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Abstract. Non-contact respiration rate measurement (nRRM), which
aims to monitor one’s breathing status without any contact with the
skin, can be utilized in various remote applications (e.g., telehealth or
emergency detection). The existing nRRM approaches mainly analyze
fine details from videos to extract minute respiration signals; however,
they have practical limitations in that the head or body of a subject must
be quasi-stationary. In this study, we examine the task of estimating the
respiration signal of a non-stationary subject (a person with large body
movements or even walking around) based on radio signals. The key idea
is that the received radio signals retain both the reflections from human
global motion (GM) and respiration in a mixed form, while preserving
the GM-only components at the same time. During training, our model
leverages a novel multi-task adversarial learning (MTAL) framework to
capture the mapping from radio signals to respiration while excluding
the GM components in a self-supervised manner. We test the proposed
model based on the newly collected and released datasets under real-
world conditions. This study is the first realization of the nRRM task
for moving/occluded scenarios, and also outperforms the state-of-the-art
baselines even when the person sits still.

Keywords: Non-Contact Respiration Rate Measurement, Radio Signal,
Multi-Task Adversarial Learning.

1 Introduction

Respiration rate (RR) is an important clinical indicator directly reflecting the
status of the human ventilation system. In this respect, continuous monitoring
of one’s RR is helpful for general health care, especially for telehealth or emer-
gency detection in patients with breathing disorders such as chronic obstructive
pulmonary disease and SARS-CoV-2 (COVID-19) [1,40]. Traditional measure-
ments for RR are typically based on contact devices such as chest belts, contact
photoplethysmography (PPG), and airflow sensing, which require direct contact
with the skin of the subject, hence induces significant discomfort and measure-
ment discontinuities. As alternative to the contact solutions, non-contact RR
measurement (nRRM) approaches have recently attracted scholarly attention,
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Fig. 1. We propose a RF-vital model that learns the mapping from radio reflections to
human respiration signal based on a novel MTAL framework. Several test examples of
our RF-vital model demonstrate the feasibility of recovering the fine respiration signs
even under occluded, dark, and moving scenarios

most of which leverage the physiological signatures extracted from facial videos
[27,16,15,47,38,30,37,22,49,24,3,52,29,32,33,51,23,34,28,35].

However, the skin color changes originating from human breathing cycles are
significantly marginal and easily contaminated by head movements of the sub-
ject, struggling outside controlled settings (e.g., a scenario where a person must
sit approximately still while facing forward) [2,10,40]. Moreover, a single camera
view cannot cope effectively with misaligned/occluded faces as well as dark set-
tings, which are quite common scenarios in daily life. Consequently, nRRM for
a non-stationary subject (a person with large random body movements or even
walking around) has rarely been explored.

To realize robust nRRM systems even against such challenging scenarios, we
propose to use radio frequency (RF) signals reflected from radar as an input
modality. Radar is an electromagnetic sensor capable of measuring radial depth
changes for its targets of interest with high sensitivity. Accordingly, it can capture
the horizontal displacements around the chest modulated from human vital signs,
while maintaining stable measurements in the presence of head movements, face
occlusion, and even large motions. Furthermore, the RF sensor typically operates
in GHz band, making it intrinsically unaffected by the surrounding illumination
(THz band) or dark conditions as well as completely free from privacy issues.

In fact, there have been several attempts to achieve nRRM based on RF
signals previously [45,9,39,26,17,31,44,5,14]. RF-based nRRM methods usually
first estimate the radial distance of the human body from the raw reflected
signals. Considering that the extracted radial distances with respect to time
directly reflects the physiological signals modulated from the body-depth varia-
tions, the RR can be recovered via several signal decomposition techniques such
as advanced filtering [9,39,26,31] and deep learning (DL) [14,56]. However, these
approaches still have limitations in overcoming the large motion scenarios. Such
vigorous movements of each individual force a dynamic range of the signal to be
significantly enlarged, greatly inflating the distance estimation errors. Particu-
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larly, the radial distance of a person changes both along the global motion (GM)
induced from the stagger/gait and along the respiratory motion (RM) from the
inhalation-exhalation cycle, whereas the RM components maintain much smaller
displacements than the GM; therefore, they are likely to be obscured in the radio
reflection data.

