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Abstract. In order for AI to be safely deployed in real-world scenarios
such as hospitals, schools, and the workplace, it must be able to robustly
reason about the physical world. Fundamental to this reasoning is physical
common sense: understanding the physical properties and affordances of
available objects, how they can be manipulated, and how they interact
with other objects. Physical commonsense reasoning is fundamentally
a multi-sensory task, since physical properties are manifested through
multiple modalities - two of them being vision and acoustics. Our pa-
per takes a step towards real-world physical commonsense reasoning
by contributing PACS: the first audiovisual benchmark annotated for
physical commonsense attributes. PACS contains 13,400 question-answer
pairs, involving 1,377 unique physical commonsense questions and 1,526
videos. Our dataset provides new opportunities to advance the research
field of physical reasoning by bringing audio as a core component of this
multimodal problem. Using PACS, we evaluate multiple state-of-the-art
models on our new challenging task. While some models show promising
results (70% accuracy), they all fall short of human performance (95%
accuracy). We conclude the paper by demonstrating the importance of
multimodal reasoning and providing possible avenues for future research.

1 Introduction

To safely interact with everyday objects in the real world, AI must utilize
physical commonsense knowledge about everyday objects: including their physical
properties, affordances, how they can be manipulated, and how they interact with
other physical objects [6,29]. Humans use physical commonsense reasoning in all
facets of day-to-day life, whether it is to infer properties of previously unseen
objects (“the water bottle over there is made of plastic, not glass”), or to solve
unique problems (“I can use a puffy jacket in place of my missing pillow”) [6].
This type of general understanding of object interactions is necessary in building
robust and complete AI systems that can be safely deployed in the real world
(e.g., a package delivery robot needs to treat heavier or lighter objects differently).

Physical commonsense reasoning is fundamentally a multi-sensory task, as
physical properties are manifested through multiple modalities, including vision
and acoustics [13,40,65]. If two objects appear similar visually, audio can provide
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Object 1

Object 2

Q: Which of these objects is easier for a person 
to break into pieces?

Answer: ???

Answer: Object 2

Q: If left in an oven at high heat, which object 
would be less likely to stay intact?

Answer: ???

Answer: Object 1

Fig. 1: PACS is the first audiovisual benchmark annotated for physical commonsense
attributes, containing 13,400 question-answer pairs, 1,526 videos, and 1,377 unique
questions. By benchmarking state-of-the-art unimodal and multimodal models to
highlight where and why current models fail, PACS provides new opportunities to
advance the research of physical reasoning through studying multimodal reasoning. This
figure shows two example datapoints from PACS, with each datapoint containing a
question and a pair of objects (in this figure, object 1 is a plastic lemon and object 2 is
a ceramic vase). To view the video clips, please see the supplementary material.

valuable information to distinguish the physical properties between these objects.
For example, in Figure 1, instead of plastic, object 1 could be mistaken for squishy
foam, and instead of ceramic, object 2 could be mistaken for painted plastic,
glass, or even paper. Without the necessary audio information, this could result
in the erroneous answer that object 1 is easier to break than object 2. In the real
world, this misunderstanding may lead to the damaging or mishandling of an
object. Therefore, to enable physical commonsense reasoning in AI, it is essential
for these models to reason across both audio and visual modalities.

Recent work has explored the use of vision and/or text to understand basic
physical properties [30,32,35,50,61,67], or benchmark physical commonsense in
language [6,16]. Our work complements these previous settings by adding the
acoustic modality as part of the problem formulation. Furthermore, we include
not only static frames but also temporal information using videos. In these
directions, our paper takes a step towards real-world physical commonsense
reasoning by contributing Physical Audiovisual CommonSense (PACS):
the first audiovisual benchmark annotated for physical commonsense attributes.
PACS contains a total of 13,400 question-answer pairs, involving 1,526 object-
oriented videos that cover a diverse set of objects, and 1,377 unique physical
commonsense questions involving a variety of physical properties.

