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Abstract. In this work, we show how to estimate a device’s position
and orientation indoors by echolocation, i.e., by interpreting the echoes
of an audio signal that the device itself emits. Established visual local-
ization methods rely on the device’s camera and yield excellent accuracy
if unique visual features are in view and depicted clearly. We argue that
audio sensing can offer complementary information to vision for device
localization, since audio is invariant to adverse visual conditions and can
reveal scene information beyond a camera’s field of view. We first propose
a strategy for learning an audio representation that captures the scene
geometry around a device using supervision transfer from vision. Subse-
quently, we leverage this audio representation to complement vision in
three device localization tasks: relative pose estimation, place recogni-
tion, and absolute pose regression. Our proposed methods outperform
state-of-the-art vision models on new audio-visual benchmarks for the
Replica and Matterport3D datasets.

1 Introduction

Audio signals are rich with information about the scenes around us. As humans,
we can often identify objects based on the sounds they make, and we can also
localize objects based on the direction of their sounds. Beyond passively listening
to sounds, animals such as bats and dolphins, as well as some individuals who
are visually impaired, use echolocation (i.e., active audio sensing) to sense the
spatial layout of their surroundings; they actively emit sounds that bounce off
major surfaces, creating audio echoes that convey structural properties such as
scene geometry and surface material [33, 26].

A growing body of research has proposed active audio sensing for vision
tasks such as room geometry estimation [26], depth estimation [33, 65, 24], and
floor-plan estimation [68]. Inspired by these pioneering works, we ask:

Can we train a machine to “hear” where it is in an indoor scene?

Figure 1(a) illustrates the problem setting: a device consisting of a camera with
a co-registered microphone emits a sound and records the echoes from the sur-
rounding indoor scene. Our goal is to leverage these audio echoes, either alone
or in conjunction with the camera’s image, to perform the three classic camera
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Fig. 1. Indoor device localization with active audio sensing. (a) Problem set-
ting. A device consisting of a co-located microphone and camera generates sound (red)
that bounces off major surfaces to create echoes (black). We leverage these audio echoes
to perform the audio-visual device localization tasks proposed in (b). (b-i). Relative
pose estimation. Audio-visual from two devices are used to estimate their relative
transformation (e.g., rotation and translation). (b-ii) Place recognition. Audio-visual
input from the device is used to retrieve nearby locations using a database of reference
captures. (b-iii) Absolute pose regression. Audio-visual input from the device is used
to estimate its global position and orientation with respect to the scene. (c) To learn
audio features that capture the full geometry of the device’s surroundings, we propose
a pretraining task that distills an egocentric visual cube map [37] into the audio rep-
resentation. (d) Audio sensing improves performance over established vision baselines.

localization tasks shown in Figure 1(b): (i) relative pose estimation, (ii) place
recognition, and (iii) absolute pose regression. From this point on, we refer to
these tasks as device localization tasks, since they involve both a camera and a
microphone– a reasonable assumption for most applications in AR/VR [101, 16]
and robotics [25, 52]. See the figure caption for an overview of each task.

While device localization tasks are conventionally tackled with only camera
images, audio offers two key advantages. First, audio echoes reflect off surfaces
beyond a camera’s field of view, capturing more scene information than just
what can be seen in an image. Second, audio signals are invariant to adverse
visual conditions such as low lighting and occlusions. Our idea is that these
attributes of audio sensing can enable us to solve cases of device localization
that are generally challenging for vision.

Interestingly, we find that directly optimizing models to use audio inputs for
device localization is not an optimal strategy. Unlike vision, the high-dimensional
input representation of audio does not explicitly depict the scene geometry
around the device, which is useful for localization. To overcome this challenge,
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we propose a pretraining framework that distills visual information of the sur-
roundings, represented as an egocentric depth cubemap [37], into the audio rep-
resentation. As shown in Figure 1(c), as pretraining, we task a model with recon-
structing an egocentric view captured at one of six possible orientations from the
microphone. In this way, we learn useful spatial audio features through the nat-
ural co-occurrence of audio-visual data [107, 58], without the need for manually
annotating surfaces in the scene (e.g., using a floorplan [68]).

Subsequently, we integrate these audio features into audio-visual methods for
the three device localization tasks shown in Figure 1(b). Since these tasks have
not previously been done with audio sensing, we introduce new benchmarks on
the Replica [85] and Matterport3D [17] datasets. Integrating our audio features
with established vision baselines achieves superior results across all tasks. Im-
portantly, audio sensing enables us to solve cases that are challenging for vision,
as summarized in Figure 1(d).

