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Abstract. This paper presents an audio-visual approach for voice sep-
aration which produces state-of-the-art results at a low latency in two
scenarios: speech and singing voice. The model is based on a two-stage
network. Motion cues are obtained with a lightweight graph convolu-
tional network that processes face landmarks. Then, both audio and
motion features are fed to an audio-visual transformer which produces a
fairly good estimation of the isolated target source. In a second stage, the
predominant voice is enhanced with an audio-only network. We present
different ablation studies and comparison to state-of-the-art methods.
Finally, we explore the transferability of models trained for speech sep-
aration in the task of singing voice separation. The demos, code, and
weights are available in https://ipcv.github.io/VoViT/.

Keywords: Audio-visual, source separation, speech, singing voice.

1 Introduction

Human voice is usually found together with other sounds. Think of people speak-
ing in a cafeteria or in a social gathering, a journalist reporting on the scene, or
an artist singing on a stage. In these situations we can find: multiple concurrent
speeches, speech with background noise or a single or multiple singing voices
with music accompaniment among others. Our brain is capable of understand-
ing and concentrating on the voice of interest [3]. This cognitive process does
not only rely on the hearing. Some works have shown the sight helps to focus on
the voice of interest [12] or to resolve ambiguities in a noisy environment [20].
In this paper we address the voice separation and enhancement problems from
a multimodal perspective, leveraging the motion information extracted from the
visual stream to guide the resolution of the problem.

We propose an audio-visual (AV) voice separation model that produces state-
of-the-art results. It is based on a two-stage approach. The first stage estimates
a fairly good separation by combining audio and motion features with a trans-
former. Motion cues are crucial when the sound mixture contains different pre-
dominant voices. We extract those cues with a graph convolutional network
(CNN) that processes a sequence of face landmarks. The audio-visual features
are aligned in the feature dimension and preserve the time resolution. They are
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processed by a multimodal spectro-temporal transformer that estimates the iso-
lated voice corresponding to the target face landmarks. In a second stage, the
predominant voice is enhanced by a small audio-only U-Net that takes as in-
put just the pre-estimated audio. The voice of interest is predominant in the
first estimation and thus an audio-only network is capable of modelling it and
cancelling the sparse and mild interferences present in the pre-estimation. The
paper includes an ablation study of different configurations of the multimodal
transformer, its number of blocks and design of the lead voice enhancer network.
The proposed method is compared to state-of-the-art methods in two different
scenarios: speech and singing voice separation, showing successful results in both
cases.

The contributions of this work are several: i) We propose an audio-visual net-
work based on a transformer which performs better than current state-of-the-art
models in speech and singing voice separation. ii) We show that a landmark-
based approach for extracting motion information can be a lightweight competi-
tive alternative to processing raw video frames. iii) We show how an enhancement
stage based on a light network can boost the performance of AV models over
larger complex models, reducing the computational cost and the required time
for training. iv) We reveal that AV models trained in speech separation do not
generalise good enough for the separation of singing voice because of the differ-
ent voice characteristics in each case and that a dedicated training with singing
voice examples clearly boosts the results. Finally, v) our method is an end-to-
end gpu-powered system which is capable of isolating a target voice in real time
(including the pre-processing steps).

2 Related work

In the last years there has been a fast evolution of deep-learning-based audio-
visual works for speech separation and enhancement (we refer the reader to a
recent review in [23]).

Back in 2016, we can find one of the first works in exploiting visual features for
speech enhancement [37]. In this work, the authors proposed a CNN to process
the visual signal and a fully connected layer to process the raw waveforms. Both
modalities were fused by a BiLSTM network. This network had approximately
3M parameters (M for millions), far from the 80M of the most recent work [10].
A two-tower stream for processing audio and video features and then fused with
a BiLSTM module that predicted complex masks was proposed in [7].

A two-step enhancement process was proposed in [1]. In the first step, a
two-tower stream processed the audio-visual information to extract a binary
mask that performed separation on the magnitude spectrogram. Afterwards,
the phase of the spectrogram was predicted by passing the estimated magnitude
spectrogram together with the noisy phase spectrogam through a 1D-CNN. A
similar idea was developed in [8], where a two-tower stream encoder generated an
embedding of audio-visual features from which the enhanced speech spectrogram
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was recovered. On the other hand, in [17] not only the enhanced spectrogram
was reconstructed but the input frames as well.