In our paper, we first detail the construction of our new audiovisual benchmark
of physical commonsense and establish the need for both the audio modality and
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commonsense reasoning to succeed on our task. Using this benchmark, we evaluate
the performance of multiple state-of-the-art unimodal and multimodal models in
comparison with human performance. We also performed an analysis of where
and why current models fail, highlighting the increased difficulty of reasoning
about physical commonsense, the lack of fine-grained temporal information due
to limitations in current models’ video and audio processing, and the need for
more advanced audiovisual models. We hope our work will elicit further research
into building robust multimodal representations of the physical world. 3

2 Related Work

We cover related work in commonsense reasoning, particularly on physical un-
derstanding, which has been studied in domains spanning psychology, language,
vision, robotics, and multimodal machine learning.
Psychology: Physical commonsense was first studied in humans, with psychol-
ogy experiments based on naive and intuitive physics [8,17,25,28,39]. In these
experiments, humans are asked to predict object motion or the result of multi-
object interactions. Further research has also been conducted in general physical
modeling [7] and the multisensory perception of physical properties [13,40,65]. In
particular, studies on human behavior indicate that the audio modality contains
valuable information about the physical properties of objects [24,40,41,57].
Language: Related work has studied physical commonsense within the text
modality [6,16,32,50,67]. To our knowledge, the generalizability of their findings
to other modalities is still understudied. Our dataset extends these text-based
knowledge graphs and language models to multimodal settings.
Vision: Methods utilizing physical commonsense have been applied to several
visual commonsense tasks, including scene understanding [12,58], activity recog-
nition [37], and cause-effect prediction [42]. We note that these methods focus
solely on the visual modality, which may bring challenges in tasks with unknown
or occluded objects. Including information from other modalities such as audio
and language could help mitigate these challenges.
Audio provides valuable information for one’s understanding of the world [24,57].
Currently, AI tasks studying physical properties through the lens of the audio
modality include navigation [10], perception [65], and generative modeling [66,18].
We extend this research direction to higher-order reasoning through PACS.
Robotics: Comprehension of physical properties has been shown to be valuable
for tool usage and object manipulation tasks [3,14,43,54,55]. Our paper provides
a direction for generalizing physical commonsense reasoning utilizing both audio
and visual modalities.
Multimodal: Recent work has introduced question-answering datasets with
image and text inputs (e.g., VQA [5], NLVR [51], NLVR2 [52]), with some anno-
tated for commonsense reasoning tasks (e.g., VCR [63,64], VisualCOMET [45]).

3 For dataset download links, benchmarked models, and evaluation scripts, please visit
https://github.com/samuelyu2002/PACS.

https://github.com/samuelyu2002/PACS
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There has also been the use of multimodal answer choices, such as a combination
of text and image regions in VCR [63] and VisualCOMET [45]. Other works
have also introduced datasets with video and text inputs to test for temporal
reasoning (e.g., MovieQA [53], MovieFIB [38], TVQA [36,64]). To our knowledge,
none of these approaches have explored audio and video together for physical
commonsense reasoning.

3 PACS Dataset

We introduce PACS, a benchmark dataset designed to help create and evaluate
a new generation of AI algorithms able to reason about physical commonsense
using both audio and visual modalities. The underlying task is binary question
answering, where given a question q and objects o1,o2, the model must pick the
more appropriate object to answer the question. Each object is represented by a
video v showing a human interacting with the object, the corresponding audio a,
and a bounding-box b drawn around the object in the middlemost frame of v.4
Thus, each datapoint in PACS is a tuple of values (q, (b1,v1,a1), (b2,v2,a2), l),
representing the question, two objects, and a binary label of which object is the
correct answer (see Figure 1 for an example datapoint in our dataset).

In this section, we first outline various design principles used in the creation
of our dataset. Then, we give an overview of PACS statistics (see Figure 2 for a
complete overview), and finally discuss each component of our data collection
and annotation process (see Figure 3 for our complete annotation pipeline). For
a more detailed overview of our data collection pipeline, please refer to section A
in the appendix.

3.1 Design Principles

Through synthesis of previous work, we divide physical commonsense into two
main categories based on which we designed PACS. These categories were used
as guidance for annotators when creating physical commonsense questions.

1. Intuitive physics, and a functional world model: This category is
inspired by previous psychology and AI experiments relating to physical
commonsense, such as predicting object motion [33,34,48,59], or how objects
interact with each other [28]. Questions in this category focus on predicting
the result of single or multi-object interactions. Easy questions involve a
single object and action, such as: “Which object will break after being dropped
on the ground?” (a vase, a ball of paper). Harder questions involve multiple
objects or actions, including interactions between the two objects, such as:
“Which object will become deformed if the other object is placed on top of it?”
(a vase, a ball of paper).