To summarize our main contributions: 1) We propose a pretraining frame-
work for extracting features from audio echo recordings that are useful for device
localization; 2) We introduce audio sensing to three classic visual localization
tasks, that are conventionally tackled using only camera images: relative pose
estimation, place recognition, and absolute pose regression, and achieve superior
results on all three tasks; 3) We propose novel audio-visual benchmarks for these
tasks, building on publicly available datasets and simulation platforms.

To our knowledge, our work is the first to extend classic camera localization
tasks to the audio-visual domain. Our code and pretrained models are available
at https://github.com/nianticlabs/audio-localization.

1.1 Related Work

Audio for Spatial Sensing. Existing research has leveraged audio to sense
locations of surfaces or objects in a scene. Echolocation has previously been
used to compute the shape of a convex polyhedral room [26], to predict the
shape of an object around a corner [53], to predict distances to surfaces [84, 28,
100], to estimate frontal depth maps [24, 33, 65], and to reconstruct floor plans
[68]. Other prior work leverages passive rather than active audio (i.e., audio
naturally emitted by sound sources in the scene) for spatial scene understanding.
These generally focus on localizing the source of the object producing the sound,
for example, predicting the direction of sound arrival [66], localizing multiple
sound sources using SVD [93], highlighting sound sources in a video [40, 31,
47, 62], drawing bounding boxes around moving vehicles [32] and performing
semantic object detection on street scenes [98]. Recent work in robotics even
uses ambient audio in a scene to estimate distances to walls [23]. Different from
all of these works, we use echolocation to estimate the surround depth of a scene
in pretraining, with the ultimate goal of performing device localization.
Audio-Visual Scene Perception. Audio and visual signals often occur to-
gether in a scene and offer useful joint information for performing tasks such
as action recognition [105, 55, 103, 44, 35, 106] and object labeling [110]. The co-
occurrence of these signals enables self-supervised representation learning [72, 61,
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Fig. 2. Pretraining Task. We distill an egocentric visual depth map into an audio
representation for downstream localization tasks. During training, we provide audio-
visual samples where the camera is rotated with respect to the microphone, and we
teach the model to reconstruct this egocentric view from audio. See text for details.

64, 2, 62, 107, 58, 60], audio synthesis [63, 83] or spatialization [34, 59] correspond-
ing to a visual scene, and navigation [19, 21, 20, 18]. Inspired by these works, our
pretraining task leverages co-occurring audio-visual signals to learn useful audio
features for device localization.
Visual place recognition. Determining a device’s location based on a cap-
tured image is a device localization problem that can be formulated as an image
retrieval task, where the objective is to retrieve a database image taken from
the same place as the query, rather an image that looks similar [36]. Prior works
have proposed performing a nearest-neighbor search on global visual descrip-
tors [43, 1, 3, 94] and/or performing matching between local visual features [54,
109, 92, 38]. Ongoing challenges in visual place recognition include the need for
visual overlap between query and database images [56] as well as the need for
invariance to different visual appearance conditions [36] such as lighting. Differ-
ent from prior work, here we propose to augment visual place recognition with
audio sensing to overcome these challenges and demonstrate our method on new
audio-visual benchmarks for place recognition.
Relative Camera Pose Estimation. Relative pose estimation is used to local-
ize one device with respect to another by predicting the relative transformation
between them, usually based on a pair of images. The most prevalent meth-
ods are feature-matching methods that use a pose solver integrated within a
RANSAC framework [69], with state-of-the-art approaches using learned meth-
ods for feature detection [27, 71, 96, 6], matching [74, 86] and robust model fitting
[108, 70, 11, 87]. Deep learning methods use convolutional neural networks to di-
rectly regress the transformation from a pair of images [108, 57, 29, 67], including
a recent work that frames regression as a classification problem [22]. An ongoing
challenge in relative pose estimation is handling wide rotation cases where there
is limited visual overlap between the image pair [15]. Different from prior work,
here we augment relative camera pose estimation with audio sensing and demon-
strate our method on new audio-visual benchmarks for relative pose estimation.
Absolute Camera Pose Estimation. Absolute pose estimation infers the
camera position and orientation based on a single query frame relative to a pre-
scanned environment. Traditional methods match sparse features of the query
to a full 3D reconstruction of the scene, and solve for the pose [50, 51, 88, 76, 79,
89, 77, 78]. Recent iterations of this classic formula utilize learned components
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Frontal Camera FoV Overall