To tackle this problem and achieve nRRM even for a moving subject, we
propose a novel RF-vital model, characterized by newly-introduced input for-
mats for radio reflections and a multi-task adversarial learning (MTAL) frame-
work. Specifically, our U-Net style network [42] takes a radio joint time-frequency
(RJTF) map as input (which is completely free from the distance estimation is-
sues), then attempts to reconstruct the subject’s respiration signal (i.e., RM)
and spatial trajectory (i.e., GM). During training, the decoder for the GM is co-
trained with the feature encoder in an adversarial manner, thereby facilitating
the latent representation to be irrelevant to the GM of a person and reflect only
the desired RM. Such adversarial mapping on GM can be accomplished based on
our key observations that the reflected RF signals not only provide the RM-GM
mixture, but also preserve GM-only self-supervision simultaneously. Meanwhile,
to prevent the model from learning identity (ID)-dependent short-cuts, we add
an auxiliary identification task, which is also trained in an adversarial manner.

This study is the first to report the realization of an nRRM over a randomly
moving person. We evaluate our RF-vital model on two nRRM datasets con-
sisting of synchronized RF signals, respiratory signals, and RGB videos, which
were collected from different base scenarios. The first dataset was obtained in
ideal situations, where a person sits nearly still with her/his head facing for-
ward. The second dataset was collected from much more challenging scenarios,
where the subject was allowed to stand and even move around freely in vari-
ous directions. We release our datasets to further advance the RF-based nRRM
research. The experimental results show that our RF-vital model outperforms
the state-of-the-art video- and RF-based nRRM approaches in static scenarios.
Moreover, as shown in Fig. 1, it continues to work properly in large motion sce-
narios, where the current methods fail completely. Furthermore, our methods
can provide robust estimations, even in dark-light conditions and occlusions, en-
abling more realistic implementations of nRRM. We believe that our approach
is also applicable for detecting various vital signs in humans, such as heart rate.
Nonetheless, in this study, we only focus on estimating respiratory signals.

2 Related Work

2.1 Video-Based Physiological Measurements

Because the diffuse reflectance spectra of the skin (typically facial region) change
along with the human physiological movements, remote prediction of one’s vital
signals can be achieved by capturing the subtle light reflections using a camera
[46,48,40]. The problem is that such diffuse components reflected back from the
camera are substantially marginal and easily affected by nuisance factors owing
to head motions and light changes. The traditional methods exploit combinations
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of different color profiles [27,16,15,47] to retrieve illumination-invariant signa-
tures or exploit signal decomposition techniques, such as independent component
analysis (ICA) [38,30,37,22] and principal component analysis (PCA) [49,24] to
enhance the signal-to-noise ratio (SNR) of the physiological signals. With the ad-
vent of DL in the pattern recognition field, there have also been attempts to em-
ploy its powerful nonlinear fitting capability to video-based physiological moni-
toring, achieving substantial performance improvements [3,52,29,32,33,51,23,34].
The recent approaches further advanced the robustness of the network on head
motions by introducing multi-task temporal shift or inverse attention [28,35].

2.2 RF-Based Physiological Measurements

RF signal involves human physiology mainly based on changes in body depth
instead of the reflectance in the facial area, so it is less influenced by head mo-
tions. Based on the signal property that the received phase components linearly
indicate the subject’s radial depth with microscopic sensitivity, most RF-based
physiological measurements rely on the estimated phase information. Tu et al.
[45] demonstrated the feasibility of RF-based vital monitoring in a controlled
setting. Regarding the generic applications in the presence of small 1-D body
movements, several motion compensation methods have been proposed using sig-
nal decomposition techniques [9,39,26], wavelet transform [17,31,44], and fuzzy
logic [5]. Recently, Ha et al. [14] devised an approach to recover the original phys-
iological waveforms from the radio reflections by leveraging a deep supervised
encoder-decoder framework. However, these methods fundamentally assume ac-
curate phase estimations (i.e., distance estimations) as priori, which are likely to
fail under large body movements. Therefore, they can still be applicable to only
limited scenarios (e.g., situations where a person sits and shakes her/his body
back and forth). Our study aims at more general settings, where a person can
stand and even walk around by introducing a new image-like input modality for
RF signals and a MTAL strategy.