New approaches and explorations different from the two-tower CNNs ap-
peared recently. Variational auto-encoders [28] for speech enhancement joined
the scene. Concurrently, [36] developed a time-domain model for speech sepa-
ration, in contrast to most of the works which usually posed the problem in
the time-frequency domain. Multi-channel audio-visual speech separation was
addressed in [14] in a four-tower stream fashion. The mixture spectrogram was
constrained with directional features from the visual stream of the speaker. A
temporal CNN extracted visual features from the lips motion. The audio and vi-
sual embeddings were concatenated together with a speaker embedding extracted
from the clean audio(s). A different mechanism was used in [19,29,31], where the
audio-visual fusion was done with an attention module; or in [38], where the
system was trained in a GAN manner so that the discriminator modeled the dis-
tribution of the clean speech signals. Transformers have been used in audio-only
source separation [40]. Very recently, audio-visual transformers were investigated
in [32] for main speaker localization and separation of its corresponding audio.
In [33] an audio-visual transformer was used for classification in order to guide
an unsupervised source separation model. Finally, in [2] a transformer was used
for audio-visual synchronisation.

Another interesting proposal is [4], where the authors were concerned about
the extra computational cost of processing the visual features and the possible
privacy problems arised from it. On the other hand, to our knowledge, there
are only two works using face landmarks, instead of video frames, for source
separation. In [25] they process face landmarks with fully connected layers and
then use BiLSTMs to predict the masks for the target source. In [24] a U-Net
conditioned by a graph convolutional network that processed face landmarks
was used for audio-visual singing voice separation. The work in [22] compared
different training targets and loss functions for audio-visual speech enhancement.

Most recent algorithms made use of lips motion as well as appearance infor-
mation, usually implementing cross-modal losses to pull together corresponding
audio-visual features [10,21].

3 Approach

In audio-visual voice separation, given an audio-visual recording with several
speaking/singing faces, and other sound sources, the goal is to recover their iso-
lated voices by guiding the voice separation with the visual information present
in the video frames. More formally, given the audio signal of each speaker,
si(t) (where t denotes time), the mixture of sounds can be defined as x(t) =∑

i si(t) + n(t) where n(t) denotes any other sound present in the mixture, i.e.
background sounds. Therefore, the task of interest can be defined as the estima-
tion of each individual voice ŝi(t). In our approach ŝi(t) = F (x(t), vi(t)), where
F is a function represented by a neural network. The network receives the visual
information of the speaker of interest, vi(t), and estimates its isolated voice ŝi(t).
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3.1 The AV Voice Separation Network

Our solution comprises of a two-stage neural network that operates in the time-
frequency domain. The first stage consists of an AV voice separation network
which can isolate the target voice at a good quality. However, this network
is the most demanding one in terms of computational cost. To alleviate this,
we propose to use downsampled spectrograms in this stage. The second stage
consists of a recursive lead voice enhancer network that works with full resolution
spectrograms. In Section 5.2, we experimentally show that this two-stage design
leads to a higher performance than using larger AV models. To achieve this
modularity, the networks at both stages are trained independently. The whole
model is presented in Fig.1.

Fig. 1. Audio-visual voice separation network. Audio and video features are concate-
nated in the channel dimension before being fed to the transformer.

Stage 1: Audio-Visual Voice Separation. For simplicity, we seek to
isolate the voice (denoted by s(t) and its corresponding spectrogram S(f, t))
corresponding to a single face at a time. The audio waveform of the mixture,
x(t), is transformed into a complex spectrogramX(f, t) applying the Short-Time
Fourier Transform (STFT). Once the waveform is mapped to the time-frequency
domain, we can define a complex mask M(f, t) that allows to recover the spec-
trogram of the estimated source with a complex product, denoted as ∗, that
is: S(f, t) = X(f, t) ∗ M(f, t) Then, the goal of the network in the first stage
is to estimate the complex mask M̂(f, t). The optimal set of parameters of the
network is found by minimising the following loss:

L1 = ∥G⊙ (Mb − M̂b)∥2

where Mb and M̂b are, respectively, the ground truth and estimated bounded
complex masks, ⊙ denotes the element-wise product, ∥ · ∥ is the L2-norm and G
is a gradient penalty term which weights the time-frequency points of the mask
according to the energy of the analogous point in the mixture spectrogram X:

G(f, t;X) = max(min(log(1 + ∥X(f, t)∥), 10), 10−3). (1)
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Note that, by definition, the ground truth mask M is not bounded. In order to
stabilise the training, we bound the complex masks by applying a hyperbolic
tangent [35]: Mb = tanhMr+ i tanhM i, where Mr and M i, denote the real and
imaginary parts, respectively. The audio waveform of the estimated source can
be computed through the inverse STFT of the estimated spectrogram Ŝ(f, t) =
X(f, t) ∗ M̂(f, t).

To solve the AV voice separation problem, we propose to leverage the face
motion information present in the video frames of the target person whose voice
we want to isolate. For that, we use a spatio-temporal graph neural network that
processes the face landmarks to generate motion features. On the other hand, the
audio features are generated by a CNN encoder, denoted as Spec2vec. Both audio
and motion features preserve the temporal resolution and are concatenated in
the channel dimension, then they are fed into a transformer. All the submodules
have been carefully designed to achieve a high-performance low-latency neural
network.

Spatio-temporal graph CNN: Many AV speech separation or enhance-
ment methods rely on lips motion extracted from raw video frames to guide
the task. To reduce the computational cost of the visual stream, we propose to
use face landmarks together with a spatio-temporal graph CNN [39]. This net-
work, similar to that in [24], was redesigned to preserve the temporal resolution.
It consists of a set of blocks which apply a graph convolution over the spatial
dimension followed by a temporal convolution. This way we can considerably
reduce the amount of data to process and to store, from 96 × 96 × 3 ≈ 3 · 104
values per frame to 68 × 2 ≈ 102. This supposes a substantial reduction in the
storage necessities when working with large audio-visual datasets. For example,
Voxceleb2 ’s grayscale ROIs occupy 1Tb, the raw uncompressed dataset occupies
several Tb while storing face landmarks only requires 70 Gb.

Spec2vec: It is well known that transformers need proper embeddings to
achieve high performance. We use the audio encoder of [7] to generate embed-
dings without losing temporal resolution.

AV spectro-temporal transformer: The traditional AV source separa-
tion methods comprise of a two-tower stream architecture. We can find two major
variants: either encoder-decoder CNNs (usually with a U-Net as backbone) (e.g.
[10,9,24,30,42,41]) or recurrent neural networks (RNNs), both conditioned on
visual features (e.g. [7,25,37]). The major drawback of the latter is that RNNs
are sequential, introducing bottlenecks in the processing pipeline. Transformers
appeared as an efficient solution, reaching the same performance than RNNs
and CNNs in large datasets. They are trained with a masking system allowing
to process all the timesteps of a sequence in parallel. However, these architec-
tures operate sequentially at the time of inference, like the RNNs. To overcome
this issue we use an encoder-decoder transformer, which can solve the source
separation problem in a single forward pass.

Transformers were originally designed to work with two unimodal signals.
We study three different possible configurations for the transformer. The first
proposal is to use the transformer as an auto-encoder, being fed with an audio-
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visual signal directly. This way we ease the task for the transformer as audio
and visual features are temporally aligned by construction. Then, it just has to
find relationships through the multi-head self-attention. The second proposal is
to pass visual features to the encoder and audio features (from the mixture)
to the decoder so that the network can find audio-visual interdependencies via
multi-head attention. Nevertheless, we hypothesise the dependencies between
video and audio are local as audio events mostly occur at the same time than
visual events. Lastly, we feed the encoder with an audio-visual signal and the
decoder with the ground-truth separated audio. Note that this model is slower
than previous ones as the model runs recurrently at inference time, going from
a time complexity of O(n) to O(n2) where n is the length of the sequence. From
the ablation study in Section 5.1 and Table 1, we conclude that the best model
is the first one, i.e. the one that uses an audio-visual signal as input, we denote
it as AV ST-transformer.