RMS↓ REL↓ Log10↓ A1 ↑ A2↑ A3↑ RMS↓ REL↓ Log10↓ A1↑ A2↑ A3↑

Replica dataset
Echo2Depth [65] 0.583 0.443 0.143 0.603 0.765 0.851 - - - - - -
Ours 0.474 0.360 0.121 0.677 0.817 0.884 0.501 0.371 0.130 0.643 0.797 0.874

Matterport3D dataset
Echo2Depth [65] 1.166 0.351 0.133 0.571 0.756 0.847 - - - - - -
Ours 1.118 0.341 0.125 0.597 0.773 0.860 0.994 0.327 0.114 0.638 0.795 0.872

Table 1. Performance on depth pretraining task. Our framework outperforms
the state-of-the-art Echo2Depth [65]; see text for details.

for some of the steps, particularly for image retrieval, feature extraction and fea-
ture matching [73, 42, 90, 91, 75]. Scene coordinate regression dispenses with the
need for discrete feature matching by regressing image-to-scene correspondences
directly, via random forests [82, 97, 8] or neural networks [7, 9, 11, 12]. Absolute
pose regression networks predict poses in a single forward pass, and avoid any
potentially costly geometric optimization altogether [46, 45, 102, 13, 81]. Finally,
relative pose regression can be coupled with image retrieval to infer absolute
poses [48, 4, 111, 95, 104]. One of the major challenges in absolute pose estimation
is to handle scene ambiguities, such as feature-less areas or repeating structures.
These are more likely to appear in larger scenes. Difficult visual conditions, such
as low lighting, can also create ambiguous images. Different strategies exist to
cope with ambiguities in absolute pose estimation, such as avoiding full-scale
reconstructions [79], using global image context to resolve local ambiguities [10,
49] or modeling uncertainty to make multi-modal predictions [14]. Orthogonal
to these strategies, we demonstrate that active audio sensing effectively helps
disambiguates a query by providing a surround view of the environment.

2 Spatial Audio Representation Learning Framework

The main objective of this work is to evaluate the capabilities of audio sensing for
classic visual localization tasks. However, a key challenge is wrangling the high-
dimensional audio input into a meaningful form. While camera images explicitly
display the spatial configuration of a scene, spatial cues in audio echoes are
reflected in subtler differences in signal arrival times and levels [33].

To overcome this challenge, we propose to first learn an audio representation
that captures the spatial configuration of the scene around the device. Our pre-
training framework exploits the natural co-occurrence between visual and audio
signals to distill visual information of the device’s surroundings, which we rep-
resent as an egocentric depth cubemap [37], into the audio representation. We
hypothesize that such a representation will be helpful for device localization.
Method. Let y denote audio signal and v denote the visual frame. As shown in
Figure 2, we provide our model with audio-visual samples where the camera is
rotated in one of six orientations with respect to the microphone. These orien-
tations (denoted by j) correspond to the faces of an egocentric cube map. The
audio encoder f extracts a feature embedding for the full scene, and the depth
decoder g uses the j-th subset of this embedding to reconstruct a depth map of
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Fig. 3. Scene Geometry from
Audio. Our pretraining task distills
scene geometry into an audio repre-
sentation. (a) Camera views corre-
sponding to an egocentric cubemap.
(b) Ground truth depth maps for
these views. (c) Depth decoded from
our audio representation.

the camera view. We train the model by minimizing the log-loss [41, 65],

L(y,v, j) := 1

WH

W∑
p=1

H∑
q=1

log(1 + |D(v)[p,q] − g(fj(y), j)[p,q]|), (1)

where D(v) is the target depth map derived from visual frame v, and (W,H)
is the size of the depth map. While supervision is only provided for one face of
the cube map at a time, over the course of training on many samples, the model
learns to capture the full surround depth of the device’s surroundings.

Dataset. We train our framework on the Replica [85] and Matterport3D [17]
datasets. Replica contains 18 indoor scenes of hotels, apartments, rooms and
offices. Matterport3D contains 85 indoor scenes, most of which are large, multi-
room homes. Following previous work [20, 33, 65, 68], audio-visual data for these
scenes is obtained by simulating echo responses using the SoundSpaces platform
[20] and rendering the corresponding camera view using the Habitat platform
[80]. SoundSpaces simulates acoustics by pre-computing an impulse response
(IR) for each source-receiver location pair on a dense grid with 0.5m and 1m
spatial resolution for Replica and Matterport3D respectively. To simulate an
echo recorded by a microphone with a specific location and orientation, the
IR with both source and receiver at this grid location is selected, rotated to
the desired orientation, and convolved with a 3ms audio chirp (20Hz-20kHz
frequency sweep) [33]. We follow previously defined scene splits for these datasets
for training, validation and testing [33, 65]. Devices are placed at all possible grid
locations within each scene, with random azimuth and elevation angles.