2.3 Indoor Sensing with RF Signals

The RF system employs wireless reflections for surrounding detection, enabling
illuminance-invariant and privacy-preserving sensing. The past wireless systems
for indoor environments tend to be biased towards localization and tracking
[4,36,21,50,8,7,6]; nonetheless, recent advances in RF hardware and DL-based
analysis techniques have facilitated the implementation of more sophisticated
tasks based on radio signals. For example, Zhao et al. [53,55,54] developed RF-
based 2D/3D pose estimation systems, which have been proven to work even
through walls. Fan et al. [12,11] extended the results for wireless captioning and
person re-identification tasks.
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Fig. 2. Pre-processing pipeline for radio-projected profiles. We leverage the CFAR
thresholding technique to obtain global trajectories from the channel-wise range-time
RF heatmaps. Projecting along the CFAR-output, radio-projected profiles can be ex-
tracted, whose magnitude and phase values (purple line) retain both the GM and RM
components for a moving person

3 RF Signal Preliminary

3.1 Depth Estimation from RF Signal

The RF sensor periodically transmits an radio signal and receives reflections from
its surroundings. Large bodies of RF sensing systems use a frequency-modulated
continuous-wave (FMCW) technique for signal modulation [12,53,55,54,13,43],
which has also been adopted in our work. After the basic pre-processing from RF
raw reflections (see supplementary material for details), we can obtain channel-
wise 2D complex range-time heatmaps x (R, t) = {xm (R, t)}4m=1 (see Fig. 2),
where R is the radial distance from the transmitter, t is the time, and m rep-
resents the receiver index from the distributed array antennas. The magnitude
of each RF heatmap (i.e., |x (R, t)|) directly indicates the reflected energy level
at each distance. Therefore, it is possible to estimate the radial depth of an
individual by detecting only the high absolute energy values from |x (R, t)|.

Meanwhile, the range resolution of a RF system is determined solely by its
transmitted signal bandwidth as [18]:

∆R =
c

2BW
= 0.1m, (1)

where c is the speed of light and BW is the signal bandwidth, which is set to
1.5 GHz in our RF system. This implies that the general range detections from
|x (R, t)| cannot fundamentally involve the microscopic displacement variations
originating from human respiration (with displacements of ∼ 1 mm in typical
[31]). Thus, instead of exploiting range detections from the RF heatmaps as
in most RF-based indoor applications [7,53,54,11,12,50,43], we leverage the de-
tected profile itself to retrieve the respiratory signatures beyond the resolution
limit.

Namely, as shown in Fig. 2, projection along the detected trajectory of a
subject can convert x (R, t) into a 1D temporal signal (hereinafter referred to as
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the radio-projected profile) with a complex format [5]:

x
(
RCFAR (t) , t

)
= I (t) + jQ (t) = α (t) exp (jθ (t)) , (2)

where RCFAR (t) denotes the coarse distance of a person obtained from a direct
detection on |x (R, t)| via constant false alarm rate (CFAR) thresholding [41]. It
should be noted that the magnitude and phase of the projected signal profiles
are further decomposed as [25]:√

I (t)
2
+Q (t)

2
= α (t) ≈

√
PtGσλ2

(4π)
3
R̄ (t)

4 , (3)

tan−1

(
Q (t)

I (t)

)
+ 2πk = θ (t) =

4π

λ
R̄ (t) , (4)

where Pt, G, σ, and λ represent the transmit power, antenna gain, electromag-
netic reflectivity, and signal wavelength, respectively, all of which are approxi-
mately constant over time. R̄ (t) refers to the radial depth of a subject from the
transmitter, and k (= ±0, 1, · · · ) is the ambiguity factor in estimating the phase.
From Eq. (3) and (4), it can clearly be noticed that the magnitude and phase
components of the projected signal also reflect the radial depth of the subject.
Particularly, contrary to RCFAR (t) estimated from the coarse range detection on
|x (R, t)|, R̄ (t) is not confined by the range resolution limit, and thus, it retains
exquisite sensitivity such that the vital signals with marginal displacements can
even be captured [19].