4 In our experiments, we usually represent the bounding box b as a red bounding box
drawn directly on the middlemost frame of the video. Thus, we also interchangeably
notate the bounding box as an image i.
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2. Common real-world knowledge: This category is inspired by previous
commonsense datasets, which test for more concrete understandings of how
and why humans or objects function in the real world [6,16,62,63]. Questions
in this category ask about possible uses of an object in real-life scenarios.
Importantly, these scenarios focus on less prototypical uses of an object,
therefore reducing the possibility of abusing learned knowledge [6], such as
“Which object is better suited to clean up a watery mess” (an old t-shirt, a
plastic box). Harder questions can introduce more complicated or uncommon
scenarios involving multiple objects: “If I were to stack the two objects, which
would logically go on the bottom?” (an old t-shirt, a plastic box).

3.2 Dataset Statistics

This subsection presents the main object and question statistics of PACS. Each
datapoint is the combination of a question, two objects, and the correct answer.
Figure 2f shows the distribution of the number of questions relating to each
object pair, with an average of 5.86 questions per pair.
Object statistics: PACS contains a total of 1,526 objects, each represented by
a unique video clip, with included audio and a bounding box in the middlemost
frame of the video. Figure 2b shows a rough distribution of materials that the
objects in our dataset are made of, as annotated in our video filtering step.
Materials such as “Wax” or “Foam” occur more commonly in our dataset than in
real life, due to our focus on creating a diverse set of objects. Figure 2e shows
the length of each video. On average, videos in our dataset are 7.6 seconds long.
Question statistics: PACS contains a total of 1,377 unique questions each
used multiple times across various pairs of objects. Figure 2d shows how many
times each question was used, where on average, a question was distributed to
10.8 pairs of videos. Figure 2a shows the distribution of question length in terms
of the number of words. On average, a question was 16.6 words long. Figure
2c shows the distribution of physical properties that our questions relate to.
Figure 2g shows the most commonly occurring words in our dataset and is also
color-coded by CLIP’s accuracy on datapoints conditioned on the occurrence of a
specific word. We can see a variety of action words (e.g., placed, dropped, thrown,
roll, rubbed, pressed, blown), each associated with different physical properties.
Furthermore, we see that AudioCLIP struggles with certain physical concepts,
such as having low accuracy on heat-related words (e.g., hot, fire).

3.3 Dataset Creation

In this subsection, we outline the steps used to gather and label datapoints in
PACS (see Figure 3 for a complete overview).
(a) Video collection: A broad set of ASMR videos were downloaded from
YouTube. Specifically, we chose to use object-oriented ASMR videos , as they pro-
vide high-quality audio, and often incorporate objects that people less commonly
interact with. We used a list of materials [1] to seed the search queries, which
was later updated with more materials as we iterated through the first two data
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(g) Frequency of most common words in PACS. The top 4 words (object, item, likely, better) are
excluded due to their high frequency being a result of our problem formulation. The bars are colored
based on the accuracy that AudioCLIP [23] achieves on them, with darker being higher accuracy.

Fig. 2: Dataset statistics for PACS. Best viewed zoomed-in and with color. Figure 2b
and Figure 2c show that the questions and objects in our dataset are diverse, involving
different physical properties and materials. Figure 2g shows a variety of actions (e.g.,
placed, dropped, thrown, roll, rubbed, pressed, blown) covered in our diverse questions.

collection steps. For each video, we use a shot boundary detector [49] to split
each video into separate scenes, and then further split each scene into roughly
5-10 second long clips. Finally, an audio classifier [20] was used to remove videos
with background music, talking, or silence. The remaining clips were sparsely
sampled to create the candidate set of clips.
(b) Video clip annotation and filtering: When analyzing the candidate set of
clips, we noticed that a large number of objects that appeared in these clips were
common household objects, resulting in many repeated objects. Furthermore,
common objects do not require as much multimodal understanding, as a single
image and a decent knowledge base may be enough to identify the object and
extract necessary physical properties. Thus, as a heuristic for how common or
obvious an object is, we test to see if annotators are able to classify the materials
each object is made of. If annotators are able to correctly identify an object’s
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(a) Video collection: We first downloaded YouTube videos and split them into 5-10 second
long clips. In this example, the first 5 clips came from a video with the query “ASMR slime no
talking”, and the last 5 came from a video with the query “ASMR plastic no talking”.