Task Performance. To assess whether our model extracts meaningful scene
information from audio echoes, we compare to the SOTA Echo2Depth [65]. Ta-
ble 1 shows that we significantly outperform their model across all evaluation
metrics. Note that their approach only predicts the depth for the frontal cam-
era, whereas our approach predicts omnidirectional scene geometry. Training
Echos2Depth separately on six faces of the cube with the same representation
size performs worse than our model, in part due to the sharing of weights in our
encoder and decoder (see Supplemental Material for ablations). Figure 3 shows
a qualitative result of the scene geometry captured by our audio representation.
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3 Relative Pose Estimation

Having learned audio features that capture 3D scene geometry, we now show
how these signals can help localize a device. We start with relative pose estima-
tion: given inputs from two nearby devices, predict their relative transformation.
Visual methods match features between two camera images, but they have dif-
ficulty handling cases with low overlap between images [22]. Audio sensing can
help as it captures spatial cues beyond the camera’s field of view.

3.1 Proposed Models with Audio Sensing

Let (y1,v1) and (y2,v2) denote the audio-visual inputs for the two devices, and
let (R, t) denote their 3×3 relative rotation matrix and 3D translation vector.
As in previous work, we take t to be a normalized direction without scale.
Audio regression model. We first propose a model that regresses relative pose
directly from audio. The audio signals y1,y2 are passed through our pretrained
feature extractor f . We concatenate the features and pass them through a shal-
low multi-layer perceptron (MLP) to produce three vectors: (r̂x, r̂y, t̂a). We use

a partial Gram-Schmidt projection to obtain a rotation matrix R̂a from r̂x, r̂y
[112], and train the MLP to minimize the mean-squared error between the pre-
dicted and ground truth rotation matrices [112], as well as a direction loss [22]
given by the negative cosine similarity between the two translation vectors, i.e.

LR(R̂a, R) := ||R̂a −R||2 and Lt(t̂a, t) := − t̂Ta t

||t̂a||||t||
.

The full loss is given by Laudio(R̂a, t̂a, R, t) := βLR(R̂a, R) + Lt(t̂a, t), where
hyperpameter β > 0 weighs the relative importance between the losses.
Audio-visual regression model. Some existing visual methods tackle relative
pose by regressing pose from images directly using a Siamese architecture [108,
57, 29, 67]. We augment this approach with audio sensing. The audio signals
y1,y2 are passed through our pretrained feature extractor f , and the images
v1,v2 are passed through a deep residual network [39]. Similar to the audio
regression model, the audio-visual features are concatenated and passed through
a shallow MLP to predict pose. The model is trained to minimize Laudio.
Visual feature matching + audio. State-of-the-art visual methods such as
Superglue [74] match local features between two images and then predict relative
pose via essential matrix estimation within a RANSAC loop [30]. To incorporate
audio sensing into such methods, we propose a mixture-of-experts (MoE) type
model, in which a gating function decides whether to use the audio expert (audio
regression model) or the visual expert (SuperGlue). An intuitive gating function
to use is the output of the visual matching: if visual matching produces a pose
(R̂v, t̂v), then there is likely overlap between the images, and we should use this
result; otherwise, we use the audio expert’s prediction (R̂a, t̂a).
Visual feature matching + audio + (learned) gating. Since visual match-
ing does not necessarily produce a better result than audio, we also propose a
learned gating function that assigns an expert based on the predicted poses.



8 Yang et al.

Fig. 4. Audio-visual methods for device localization. Proposed models for (a)
relative pose estimation, (b) place recognition, and (c) absolute pose regression.

Concretely, the learned gating function is a neural network that takes as in-
put the predicted poses from both streams (R̂a, t̂a, R̂v, t̂v) and outputs a vector
z ∈ [0, 1]4,

∑
i zi = 1 indicating the composition of the final prediction. Each

entry of z gives the probability that one modality will outperform the other for
estimating R or t. We train the gating network to minimize the cross-entropy
loss between z and z∗, a one-hot vector indicating the optimal combination of
expert outputs. See Figure 4(a) for a schematic of this full model.