3.2 Motivation for RF-vital Model

Let us consider the radial distance over time for a person with large motion.
Because the radial distance for a moving person changes along both the GM of
the body and the fluctuating depth owing to RM, R̄ (t) can be expressed as a
linear summation of the GM and RM components: R̄ (t) = R̄GM (t) + R̄RM (t),
where R̄GM (t) and R̄RM (t) denote the distance variations induced from the GM
(i.e., body movements such as swinging, staggering, and walking) and RM (i.e.,
the body depth changes owing to breathing), respectively. The RM components,
which are quasi-isotropic in any part of the torso and exactly coincide with the
inhalation/exhalation cycles, allow human respiration to be recovered depending
on the information of body depth variations, from any azimuth angle. Moreover,
such chest-based sensing does not suffer from the prerequisite for continuous face
tracking, and even maintains an enhanced SNR compared to the extraction from
RGB face pixels.

The problem is that while the displacement of RM oscillates at the micro-
scopic level, the radial distance caused by GM (i.e., R̄GM (t)) changes rapidly;
hence, the signal strength of R̄RM (t) present within α (t) and θ (t) becomes sub-
stantially trivial. For robust extraction of the RM component, it is essential to
highlight the dominance of R̄RM (t) in R̄ (t), while suppressing the influence of
R̄GM (t). This is not a simple task because the GM and RM components are
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Fig. 3. Overall RF-vital model architecture. It first transforms the radio-projected pro-
files into RJTF map format, which is subsequently fed in to the U-Net style network
[42] composed of one 2D encoder, two 1D decoders, and one discriminator. The network
is trained based on the MTAL strategy. During training, the RM decoder attempts to
reduce the discrepancy between the real and predicted respiration (black box), whereas
the GM decoder and the ID discriminator are co-trained with the encoder in an ad-
versarial manner (orange box), such that the features cannot preserve the signatures
regarding the GM and ID of a person

entangled in R̄ (t) for every interval as well as the explicit separation of R̄GM (t)
requires additional utilization of motion/localization sensors, which makes the
overall system extremely bulky.

To tackle these challenges, we propose a novel MTAL framework (Fig. 3),
which leverages the domain properties of the RF signals mentioned above: the
range detections RCFAR (t) from the RF heatmap cannot fundamentally in-
volve the minute displacements of RM owing to its resolution limits in hard-
ware, but is able to coarsely track the GM of the human body. This implies
that RCFAR (t) can act as a powerful model of R̄GM (t). Based on this in-
sight, we devise a network that learns the mapping from the RF inputs com-
posed of α (t) = {αm (t)}4m=1 and θ (t) = {θm (t)}4m=1 to the desired RM com-
ponent, while simultaneously pushing out the GM component modeled from
RCFAR (t) =

{
RCFAR

m (t)
}4

m=1
in a self-supervised manner.

4 Methodology

RF-vital is a model for estimating the human respiration signal, given the
channel-wise radio reflections as input. As illustrated in Fig. 3, our RF-vital
pipeline consists of three main stages: 1) input transformation to convert the ra-
dio received signals into the newly proposed input modality, named RJTF maps;
2) representation encoding from the RJTF maps by leveraging 2D convolution
modules; 3) decoding branches composed of two 1D convolutional decoders (for
RM and GM), and an ID discriminator. During training, these modules are
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guided in an end-to-end manner based on the MTAL strategy such that the RM
signatures prevail among the latent features, whereas the shortcuts provided by
a person’s ID and GM are suppressed.

4.1 RJTF Mapping

Although α (t) and θ (t) intrinsically encompass the RM of a person, adopting
them directly as input modalities for our RF-vital model causes two complica-
tions. First, their 1D signal formats project not only the RM components but
also all the undesired GM and noise-induced elements in a single dimension.
Therefore, they are not suitable for distinguishing the fine R̄RM (t). Second, the
presence of GM makes it infeasible to achieve correct estimation of R̄ (t) from the
radio-projected profiles due to the significantly enlarged dynamic range. Consid-
ering these problems, we introduce the RJTF map as the input modality for our
RF-vital model to further clarify R̄RM (t) and to avoid the estimation ambiguity
problem.