(b) Video clip annotation and filtering: Clips were filtered with an audio classifier and
sparsely sampled to be sent for human filtering. Clips that passed human filtering were annotated
with a bounding box (denoting the object) and added to the final dataset.

(c) Question creation: Each object was randomly paired with three other objects, and a subset
of the object pairs was given to annotators to create physical commonsense questions.

Q: If left in an oven, which object is 
more likely to melt first?

Q: Which object would make a louder 
noise when dropped on the ground?

Q: Which object could be manipulated to 
cover the entirety of the other object?

(d) Question reassignment: Questions cre-
ated in the previous step were randomly dis-
tributed to unannotated object pairs. Annota-
tors removed irrelevant questions.

Q: Which object would make a 
louder noise when dropped on 

the ground?

Q: If left in an oven, which object 
is more likely to melt first?

Q: Which object could be 
manipulated to cover the entirety 

of the other object?

(e) Quality checking: The remaining data-
points were answered by additional annotators,
and datapoints without unanimous agreement
were removed.

Q: If left in an oven, which object 
is more likely to melt first?

Object 1 Object 2

Q: Which object would make a 
louder noise when dropped on 

the ground?

Object 1 Object 2

Fig. 3: Diagram of our data collection process, showing steps starting from gathering
objects, to creating and checking datapoints. Best viewed zoomed-in and with color.

materials using just a single image, then this suggests that the object is likely
common, and has physical properties that are easily distinguishable.

In this task, annotators were first given a single image from a candidate video
clip and asked to draw a bounding box around the “object of focus”, which we
define as the object the person is touching in the video (if the guess is wrong,
the clip is thrown away). Then, they were were asked to select the materials that
make up the object from a list, and to provide a confidence score from 1 − 5.
Once they submitted their initial answer, annotators were then given access to



8 Yu et al.

the whole video and audio and asked to redo the task. If their confidence did not
increase and their answers did not change, then the clip was removed. Otherwise,
the clip and the bounding box were added to the dataset as an object, with each
clip containing exactly one bounding box annotation (one object).

The final set of 1,526 objects was partitioned into train, test, and validation
of 1,224, 152, and 150 videos respectively. Then, each object was paired with
three other objects in the same subset, resulting in 2,289 pairs of objects.

(c) Question creation: From the 2,289 object pairs gathered, 242 were randomly
selected to be used in this step, while the other 2,047 pairs were used in the next
step. In this step, annotators were asked to write questions that require physical
commonsense knowledge to answer. Annotators were given two videos, and a
frame from each video containing a bounding box that specified the object. The
had the option to write one or two commonsense questions related to the pair of
objects, and answer with “Object 1” or “Object 2”. In total, 1,377 questions were
created, with each pair of videos given to 5 separate annotators.

To facilitate the process of creating high-quality questions, we provided
annotators with a more detailed version of the categorization developed in
section 3.1 as guidance for what constitutes physical commonsense as instructions.
They were also required to provide at least one relevant physical property for
each question to encourage topical questions. Finally, questions were required to
have a certain level of complexity, and were all quality-checked (e.g., questions
that directly asked about a physical property such as “Which object is more
sticky”, or “Which object is larger?” were forbidden).

(d) Question reassignment: We evenly redistribute the 1,377 questions created
in the previous step to the remaining 2,047 object pairs. Reusing questions on
new pairs of objects can create interesting scenarios, as it matches object pairs
with questions that human annotators may not normally come up with [6]. The
goal is to create matchings such as: “If you absolutely needed to tie your hair up,
which item would you use?” (a plastic straw, a piece of paper). In this example,
the question and object pair are not normally associated with each other, but are
still answerable by humans, who have the ability to draw new connections. This
puts more of the challenge on drawing relationships between physical properties,
rather than directly applying past knowledge.

Specifically, in this task, each unused object pair is assigned a list of 13
questions, which is then given to annotators. Then, annotators can either mark
each object-question matching as “completely irrelevant”, or choose to answer
the question, thus creating a new datapoint.