3.2 Evaluation

Benchmarks. Since there are no datasets for relative pose estimation with
audio-visual data, we introduce new benchmarks on the Replica [85] and Mat-
terport3D [17] scenes. For training, validation, and test scenes, we use the same
splits as our pretraining task. We sample audio-visual inputs from adjacent nav-
igable points on the scene grid with random azimuth and elevation angles. We
consider three evaluation scenarios: standard baseline cases (<90° rotation) that
are typically studied in the vision literature where cameras have considerable
visual overlap; extreme wide baseline cases (>90° rotation) where cameras have
very limited visual overlap; and low-lighting cases. We evaluate methods on me-
dian angular error [22], as well as accuracy at a 20° cutoff [74].

Baselines. We compare our audio-visual models to the established vision mod-
els that they build upon. The first is a visual regression baseline that uses a
Siamese architecture to regress pose from two images, as in [108, 57, 29, 67]. The
second is SuperGlue, a SOTA visual matching method for relative pose estima-
tion [74]; we use the pretrained indoor model released by the authors. To assess
the pretraining task, we compare our audio model to one trained from scratch.

Results. Table 2 shows quantitative results for all methods.

Audio-visual vs. Vision-only. Audio sensing improves the performance of both
the visual regression and SOTA visual matching methods across all metrics and
evaluation settings. This validates the benefit of audio for visual positioning.
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Standard Baseline Wide Baseline Low Lighting
(Relative Rot. <90°) (Relative Rot. >90°) (Dark Image)

t↓ R↓ Acc.↑ t↓ R↓ Acc.↑ t↓ R↓ Acc.↑

Replica dataset
Visual regression 35.0 15.0 21.0 37.4 20.0 17.3 57.3 99.1 0.7
Visual matching [74] 34.1 12.2 39.9 55.0* 108.4* 2.0 47.6* 14.3* 1.6

O
u
rs

Audio only (scratch) 30.2 17.9 21.9 28.8 19.5 22.3 30.2 17.9 21.9
Audio only (pretrained) 21.6 10.5 38.1 23.0 10.9 36.8 21.6 10.5 38.1
Audio-visual regression 33.0 14.3 24.1 35.6 18.4 19.5 58.5 91.6 0.9
Visual matching + Audio 19.0 7.3 47.7 27.3 13.3 31.5 23.3 10.8 35.3
Visual matching + Audio + Gating 13.8 6.5 55.4 22.6 10.6 37.6 21.5 10.3 38.4

Matterport3D dataset
Visual regression 44.5 37.1 6.6 45.8 56.5 3.9 53.5 110.8 0.1
Visual matching [74] 19.0 9.5 49.2 55.8* 113.09* 2.1 50.1* 31.1* 0.6

O
u
rs

Audio only (scratch) 35.0 24.7 13.8 35.1 25.7 13.2 35.0 24.7 13.8
Audio only (pretrained) 31.2 20.5 17.7 31.7 22.8 15.9 31.2 20.5 17.7
Audio-visual regression 41.4 37.0 8.0 43.3 51.3 5.4 48.1 99.9 1.0
Visual matching + Audio 13.5 7.7 52.3 36.7 30.1 14.1 32.0 20.8 17.4
Visual matching + Audio + Gating 11.7 7.2 54.4 31.2 22.5 17.2 31.1 20.3 18.0

Table 2. Audio sensing improves relative pose estimation. Our best audio-
visual method, which combines our audio feature representation with visual match-
ing and a learned gating network, outperforms other methods including SOTA visual
matching [74] on both the Replica and Matterport3D datasets. Audio-visual methods
that outperform both visual baselines are underlined. *Visual matching fails to find a
match on most test images; median values are computed from valid matches only.

As expected, adding audio is most helpful to the wide-baseline and low-lighting
cases, achieving large gains over the visual matching baseline.

Figure 5 shows a qualitative result of visual matching + audio + gating. In
Fig. 5(a), the two devices have large relative rotation and there is low overlap
between their images. As a result, visual matching performs poorly, as shown
in Fig. 5(b). Our gating function chooses the audio expert to produce robust
results, as shown in Fig. 5(c).
Does pretraining help? Our pretraining task significantly boosts the performance
of the audio model over one trained from scratch. This validates our hypothesis
that learning 3D scene geometry is beneficial for device localization.
Audio-Visual vs. Audio-only. In the wide-baseline and low-lighting cases, vi-
sual matching + audio does worse than the audio only model. This is due to
false matches found by SuperGlue. The learned gating function correctly dis-
ambiguates many of these false matches, yielding improved scores. Interestingly,
while the audio-visual regression model improves over visual regression, it does
not improve over the audio only model. A different representation of the pose
outputs from the visual and audio streams, e.g., using the classification frame-
work of [22] rather than regression, may yield superior fusion results.