The RJTF map takes advantage of the Doppler characteristics of RF sig-
nals (see supplementary material for details), which can entail the information
of instantaneous distance changes in radial direction [18]. Namely, instead of
directly estimating R̄ (t) from the radio-projected profiles, we rather perform
short-time Fourier transform (STFT) on α (t) and exp (jθ (t)) to obtain joint
time-frequency images A and Θ (Fig. 3). The additional Doppler frequency di-
mension in the RJTF map spans the instantaneous change in the radial distance,
so is capable of tracking the human vital signs as well. Particularly, it simply
scatters the distance changes of all body parts with respect to time on the 2D
domain, being free from the burden for accurate distance estimation. Finally, we
aggregate all the channel-wise spectrogram images in concatenated forms, result-
ing in the final RJTF map X ∈ R8×T×F , where T and F denote the dimensions
in time and Doppler frequency, respectively.

4.2 RF-vital Model Based on MTAL

Overall Architecture. As shown in Fig. 3, our RF-vital model adopts a 2D
convolutional encoder to convert the input RJTF map X into high-level rep-
resentations. These are subsequently fed into two parallel 1D convolutional de-
coders responsible for predicting the subject’s respiratory signal and global body
motion, respectively, and a fully-connected network responsible for identifying
her/his ID. Regarding the overall encoder-decoder architecture, we leverage the
modified form of a U-Net [42] architecture, where the multi-scale features pro-
duced from a series of 2D convolution layers within the encoder are averaged
along the frequency dimension and skip-connected to the corresponding 1D con-
volution layers in each decoder network (see supplementary material for fully
detailed architecture).

RM Decoder. The RM decoder DRM (·) aims at extending the correlation with
the real respiration signal from the low-dimensional RF feature. We devise the
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RM decoder based on series of 1D convolution and up-convolution layers match-
ing the temporal dimensions of the encoder to reconstruct a T -length respiration
signal from the representations. In addition, a tanh layer is added after the last
convolutional module to bound the predicted values to [−1, 1]. During training,
the network becomes optimized based on the L1 distance between the predicted
and real respiration signals:

LRM =
∥∥∥ypred

RM − ygt
RM

∥∥∥
1
, (5)

where ypred
RM denotes the output signals from DRM , and ygt

RM refers to the ground-
truth respiration signals measured with the contact chest belt.

GM Decoder. A major complication in accomplishing nRRM for a moving per-
son is the entanglement of human GM and RM within the input, which, in turn,
precludes the model from the high-fidelity separation of RM. Moreover, it is im-
possible to acquire a GM-dominant data (i.e., data affected only by the subject’s
GM without the RM component at all) paired with the network input, further
complicating the disentanglement of the RM features. We address this challenge
through a novel adversarial training strategy guided by range-detection-based
self-supervision.

The GM decoder consists of 1D convolution and up-convolution layers identi-
cal to those of the RM decoder; however, it performs a completely different role.
The encoder and GM decoder are trained in an adversarial manner such that
the model is encouraged to exclude the GM-dependent features. Let the encod-
ing network be denoted as E (·) and the decoding network for GM as DGM (·).
Then, the optimization target can be defined as:

min
E

max
DGM

VGM = −
∥∥∥ypred

GM − ygt
GM

∥∥∥
1
, (6)

where ypred
GM is the estimated GM component from the decoder, i.e., ypred

GM =

DGM (E (X)), and ygt
GM is the ground-truth GM-dominant data. Recall that the

coarse range detection RCFAR (t), which is obtained from the direct detection
in the RF time-range heatmap x (R, t), can predominantly reflect only the hu-
man GM component owing to its range resolution limit in hardware. Based on
this, we hypothesize that RCFAR (t) has a great potential to serve as a self-
supervision for GM-dominant signals. We average RCFAR (t) along the receiver
channel domain, which is subsequently passed through the linear interpolation
and smoothing filter to mitigate the influence of false detections and noise, re-
sulting in the final T -length ygt

GM . From the adversarial learning between the
RF encoder and GM decoder, the encoding network E can further focus on the
RM-dominant signals, while eliminating the GM-dominant features.