(e) Quality checking: To ensure the quality of final datapoints, each candidate
datapoint gathered from the Question Creation and Question Reassignment
stages was given to additional annotators to double-check. Every candidate was
answered three times between the question annotation stages and only kept in
our dataset if there was unanimous agreement.
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4 Experimental Setup

In this section, we first outline the setup for testing human performance. We then
list the models for checking dataset biases, and several state-of-the-art models
that we tested. Finally, we outline the creation of PACS-material, a material
classification subtask on our dataset.5 Our experiments were designed to answer
the following research questions:

1. How difficult is our task, as measured by the performance of human annota-
tors and state-of-the-art models? We evaluate open-source state-of-the-art
models that have high performance on comparable datasets such as VCR [63],
TVQA [36], and NLVR2 [11] (section 4.3), and compare these results to
human performance on PACS (section 4.1).

2. Are there potential biases in our dataset? While the paired binary question
answering format is designed to limit bias in the language modality (cor-
relations between questions and correct vs incorrect answers) as opposed
to standard QA datasets [2,4,31,62], we explore other sources of biases in
language, video, and audio in PACS (section 4.2).

3. What is the importance of audio in our task, and what are the specific areas
where audio is beneficial? We compare human and model performance with
and without audio (with otherwise the same configurations) and analyze
specific qualitative examples where including audio leads to better results (see
section 4.1 and section 4.3 for how we set up human and model benchmarks).

4. How challenging is the level of reasoning required to capture physical com-
monsense? To establish this difficulty, we create an additional material classi-
fication task to compare with our physical commonsense task (section 4.4).

4.1 Human Performance

To test human performance with and without audio, we randomly sampled 243
datapoints from the dataset, and give them to 10 annotators to answer. The
annotators were given half of the datapoints with audio and half without, such
that each datapoint would be annotated with five answers with audio, and five
answers without. Consistent with other works, we compute human accuracy as a
majority vote [6,63], and also report 90% confidence intervals for the results.

4.2 Detecting Biases

We construct four different combinations of late-fusion models by combining state-
of-the-art pre-trained image, audio, video, and text models. We used ViT [15] as
the image model, AST [21] as the audio model, TDN [56] as the video model,
and DeBERTa-V3 [26,27] as the text model. The specific configurations chosen
for bias detection were inspired by past work studying bias on Visual Question
Answering datasets [9,60,63]. We test for two main types of bias: answer choice

5 For more details on experimental setups, refer to section B in the appendix.
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bias (are there systematic biases in the answer choices that give away the correct
answer without even seeing the question?), and unimodal question-answerability
(is information from one modality enough to correctly answer the question?).
I + A + V: We study the predictability of our task given only information
about the objects (no question is provided). This test demonstrates whether
there is a pattern between the objects and the correct answer.
Q + I: Evaluates the usefulness of images (I) in predicting correct answers.
Q + V: Evaluates the usefulness of videos (V) in predicting correct answers.
Q + A: Evaluates the usefulness of audio (A) in predicting correct answers.

4.3 Baseline Models

Late Fusion [44]: We train a model using late fusion of all four input modal-
ities as a simple baseline. We use SOTA image [15], audio [21], and video [56]
models pretrained on large-scale classification datasets such as ImageNet21k [47],
AudioSet [19], and Something-Something V2 [22], and the text [26] model is pre-
trained using replaced token detection. We concatenate the unimodal embeddings
and use a linear layer to create multimodal embeddings for prediction.
CLIP [46] is a powerful image-text model pre-trained on a large set of images
and text captions and can be used for a variety of zero-shot and finetuning tasks.
CLIP embeds image and text into a shared vector space, where we can use cosine
similarity to measure the similarity between image and text embeddings. We use
CLIP to separately embed images of both objects and the question. The predicted
object is the object with more similar embedding to the question embedding.
AudioCLIP [23] extends CLIP for audio inputs by training on AudioSet [19],
which enables the embedding of audio inputs into the same vector space. Using
this model, we extend the CLIP model mentioned above to include audio by
concatenating the image and audio embedding, and using a linear layer to project
them onto the same vector space as the text embedding.
UNITER [11] is an image and text model that is pre-trained using four different
image-text tasks and achieves strong results on tasks such as NLVR2 [52]. We
largely follow the procedure used to prepare and finetune UNITER on the
NLVR2 dataset [52]. We split up both objects and generate two object-question
embeddings, and finally concatenate them and use an MLP to classify the answer.
Merlot Reserve [64] uses image, audio, video, and text, achieving state-of-the-
art results on VCR [63] and TVQA [36]. We follow the methods used to train
Merlot Reserve on VCR and TVQA by constructing two multimodal sequences
using all input modalities. Then, we separately generate confidence scores for
both sequences and compare the two values as a classification output.