Fig. 2. Three proposed ways to feed a transformer with an audio-visual signal. Left:
audio-visual signal, middle: video to the encoder and audio mixture to the decoder,
right: audio-visual signal to the encoder and clean audio to the decoder.

We design our AV ST-transformer encoder upon the findings of [40]. The AV
ST-transformer has 512 model features across 8 heads. We tried 256 features
but it works worse. The compression layer is nothing but a fully connected layer
followed by GELU [16] activation which maps the C incoming channels to the
512 channels required by the architecture. It is composed by M encoders and
M decoders. The encoder is a set of two traditional encoders in parallel, which
processes the signal from a temporal and a spectral point of view [40].

Stage 2: Lead voice enhancer. Although lips motion is correlated with
the voice signal and may help in source separation, it is not always accessible
or reliable. For example, the scenarios involving a side view of the speaker or a
partial occlusion of the face or an out-of-sync audio-visual pair make it challeng-
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ing to incorporate the lips motion information in a useful way; all such scenarios
may appear in unconstrained video recordings. In [24], the authors show that
audio-only models tend to predict the predominant voice in a mixture when
there is no prior information about the target speaker. Based on this idea, we
hypothesise that, if the first stage of the AV voice separation network outputs a
reasonable estimation of the target voice, this voice will be predominant in the
estimation. Upon this idea, we use an audio-only network which identifies the
predominant voice and enhances the estimation without relying on the motion,
just on the pre-estimated audio. To do so, we simply use a small U-Net which
takes as input the estimated magnitude spectrogram (at its original resolution)
and returns a binary mask. The ground truth binary mask can be obtained from
the ground truth spectrogram S and the spectogram to be refined, Ŝ, which is
the one estimated in the stage 1:

M(f, t) =

{
1, if ∥S(f, t)∥ ≥ ∥Ŝ(f, t)− S(f, t)∥,
0, otherwise.

(2)

Notice that the difference Ŝ(f, t) − S(f, t) are the remaining sources that need
to be removed in the refinement stage.

There are different reasons to use binary masks. On the one hand, we found
qualitatively, by inspecting the results, that the secondary speaker is often at-
tenuated but not completely removed. In [13], the authors show that binary
masks are particularly good at reducing interferences. On the other hand, com-
plex masks appeared as an evolution of binary masks and ratio masks, as a way
of estimating, not only the magnitude spectrogram, but the phase too. Note
that these masking systems usually reconstruct the estimated waveform with
the phase of the mixture as they estimate the magnitude only. In our case, the
phase has already been estimated by using complex masks in the previous stage.
Lastly, by using binary masks, we are changing the optimisation problem and
easing the task since it is simpler to take a binary decision than orienting and
modulating a vector.

Note that this refinement network can run recursively, although we empiri-
cally found (see Table 2) that applying the refinement network once leads to the
best results in terms of SDR and a considerable boost in SIR. Further iterations
reduce the interferences (at a lesser extent) but at the cost of introducing more
distortion.

Let us denote by Mˆ̂ the binary mask estimated by the lead voice enhancer
network. We trained this network to optimise a weighted binary cross entropy
loss:

L2 =

F∑
f=1

T∑
t=1

G(f, t; Ŝ)

FT

(
M(f, t) log ∥Mˆ̂ (f, t)∥+ (1−M(f, t))(1− log ∥Mˆ̂ (f, t)∥)

)

where the weights G are defined in (1).
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3.2 Low-latency data pre-processing

Many audio-visual works rely on expensive pipelines to pre-process data, which
makes the proposed systems unusable in a real-world scenario unless a great
amount of time is invested in optimisation. Pursuing the real applicability of
our model, we curated an end-to-end gpu-powered system which can pre-process
(from raw audio and video) and isolate the target voice of 10s of recordings in
less than 100ms using floating-point 32 precision, and in less than 50 ms using
floating-point 16 precision.