Discriminator for Person ID. Because the input radio reflection contains
unexpected subject-dependent signatures (such as gait patterns or average stay-
ing positions) besides the vital signs, the person ID may provide strong shortcuts
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for predicting breath signals. For example, the network may learn the person ID
through the gait pattern of each individual to reconstruct the subject-dependent
respiration signal. Such shortcuts not only degrade the generalizability of the
model for unseen subjects but also contradict our intention for the RF-based
nRRM task.

To address this problem, we devise an ID discriminator that operates also
in an adversarial manner during the training, similar to the case of the GM
decoder. We first construct a network for ID discrimination, which consists of
three fully-connected and soft-max layers to take the flattened features extracted
from the encoder E as input and classify the person ID as output. Denoting this
discriminator as DID (·), the adversarial training between DID and encoder F
can be achieved using a cross-entropy loss function:

min
E

max
DID

VID =
N∑

n=1

(
ygt
ID

)
n
· log

((
ypred
ID

)
n

)
, (7)

where N denotes the total number of subjects in the training data, ypred
ID is the

N -length output vector representing the probability for the person ID, and ygt
ID

is the one-hot encoded ground-truth vector. (·)n represents the n-th element of
an arbitrary vector.

In summary, two decoders for RM and GM, and one ID discriminator are
trained together in an end-to-end manner based on MTAL. Therefore, the overall
loss can be defined as:

min
{E,DRM}

max
{DGM ,DID}

V =
∥∥∥ypred

RM − ygt
RM

∥∥∥
1

− η1

∥∥∥ypred
GM − ygt

GM

∥∥∥
1
+ η2

N∑
n=1

(
ygt
ID

)
n
· log

((
ypred
ID

)
n

)
, (8)

where η1 = 0.3 and η2 = 0.2 are the balancing factors, which have been selected
empirically in our experiments. Note that the proposed MTAL strategy aims at
developing a RM decomposition model in the presence of large body motions
which can similarly be applied based on other input modalities (e.g. video), but
it is worthwhile to adopt RF signal given that the GM-dominant self-supervision
can intrinsically be provided.

5 Experimental Results

5.1 Datasets and Experimental Setup

Since there is no public dataset for the RF-based nRRM tasks, we collected two
datasets for the static/moving settings. For acquiring RF data, we utilized a
commercial FMCW radar (IWR1443BOOST, Texas Instruments Inc.) operat-
ing in the 77 GHz frequency band with a 1000 pulse repetition frequency. The
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following details the collected datasets.

RRM-static RRM-static dataset contains 2.4 h of synchronized RF reflected
signals, uncompressed RGB videos captured at 1280×720 resolution and 30 fps
through a Razer Kiyo Pro webcam, and ground-truth respiration signals recorded
from the contact chest belt. The measurements were collected from 13 subjects in
an indoor room, in which each individual was requested to sit in a chair and face
forward, ensuring quasi-stationary settings. The participants were also asked to
hold their breath periodically during the experiments to generate negative data
samples.

RRM-moving RRM-moving dataset is obtained under conditions similar to
RRM-static; however, this case was based on non-stationary, i.e., moving set-
tings, where 13 participants were able to stand and even walk around, reflecting
more challenging and realistic scenarios such as staggering, looking backward,
and turning around. This dataset spans 7 h of random movements and includes
some negative samples regarding walking around while holding one’s breath.

Implementation Details. The overall algorithm for the RF-vital model was
implemented based on 10 s of sequential frame data with a sliding window of 2.5-s
intervals, resulting in 3527/10171 RF frames for RRM-static and RRM-moving,
respectively. The received RF signals were transformed into RJTF maps using
STFT based on a Hann window of 300 ms duration, hop length of 60 ms, and
FFT size of 256. To train the network, we adopted ADAM [20] optimizer with
a learning rate of 0.0001 and a batch size of 64.