4 Place Recognition

Given a device capture, place recognition aims to determine its rough location by
retrieving a similar capture from a reference database. Visual place recognition
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Fig. 5. Combining audio and vision for relative pose estimation. (a) Audio-
visual inputs from two devices. (b) Due to the low overlap between images, visual
matching preforms poorly. (c) In this case, our audio-visual chooses the pose predicted
by the audio expert to make a robust prediction. Blue – ground truth. Red – visual
prediction. Green – our prediction.

typically involves performing retrieval on camera inputs, but it performs poorly
in situations with low overlap between query and database images [56]. Audio
sensing can help by providing spatial cues beyond the camera’s field of view. We
let (yq,vq) denote the query audio-visual input captured at position cq.

4.1 Proposed Methods with Audio Sensing

Audio Descriptor. We first propose to learn an audio descriptor from the
output of pretrained feature extractor f . We do this by appending a shallow
MLP to the end of f , which we train using the triplet margin loss [5]:

Ltriplet(y,y+,y−) := max{||y − y+|| − ||y − y−||+m, 0}, (2)

where y denotes the anchor, y+ is a spatially-neighboring audio sample, y− is
a non-neighboring audio sample, and m > 0 represents the margin. While f
captures 3D scene geometry, this additional training with triplet loss enforces
that close distances in the output of the MLP reflect close distances in physical
space. To perform place recognition, we compare f∗(yq) to the descriptors in
the reference database and perform an exact nearest neighbor search based on
Euclidean distance to retrieve a sample located at cNN(yq)

.

Visual descriptor + audio. Visual place recognition commonly relies on state-
of-the-art networks, such as NetVLAD [1], to produce visual descriptors for
retrieval. To incorporate audio sensing into such methods, we propose a mixture-
of-experts (MoE) type model, in which a gating function decides whether to use
the audio expert (audio descriptor) or the visual expert (NetVLAD). Since our
goal is to use the audio stream when the visual match between the query image
and reference images is poor, we propose an intuitive gating function based on a
validation step for the visual retrieval result: if local feature matching (i.e., using
SuperGlue [74]) between vq and the retrieved image vNN(vq) predicts a positive
result, then we use the location cNN(vq) corresponding to this result; otherwise,
we use the audio expert’s prediction cNN(yq)

.
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Overall High Overlap Low Overlap Low Lighting
All Queries Subset of Queries Subset of Queries All Queries

R@1 R@5 Rank R@1 R@5 Rank R@1 R@5 Rank R@1 R@5 Rank

Replica dataset
Visual descriptors [1] 0.59 0.76 4.0 0.91 0.98 2.3 0.38 0.61 5.0 0.18 0.34 5.0

O
u
rs

Audio only (scratch) 0.59 0.68 4.5 0.57 0.66 5.0 0.60 0.70 1.5 0.59 0.68 4.0
Audio only (pretrained) 0.65 0.74 2.5 0.69 0.78 4.0 0.64 0.72 1.5 0.65 0.74 1.0
Visual descriptors + Audio 0.67 0.81 2.5 0.92 0.98 1.8 0.51 0.69 4.0 0.63 0.73 3.0
Visual descriptors + Audio + Gating 0.71 0.83 1.5 0.92 0.98 2.0 0.58 0.73 2.5 0.64 0.74 2.0

Matterport3D dataset
Visual descriptors [1] 0.44 0.66 4.3 0.90 0.97 2.4 0.39 0.63 4.3 0.12 0.26 5.0

O
u
rs

Audio only (scratch) 0.41 0.54 4.3 0.42 0.54 4.8 0.41 0.54 4.3 0.41 0.54 3.3
Audio only (pretrained) 0.49 0.62 3.3 0.50 0.63 4.3 0.49 0.62 3.0 0.49 0.62 2.0
Visual descriptors + Audio 0.54 0.71 2.3 0.91 0.97 1.5 0.50 0.68 2.3 0.49 0.62 2.9
Visual descriptors + Audio + Gating 0.55 0.71 1.0 0.90 0.97 2.1 0.51 0.69 1.3 0.49 0.62 1.9

Table 3. Audio sensing improves visual place recognition. Our models that
combine our audio feature representation with visual descriptors outperform SOTA
image retrieval with NetVLAD descriptors [1] on both the Replica and Matterport3D
datasets. Audio-visual methods that outperform the visual baseline are underlined.
Results are averaged over scenes; rank refers to average rank over scenes in the dataset.