Face landmarks: The most common approach in speech separation is to
align the faces in the different frames via 2D face landmark estimation together
with image warping (e.g. [10,24]). This step removes eventual head motions.
In order to achieve real-time audio-visual source separation, we estimate the
3D face landmarks using an optimised version of [15] and an aligned frontal
view by applying a rigid transformation, skipping the image warping step. This
optimised preprocessing takes around 10 ms to process 10s of video. Thanks to
the 3D information, we can recover lips motion from side views by estimating
3D landmarks, as shown in Fig. 3. To do the registration, we use the Kabsch
algorithm [18]. Finally, we drop the depth coordinate and consider just the first
two spatial coordinates in the nodes of the graph.

Audio:Waveforms are re-sampled to 16384 Hz. Then, we compute the STFT
with a window size of 1022 and a hop length of 256. This leads to a 512× 64n
complex spectrogram where n is the duration of the waveform in seconds. To
reduce the computational cost of both training and inference we downsample
the spectrogram in the frequency dimension by 2 in Stage 1.

Fig. 3. Frame example from Voxceleb2 [5] with partial occlusions. Thanks to the land-
mark estimation together with the registration we can estimate the unoccluded lips.

4 Datasets

Experiments are carried out in two different datasets: Voxceleb2 [5], a dataset of
celebrities speaking in a broad range of scenarios; and Acappella [24], a dataset of
solo-singing videos. Both datasets are a collection of YouTube recordings which
are publicly available. We also consider Audioset [11] and MUSDB18 [27] for
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sampling extra audio sources that can be added to the singing voice signal as
accompaniment.

Voxceleb2 contains 1 million utterances, most of them of a duration between
4 and 6 seconds, consisting of celebrities covering a wide range of ethnicities,
professions and ages. The dataset is formed by in-the-wild videos that include
several challenging scenarios, such as: different lightning, side-face views, motion
blur and poor image quality. They also span across different scenarios like red
carpets, stadiums, public speeches, etc. The dataset provides a test set which
contains both, seen-heard and unseen-unheard speakers together. From this test
set we selected the unseen-unheard samples and curated two different subsets.
The first one, denoted as unheard-unseen wild test set consists of 1,000 samples
randomly selected, reflecting the aforementioned challenges. The second one,
denoted as unheard-unseen clean test set, is a subset of 1,000 samples, from which
500 of them have a high-quality content with the following characteristics: frontal
or almost frontal point of view, low background noise and perceptual image
quality above the average of the dataset. The samples were selected manually
from the whole unseen-unheard test set, trying to include as many different
speakers as possible. The target voice is sampled from the subset of 500 high-
quality videos in the clean set, while the second voice is sampled from the rest
of 500 videos. This way we ensure that the video content is good enough to
estimate motion features from it and that the ground truth separated audio
is reliable, in the sense that it does not contain background sounds that may
produce unfounded performance metrics.

Acappella is a 46-hours dataset of a cappella solo singing videos. The videos
are divided in four language categories: English, Spanish, Hindi and others. These
videos are recorded in a frontal view with no occlussions. It also provides two
test sets: the seen-heard test set and the unseen-unheard test set. The former
contains videos sampled from the same singers and in the same languages than
the training set, whereas the latter contains recordings sampled from new singers
in the four language categories plus some new languages. In the test set all the
categories are equally represented across languages and gender. This way the
algorithms can be tested in challenging real-world scenarios.

Audioset [11] is an in-the-wild large-scale dataset of audio events across more
than 600 categories. We gathered the categories related to the human voice and
some typical accompaniments. These categories are: acappella, background mu-
sic, beatboxing, choir, drum, lullaby, rapping, theremin, whistling and yodelling.

Finally, MUSDB18 [27] is an audio-only dataset of 150 full-track songs of
different styles that includes original sound sources.

5 Experiments

The experiments were carried out in a single RTX 3090 GPU. Each experiment
takes around 20 days of training. We used SGD with 0.8 momentum, 10−5 weight
decay and a learning rate of 0.01. The metrics used for comparing results are
Source-to-Distortion Ratio (SDR) and Source-to-Interferences Ratio (SIR) [34].
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5.1 Audio-visual transformer

In this experiment, we compare three different versions of the transformer (shown
in Fig. 2) in the Acappella dataset. The goal is two-fold: i) Compare the proposed
architecture against the state-of-the-art model in singing voice separation [24];
and ii) compare the performance of different transformers for the task of singing
voice separation.