Regarding the quantitative evaluation of the nRRM algorithm, we followed
the protocols in [28]. That is, we measure the RRs of a person by post-processing
the output signals through a band pass filter with a [0.08 Hz, 0.6 Hz] passband
range, which are then compared with real RR measurements in beats per minute
unit (BPM) using several standard metrics: mean absolute error (MAE), root
mean square error (RMSE), standard deviation (Std), and Pearson’s correlation
coefficient (ρ). For train-test split, the datasets were divided into 13 folds cor-
responding to each participant so that the network model could be trained and
tested through subject-independent 13-fold cross-validation.

5.2 Quantitative results

We compare the proposed RF-vital model with seven state-of-the-art non-contact
vital monitoring baselines (three video- [3,35,28] and four RF-based methods
[45,31,14,56]). Regarding the video-based methods, we used 10-s video clips cor-
responding to the RF data, and center-cropped them to 400×400 pixels to focus
only on the facial areas.

Considering the left side of Table 1, our RF-vital model outperforms the pre-
vious baselines under static conditions, achieving a 51.8% reduction in MAE and
57.1% in RMSE. Furthermore, the right side of Table 1 demonstrates the feasi-
bility of realizing nRRM even in moving conditions, where the previous models
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Table 1. Quantitative comparison of the RF-vital and seven baseline methods based
on the RRM-static and RRM-moving datasets

Method Input RRM-static (BPM) RRM-moving (BPM)
MAE↓ RMSE↓ ρ↑ Std↓ MAE↓ RMSE↓ ρ↑ Std↓

CAN [3] RGB 3.16 5.83 0.57 5.21

|
Not

applicable
|

Nowara et al. [35] RGB 2.51 4.58 0.67 4.25
MTTS-CAN [28] RGB 2.65 4.13 0.69 4.04
Tu et al. [45] RF (1D) 5.46 7.31 0.19 4.86
Mercuri et al. [31] RF (1D) 2.52 5.64 0.54 5.47
Zheng et al. [56] RF (1D) 1.68 3.82 0.72 3.45
Ha et al. [14] RF (1D) 1.37 3.36 0.75 3.21

RF-vital RF (2D) 0.66 1.44 0.88 1.43 3.67 7.02 0.32 6.39

Table 2. Comparison between different input RF formats

Model Input MAE↓ RMSE↓ ρ↑ Std↓

unwrapped phase signal - - - -
RJTFmap (phase only) 4.92 7.20 0.23 6.97
RJTFmap 3.67 7.02 0.32 6.39

Table 3. Estimation performance for different combinations of the decoding branches

Use of Decoder MAE↓ RMSE↓ ρ↑ Std↓

RM only 5.04 7.96 0.26 7.15
RM + ID 4.76 7.64 0.30 6.85
RM + GM 3.85 7.10 0.36 6.98
RM + GM + ID 3.67 7.02 0.32 6.39

completely fail because of inconsistent facial tracking induced from the erratic
and occluded face regions (for video-based approaches), or significant ambiguity
for prerequisite distance estimation (for RF-based approaches). Particularly, it is
remarkable that the RR estimation results of our model under moving conditions
are comparable to those of Tu et al. [45] under static cases.

5.3 Ablation Study

For further in-depth analysis of the effectiveness of each component in the RF-
vital model, we conduct ablation studies based on the RRM-moving dataset.

RJTF Map. To analyze the potential utility of the proposed RJTF map, we
investigated the numerical performance by changing the input modality for train-
ing our RF-vital model. As candidates for the model input, we adopt unwrapped
phase signals (i.e., θ(t) in Eq. (4)) widely utilized in RF-based nRRM methods
[31,14,5,9,39,17,44], four-channel RJTF maps based only on RF phase, and eight-
channel RJTF maps based on both amplitude and phase components. As shown
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(f)

(a) (b) (c) (d) (e)

(g) (h) (i) (j)