4.4 Material Classification

By comparing with the simpler task of classification, we can gain an understanding
of the level of higher-order reasoning required in our task. In our main question-
answering task, errors can come from multiple sources, either from misidentifying
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Baseline Model Accuracy (%)
With audio Without audio ∆

I + A + V [60,44] 51.9± 1.1 - -
Q + I [62,44] - 51.2± 0.8 -
Q + A [62,44] 50.9± 0.6 - -
Q + V [62,44] - 51.5± 0.9 -
Late Fusion [44] 55.0± 1.1 52.5± 1.6 2.5
CLIP/AudioCLIP [23,46] 60.0± 0.9 56.3± 0.7 3.7
UNITER (Large) [11] - 60.6± 2.2 -
Merlot Reserve (Base) [64] 66.5± 1.4 64.0± 0.9 2.6
Merlot Reserve (Large) [64] 70.1± 1.0 68.4± 0.7 1.8

Majority 50.4 50.4 -
Human 96.3± 2.1 90.5± 3.1 5.9

Table 1: Results on PACS test set: baseline models are reported with the mean and
standard deviation of 5 runs, while human accuracy is reported with a 90% confidence
interval. There is a large gap between model and human performance, with the best
performing model (Merlot Reserve) lagging behind by over 25%. Models with audio
also consistently outperform the corresponding models without audio, demonstrating
the need for information from all modalities to succeed in our task.

the properties of an object, or correctly identifying the objects, but failing to
reason about the properties. Results from a material classification task using the
same objects can give us an estimate on how much error stems from misidentifed
objects, and how much comes from the failure to exhibit higher-order reasoning.

We create a material classification task (PACS-material) formulated identi-
cally to our dataset, where a pair of objects is accompanied by a comparison
question (e.g., “Which object is more likely to be made out of glass”). The materials
used are gathered from our data-collection stage (Figure 2b shows a distribution of
material categories). We use the exact same object pairs as in the main task, and
accompany each pair with comparison questions based on each object’s material.
In total, we created 3,460 training datapoints, 444 validation datapoints, and 445
testing datapoints. Each datapoint is a quadruplet (o(1),o(2), q, l), representing
the two objects, the question, and the label.

5 Results and Discussion

In this section, we assess the whether audiovisual understanding and physical
commonsense reasoning are required to succeed on our dataset, and look at where
current models fail. For additional results, refer to section C in the appendix.

5.1 Human and Model Performance

A summary of all model performances is shown in Table 1. Notably, all methods
struggle to achieve results close to human performance, with the gap in accuracy
between the best model (Merlot Reserve) and human performance being over 25%.
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This gap is much larger than the gap between SOTA and human performance
on other datasets such as TVQA (3%) and VCR (14%) [64] , demonstrating the
challenging nature of our dataset.

We believe that the gap in performance comes from (1) the inherent challenge
of developing physical commonsense (section 5.4), and (2) the loss of information
in each model. This includes the lack of video information in CLIP and UNITER,
and the sparse sampling of video frames in the Merlot Reserve and Late Fusion
models. Some physical information may require clear alignment between the
actions displayed in the video and the audio signal to accurately understand the
object, and thus require more fine-grained temporal information.

5.2 Checking for Biases in PACS

Table 1 shows the performance of our bias testing models, where we see that
there is low performance among all configurations of models used. The I+A+V
configuration tests for bias among the answer choices (objects), which achieves a
low accuracy of 52%, demonstrating that the answer choices alone do not give
away the answer. Furthermore, solely providing image, audio, or video information
alongside the question yields poor performance, and it is only when all three
modalities are combined that results solidly deviate from randomly guessing (55%
accuracy). We believe the low results when provided with unimodal information
are because all modalities play an important role. Only the image input specifies
the object via a bounding box, thus making it difficult to succeed without the
image. Additionally, since our dataset was curated to consist of complex objects
that require video and/or audio to understand, removing such modalities also
result in low performance.