For the sake of comparison, we train our models the same way as in [24]. In
short, we create artificial mixtures of 4s of duration by mixing a voice sample
from Acappella together with an accompaniment sample sourced either from
Audioset or MUSDB18. Additionally, a second voice sample from Acappella is
added 50% of the times. This results in mixtures that contain one or more voices
plus musical accompaniment. For this dataset we take 4s audio excerpts and the
corresponding 100 video frames from which we extract the face landmarks.

Results are shown in Table 2. From the ablation on the three versions of the
transformer, we can conclude that the AV ST-transformer is the best model in
terms of both performance and time complexity. Moreover, it can be observed
that the three versions of the transformer greatly outperform the results of [24]
in terms of SDR, while the AV ST-transformer also outperforms in SIR.

5.2 Speech separation

In Section 5.1 we found the AV ST-transformer was the best model in terms of
time complexity and performance. All the remaining experiments will be carried
out with this model. Now we consider the task of AV speech separation and
work with Voxceleb2 dataset. We use 2s audio excerpts which correspond to
50 video frames from which we extracted their face landmarks. In this case,
we mix two voice samples from Voxceleb2 which are normalised with respect
to their absolute maximum, so that a mixture is x(t) = (s1(t) + s2(t))/2. This
normalisation aims to have two voices which are codominant in the mixture and
that the waveforms of the mixtures are bounded between -1 and 1. Note that
the former characteristic is not always true as Voxceleb2 samples are sometimes
accompanied by other voices or sorts of interference (clapping, music, etc.). As
Voxceleb2 is a large-scale dataset, and for the sake of comparison, we extended
the size of the AV ST-transformer up to 10 encoder blocks and 10 decoder blocks
so that the number of parameters of the audio subnetwork is comparable to that

Model Y-Net [24] AV ST-transformer V A transformer AV A transformer

SDR ↑ 6.41 10.63 ± 5.86 8.64 ± 5.89 9.98 ± 5.70
SIR ↑ 17.38 17.67 ± 7.73 14.70 ± 7.88 16.11 ± 7.42

Table 1. Ablation study: performance of different ways of feeding a transformer with
an audio-visual signal and comparison to Y-Net model [24]. Evaluated in Acappella’s
unseen-unheard test set. Y-Net metrics taken from Acappella. In this table N = 4 (the
number of blocks in the transformers) in order to adapt the number of parameters to
the size of Acappella dataset.
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of Visual Voice [10]. We tested the performance of each model in the unheard-
unseen wild test set and in the unheard-unseen clean test set (both described
in Section 4). For each test set we randomly made 500 pairs out of the 1,000
samples, ensuring no sample is used more than once.

Lead Voice Enhancer. The first experiment is an ablation designed to
address three main questions. i) Compare two different versions of the lead voice
enhancer: the audio backbone of Y-Net [24], which is a 7M-parameter U-Net;
and the audio backbone of Visual Voice [10], yet another U-Net but with 50M
parameters because of a different design. ii) Evaluate the effect of recurrent
iterations of the lead voice enhancer. And iii) comparing the results of the 10-
block 2-stage AV ST-Transformer against a 18-block 1-stage AV ST-Transformer
transformer. The details of this subnetwork are explained in Section 3.1. We
denote our Voice-Visual Transformer as VoViT (the whole network with two
stages) and VoViT-s1 the network without the second stage.

The results are shown in Table 2. As we can see, the refinement network im-
proves the results substantially for the 10-block AV ST-Transformer. Successive
iterations of the refinement module further reduce the interferences, but the best
SDR is achieved with just one iteration. For the lead voice enhancer, we tried
two possible audio-only U-Nets: the U-Net from the Y-Net model [24] and the
larger U-Net from Visual Voice [10]. A much larger U-Net does not outperform
the smaller one by a large margin. Interestingly, we can observe that adding
this module performs better than using the 18-block AV ST-transformer (with
around 2 times more parameters). Moreover, this subnetwork can be trained
within a day, whereas the 18-block transformer required around a month to
train. The reasons behind the lack of improvement of the 18-block transformer
are unknown. We observed a phenomena similar to the so called “double de-
scent” [26] while training the 10-block transformer, which may be indicative of a
complex optimisation process which is worsened in the 18-block case exceeding
our computational resources. In the same line, we trained a larger graph convolu-
tional network, comparable in number of parameters to the motion subnetwork
of Visual Voice, however the performance dropped. From this ablation, we can
conclude that a 10-block AV ST-transformer with a small U-Net as lead voice
enhancer is the best option in terms of performance-latency trade-off.