Fig. 4. Qualitative results of our RF-vital model for various realistic scenarios. The
first and second rows show the reference video samples and corresponding estimation
results under stationary cases. The third and fourth rows show the results under more
challenging moving conditions. The ground-truth and the predicted respiration signals
are indicated by blue and red lines, respectively. Note that each signal is determined
to be the case of holding breath if the average absolute amplitude is less than 0.2

in Table 2, the model with the unwrapped phase signal fails entirely owing to
huge unwrapping errors (i.e., distance estimation errors), generating only ran-
dom jitters for the network output. This implies the inability of the conventional
direct distance estimations for involving respiration signatures in the presence
of GM. On the contrary, we observe that the proposed RJTF map can present
a solution to resolve the estimation ambiguity problem using Doppler effect. In
particular, exploiting the amplitude-based spectrograms as well with the phase
spectrograms can further improve the performance, reducing the MAE by 25.4%
and RMSE by 2.5% compared to the phase-only RJTF maps.

MTAL Strategy. We explore the effectiveness of the proposed MTAL strategy.
Specifically, we trained the network with respect to three different combinations
of decoding pipelines and evaluated the measurement performance of each model
(Table 3). The comparison between the cases with and without the GM decoder
clearly verifies the efficacy of the adversarial training on the GM components
(23.6% and 10.8% reduction in MAE and RMSE, respectively) in encouraging
the network to focus more on the desired RM components. Furthermore, consid-
ering the last row of Table 3, we observe that the proposed ID discriminator can
provide an additional reduction in MAE by 4.7% and RMSE by 1.1%, demon-
strating its potential to improve the model generalizability for an unseen person.

5.4 Qualitative Results

Fig. 4 visualizes the qualitative outcomes of our RF-vital model under station-
ary/moving conditions. Also, we measure the robustness on occlusion and poor
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light conditions based on additional test samples collected from occluded faces
or dark illuminance. Each example in the figure represents the real/estimated
respiration signal and its corresponding RGB scene.

Results for Stationary Cases. The results for a static person (the first and
second rows of the figure) show that the proposed RF-vital model provides dis-
tinct outputs between a person with regular breathing [Fig. 4(a)] and a person
holding breath [Fig. 4(b)], implying that our model can serve as a promising non-
contact solution for people with respiratory disorders. Particularly, because radio
reflections convey respiratory signs through the depth of the body instead of the
exposed skin surface, it is possible to conduct stable and privacy-preserving pre-
dictions even when a person wears a mask [Fig. 4(c)] or bows her/his head [Fig.
4(d)]. Furthermore, we observe that our RF-vital model maintains robustness
in a dark setting [Fig. 4(e)], in which the video-based approaches are likely to
suffer from significant performance degradation.

Results for Moving Cases and Limitations. The third and fourth rows
in the figure demonstrate that our model still works for a moving subject. It
can be noticed that the predicted outcomes reflect the respiratory signs of each
individual walking toward the sensor [Fig. 4(f)] or with her/his back [Fig. 4(h)],
under various spatial angles. In addition, the model can certainly factor out the
unusual cases of walking around while holding one’s breath [Fig. 4(g)].

However, we observed some failure cases in the RF-vital model under the
scenarios with rapid movements. For example, when a person suddenly changes
direction, the model generates erroneous signals as shown in [Fig. 4(i)]. Moreover,
the RF-vital model tends to show vulnerability to large motions in the vertical
direction, such as a large faltering or falling [Fig. 4(j)]. Such failures may have
been affected by misalignment with the chest caused from the poor vertical
resolution in our sensing system.

6 Conclusion

In this study, we present a novel RF-vital model, the first approach for imple-
menting the nRRM task over a randomly moving individual. We propose the
use of radio reflections as an input modality for the RF-vital model, based on
its domain property that can capture the microscopic changes in human body
depth, while preserving GM-only signals simultaneously. By leveraging the GM-
dominant signals as self-supervision, we can devise a MTAL strategy that induces
the network to focus more on the desired RM components, while pushing out
GM components. The extensive experimental results show that the proposed RF-
vital model can provide robust estimations in the presence of a moving person,
occluded face, and poor illumination, demonstrating its potentiality for realizing
practical vital monitoring solutions.
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