Visual descriptor + audio + (learned) gating. In addition to a fixed gating
function, we also propose a learned function for our MoE model. The learned
gating function is a shallow MLP that takes the match predicted by Superglue
[74], represented as relative pose, and outputs a scalar value z ∈ [0, 1] indicating
whether to use the position retrieved by vision or audio. The gating function
is trained to minimize the binary cross-entropy loss between z and z∗, which
indicates whether the retrieved result from vision is better than audio.

4.2 Evaluation

Benchmarks. Since there are no datasets for place recognition with audio-visual
data, we introduce new benchmarks on two scenes from the Replica dataset and
and four scenes from the Matterport3D dataset that were held out from the
pretraining task. Reference and query audio-visual data are sampled from dis-
tinct locations on the scene grid. For reference samples, we place devices within
90° and 45° of the first cardinal direction (N/0°) for Replica and Matterport3D
respectively. We consider two evaluation scenarios: high overlap cases where the
query devices are oriented in the same range of rotations as the reference de-
vices; low overlap cases where query devices are oriented outside of this range;
and low-lighting cases. To evaluate methods, we use the Recall@k metric [36].
Baselines.We compare our audio-visual methods to SOTA image retrieval using
NetVLAD [1]. To determine the usefulness of the pretraining task, we compare
our audio descriptors to those trained from scratch.
Results. Table 3 shows quantitative results for all methods.
Audio-visual vs. Vision-only. Audio-visual results that outperform vision are
underlined in the table. We find that including audio sensing improves perfor-
mance over NetVLAD image retrieval across almost all metrics and evaluation
scenarios. This validates the benefit of audio for indoor visual place recognition.
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Fig. 6. Combining audio and vision for place recognition. The query audio-
visual sample is highlighted in blue and its position is depicted by the blue frustum.
Since there is no overlap between reference frustums (subset shown in yellow) and
the query, using visual descriptors results in incorrect retrieval (red). Our audio-visual
method selects the audio expert to make a correct retrieval (green). Note that frustum
rotations do not matter for accuracy, only its position.

As expected, the addition of audio benefits low-overlap queries and low-lighting
cases the most, bringing large gains over the visual baseline. Figure 6 shows a
qualitative result of our visual descriptor + audio + gating model. Since there
is no visual overlap between the query sample (blue) and the images in the
reference database, NetVLAD retrieval returns an incorrect result (red). The
audio-visual model chooses the audio expert to make a correct retrieval (green).
Does pretraining help? Our pretraining task significantly boosts the performance
of the audio descriptors over those trained from scratch. This supports our hy-
pothesis that learning 3D scene geometry from audio can help device localization.
Audio-Visual vs. Audio-only. Note that in the low-overlap cases and low-lighting
cases, the visual descriptor + audio model does worse than the model with au-
dio alone. This is because the query images have very little visual overlap with
the reference, so many positive matches for these images are false matches. The
learned gating function manages to correctly disambiguate many false matches,
yielding improved scores. Audio-only shows slightly better performance on low-
overlap and low-lighting queries on the smaller Replica scenes, while visual de-
scriptor + audio + gating performs better on the larger Matterport3D scenes.

5 Absolute Pose Regression

Absolute pose estimation involves estimating the position and rotation of a de-
vice with respect to a known 3D environment. Many recent direct regression
approaches [48, 4, 111, 95, 104] as well as some local feature-based approaches
[73, 42] combine retrieval with relative pose estimation. Our approaches for inte-
grating audio sensing into place recognition and relative pose estimation could
directly be used in those pipelines to tackle challenging cases with low visual
overlap. Here, we focus instead on regression methods and use audio to tackle a
separate challenge: scene ambiguities that cause images to match with different
parts of the same scene. Recent work on absolute pose regression has focused on
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Overall Low Ambiguity High Ambiguity
All Queries Normal Light Low Light

Position Rotation Position Rotation Position Rotation

Error Rank Error Rank Error Rank Error Rank Error Rank Error Rank

Replica dataset
PoseNet [46] 0.53 1.75 9.4 2.0 0.43 1.25 7.3 2.25 0.74 2.0 13.7 2.0

O
u
rs

Audio only 2.49 4.0 27.7 4.0 2.27 4.0 27.4 4.0 2.93 4.0 28.3 3.5
Audio-Visual (scratch) 1.88 3.0 19.3 3.0 1.52 3.0 12.5 2.75 2.45 3.0 27.2 3.5
Audio-Visual 0.52 1.25 6.9 1.0 0.46 1.75 5.4 1.0 0.64 1.0 9.9 1.0

