (Std): is calculated based on the Std of the errors between
the real and estimated RRs [5].

A5 Additional Results

A5.1 Qualitative results for different combinations of decoders

Ground Truth 

Resp. Signal

Estimated Resp. Signal

(RM + GM + ID)

Estimated Resp. Signal

(RM + GM)

Estimated Resp. Signal

(RM only)

Fig. 5. Qualitative results of the RF-vital network using different decoder combina-
tions. The first column shows the ground-truth respiration signals recorded from the
contact sensor. The second and third columns show the predicted respiration signals
using only the RM decoder or using RM and GM decoders together, respectively.
The fourth column shows the outputs of our RF-vital model leveraging all decoding
branches (i.e., RM decoder, GM decoder, and ID discriminator).

Fig. 5 shows the qualitative results under moving conditions for several com-
binations of decoders in the RF-vital model. We can see that the predicted res-
piration signals are likely to be contaminated by large GMs when the model is
trained without a GM decoder, demonstrating the effectiveness of the adversar-
ial GM decoder in our RF-vital model. Also, the addition of an ID discriminator
can further contribute to stable RR predictions.

A5.2 Performance across different STFT windows

The RF spectrogram provides information of different weights (on time or fre-
quency dimension) depending upon the duration of STFT window. As shown in
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STFT Window MAE↓ RMSE↓ ρ↑ Std↓

100 ms 3.73 6.89 0.32 6.21
300 ms 3.67 7.02 0.32 6.39
500 ms 4.12 7.33 0.29 7.04
700 ms 4.98 8.06 0.24 7.23

Table 2. Performance comparison across different STFT windows.

Table 2, we compared the numerical nRRM performance of our RF-vital model
for input RJTF maps with different window durations (hop size was set to 20%
of each window size). It can be observed that the smaller window size tends to
achieve better performance owing to enhanced resolvability in the temporal di-
mension. However, significantly reduced window size may limit or rather degrade
the performance due to decreased frequency resolution.

A5.3 Detailed Analysis across Radial Distance and Velocity
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Fig. 6. Performance comparison of RF-vital model with respect to the radial range or
velocity of each individual.

We further broke down the test results with respect to the radial range or ve-
locity of each individual (Fig. 6). Predictably, as the distance or velocity (instan-
taneous movement) from the RF sensor increases, the estimation performance
tends to deteriorate. Nevertheless, even under some adverse conditions (i.e., low
SNR reflections due to far distances or contaminations due to rapid motions),
the average MAE loss remains below 4.
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