5.3 Importance of Audio

In Table 1, we can see the benefit of including audio. Perhaps the most important
experiment is how much audio helps humans, as the error rate decreases by more
than half, with no overlap between the confidence intervals for the two values.
When provided with audio, the models don’t seem to improve as much. We
theorize a few reasons for this: (1) for Merlot Reserve, the pretraining data is
from a very different distribution, mostly consisting of human speech, and the
input spectrograms may not be fine-grained enough to capture higher-pitched,
sharper noises, such as tapping. (2) In contrast, AudioCLIP uses raw audio as
an input, but the method of fusing audio and video through concatenation may
be too simple.
Performance on the most “unique” objects: Using the material and physical
property labels gathered in the annotation steps, we can also compare results
conditioned on specific materials and properties. We calculate performance with
respect to a specific material (e.g., metal) by only counting datapoints where at
least one of the objects is made of metal. Similarly, we calculate performance
with respect to a physical property (e.g., hardness) by only counting datapoints
where the question is related to the property. In Figure 4a, we see that the
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Fig. 4: Comparison of results on Merlot Reserve when trained with and without audio.
These results are conditioned on the material of the objects in the object pair, and on
the physical properties relevant to the question (see section 5.3).

Baseline Model Subset Accuracy (%)
PACS-material PACS ∆

Late Fusion [44] Val 67.8± 0.8 55.5± 0.3 12.3
Test 67.4± 1.5 55.0± 1.1 12.4

AudioCLIP [23] Val 81.9± 1.2 61.6± 0.9 18.8
Test 75.9± 1.1 60.0± 0.9 15.0

Table 2: Comparison of PACS-material and PACS. Despite PACS-material being
created from relatively noisy labels, we observe that it is a far easier task, with models
performing 10−20% better on it than on PACS. This suggests that our dataset requires
a level of reasoning that goes beyond what is required in classification tasks.

biggest improvement in accuracy is on datapoints containing objects made of
“Other” materials. Since our material labels cover the most common materials
appearing in the dataset, this suggests that audio is especially important when
reasoning about uncommon objects. From Figure 4b, we see that properties such
as texture and flexibility show the most improvement, and no category’s results
suffer greatly with the addition of audio.

5.4 Difficulty of Reasoning

As seen in Table 2, the material classification task on our dataset is much easier
than our main task, with models achieving 10-20% higher accuracy, despite being
trained using fewer datapoints (11,044 vs 3,460). Since the only other difference
between PACS and PACS-material lies in the content of the questions, we
believe that this gap in performance is due to the added difficulty of physical
commonsense reasoning. The remaining 20-30% of misclassified datapoints on
PACS-material can be attributed to both noisy labels resulting in imperfect
training and evaluation, and a true failure in understanding the objects’ material
makeup.
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Question: Which object would you be 
able to spot in dense forest ground-

covering the fastest? 

Question: If both objects were filled with 
pocket change, which would allow you to 

take more friends out to eat?

Question: Which object would take more 
time to pick up if you dropped it on the 

ground?
With Audio:  
Without Audio:

Object 1 
Object 2 

Object 1 
Object 1

With Audio:  
Without Audio:

With Audio:  
Without Audio: Object 2 

Object 2 
 

Fig. 5: Qualitative results showing predictions from Merlot Reserve models trained with
and without audio. In this example, the first object could be mistaken as plastic and
the second object could be made of plastic or metal. Thus, the model without audio
doesn’t realize that the glass object will shatter and takes longer to pick up off the
ground. Furthermore, both models fail to answer the third question, which indirectly
asks about the size and shape of both objects. This shows that models struggle on
questions that are more complex, or require more implicit knowledge.

5.5 Example Predictions

Finally, we analyze some specific examples to see where audio is helpful, and
where both models fail. Generally, audio is helpful when models are presented
with visually ambiguous or uncommon objects. In these situations, audio is
necessary to clarify the physical properties of the objects (e.g., question 2 in
Figure 5). Furthermore, despite the presence of audio, both models may still fail
when asked complex and/or uncommon questions that require the understanding
of implicit information (e.g., question 3 in Figure 5).

6 Conclusion

We introduced PACS, a large-scale audiovisual dataset for physical common-
sense reasoning. We find that the best models still struggle to (1) fully leverage
multimodal information, and (2) develop a strong understanding physical com-
monsense. Through experiments, we evince the multimodal nature of PACS
and its usefulness in benchmarking future work in multimodal commonsense
reasoning. We also provide multiple promising directions for bridging the gap be-
tween human and AI performance, which we hope provides insight in progressing
towards safe and robust multimodal representations of the physical world.
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