Matterport3D dataset
PoseNet [46] 2.17 2.0 21.0 2.0 1.41 2.0 13.5 1.75 3.73 2.0 36.5 2.0

O
u
rs

Audio only 9.60 4.0 74.9 4.0 9.82 4.0 76.2 4.0 9.14 4.0 72.2 3.75
Audio-Visual (scratch) 3.34 3.0 41.8 3.0 2.31 3.0 30.3 3.0 5.46 3.0 64.9 3.25
Audio-Visual 1.86 1.0 19.4 1.0 1.31 1.0 13.6 1.25 3.01 1.0 31.2 1.0

Table 4. Audio sensing improves absolute pose regression. Our audio-visual
fusion model, which combines our audio features with visual features, outperforms the
established vision baseline on both the Replica and Matterport3D datasets. Results
are averaged over scenes; rank refers to average rank over scenes in the dataset.

modeling distributions of poses to handle this problem [14]. As an orthogonal
solution, we propose to use audio sensing to disambiguate between regions of
the scene that appear visually similar.
Model. We augment an established absolute pose regression network, PoseNet
[46], with our audio features. Let (y,v) denote the audio-visual capture of the
device, and let (R, t) denote the device’s pose. We use a deep residual network
[13] to extract visual features from v, and we use our pretrained audio feature
extractor to obtain audio features from y. The features are fused using a self-
attention module [99] and a shallow MLP produces three vectors: (r̂x, r̂y, t̂). A

partial Gram-Schmidt projection is used to obtain a rotation matrix R̂ from
r̂x, r̂y [112]. We train the weights of our network to minimize the mean-squared

error between the predicted and ground truth poses, i.e., Laudio(R̂, t̂, R, t) :=
β||R̂−R||2+ ||t̂− t||2, where β > 0 is a hyperparameter that weights the relative
importance between the rotation and translation errors.

5.1 Evaluation

Benchmarks. There are no datasets for absolute pose estimation with audio-
visual data, so we introduce new benchmarks on two scenes from Replica [85]
and four scenes from Matterport3D [17] that are held out from pretraining.
Training and test samples are obtained from distinct locations on the scene grid,
at random azimuth and elevation angles. To introduce more ambiguity, we reduce
the brightness of specific regions (approximately 30% of the floorplan area).
Baselines. We compare our audio-visual regression network to PoseNet [46],
the established visual regression approach that we build upon. To assess the
usefulness of the pretraining task, we also perform an ablation of our model
that trains the audio network from scratch. Note that we also experimented
with DSAC* [12] and ESAC [10], state-of-the-art scene coordinate regression
models. However, we found DSAC* to perform poorly on these large, ambiguous
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Fig. 7. Combining audio and vision for absolute pose regression. The input
images observe ambiguous views of the scene (blue frustums). This result in poor
performance on the part of the visual model (red frustums), whereas the audio-visual
model uses audio to disambiguate the position of the device (green frustums).

datasets, and we found ESAC to consume an unreasonable amount of training
time to cover each scene with dozens of expert networks.
Results. Table 4 shows quantitative results for our approach. The audio-visual
model provides a boost over the established visual baseline. This is already evi-
dent in portions of the scene with regular illumination, but particularly promi-
nent in the portions of the scene with poor illumination (and greater visual am-
biguity). Figure 7 provides a qualitative example of how audio sensing benefits
the vision model for absolute pose regression in a large Matterport3D scene: the
input images observe ambiguous views of the scene (blue). This result in poor
performance on the part of the visual model (red), whereas the audio-visual
model uses audio to disambiguate the position of the device (green).
Does pretraining help? Using our pretrained audio feature extractor significantly
boosts the performance of the audio-visual model. When we train the model from
scratch, without our pretrained audio feature extractor, we find that it performs
significantly worse– surprisingly, even worse than the vision-only model. [103]
provides an explanation: multimodal models do not necessarily outperform uni-
modal models, since modalities trained from scratch may generalize and overfit
at different rates. This further validates the use of our pretrained audio features.

6 Discussion

Overall, we present an exciting new research direction that leverages active audio
sensing for classic camera localization tasks. Our experiments show that inte-
grating our scene-aware audio features into established vision models improves
performance across relative pose estimation, place recognition, and absolute pose
regression. We hope that our work inspires further research in this direction,
including collection of real-world audio-visual datasets of indoor scenes with
ground truth poses. While we focus on improving specific vision models in this
work, our insights on using audio sensing are not limited to these architectures
and could be combined with other task-specific advances in the literature.
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