Comparison to state-of-the-art methods. Next we are going to com-
pare the 10-block AV ST-Transformer to a state-of-the-art AV speech separation
model and audio baselines in the Voxceleb2 dataset. The Visual Voice network
[10] is the current state of the art in speech separation. This network uses 2.55s
excerpts, the corresponding 64 video frames cropped around the lips and an
image of the whole face of the target speaker. Apart from using lips motion fea-
tures, it extracts cross-modal face-voice embeddings that complement the motion
features and are especially useful when the motion is not reliable or when the
appearance of the speakers is different. We also compare the results against Y-
Net [24] as it is one of the few papers proposing face landmarks. The original
work uses 4s excerpts. As around 160k samples for Voxceleb2 are shorter, we
just adapted the model for working with 2s samples.
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Wild test set

SDR ↑ SIR ↑

1
0
-b
lo
ck

VoViT-s1 9.68 15.75
VoViT (VV in stage 2, r = 1) 10.05 18.30
VoViT (VV in stage 2, r = 2) 9.77 19.38
VoViT (YN in stage 2, r = 1) 10.03 18.18
VoViT (YN in stage 2, r = 2) 9.78 19.09

18-block VoViT-s1 9.27 15.53
Table 2. Ablation of different variants of the refinement stage and number of blocks
in the transformer of the first stage. VoViT-s1 stands for the model with just the
first stage, r stands for the number of recurrent passes in stage 2. For the stage 2 we
considerered both, the Visual Voice’s UNet (VV) [10] and the Y-Net’s UNet (YN) [24].

# parameters Wild Test set Clean Test set
Visual
Net.

Whole
Net.

SDR ↑ SIR ↑ SDR ↑ SIR ↑

Visual Voice Audio-only – 46.14 7.7 13.6 – –
Face Filter [6] – – 2.53 – – –
The conversation [1] – – 8.89 14.8 – –
Visual Voice Motion-only 9.14 55.28 9.94 17 – –

Y-Net [24] 1.42 9.7 5.29 ± 5.06 8.45 ± 6.8 5.86 ± 4.78 9.25 ± 6.44
Visual Voice [10] 20.38 77.75 9.92 ± 3.56 16.11 ± 4.8 10.18 ± 3.36 16.49 ± 4.5
VoViT 1.42 58.2 10.03 ± 3.35 18.18 ± 4.72 10.25 ± 2.61 18.65 ±3.8

Table 3. Evaluation on Voxceleb2 unheard-unseen test sets (mean ± standard devi-
ation). VoViT stands for our model with the 10-block AV ST-Transformer with the
Y-Net’s UNet backbone as the lead voice enhancer. Number of parameters in millions.
Results in the first block are taken from the original papers.

Numerical results are shown in Table 3. The 10-block VoViT outperforms
all the previous AV speech separation models. Compared to Visual Voice, it
achieves a much better SIR and slightly better SDR, both for the wild and clean
test sets. In particular, for the clean test set, when the motion cues are more
reliable, our model has a much lower standard deviation. Some aspects need to
be taken into account:

- The face landmark extractor has been trained with higher quality videos
than the ones in Voxceleb2. On the contrary, the Visual Voice video network has
been trained specifically for Voxceleb2.

- Our visual subnetwork, the graph CNN, has 10 times less parameters than
its counterpart in Visual Voice.

- Apart from motion cues, Visual Voice takes also into account speaker ap-
pearance features which are correlated with voice features, and which can be
crucial in poor quality videos where lip motion is unreliable.

Fig. 4 shows SDR and SIR differences between VoViT and Visual Voice in
two different test sets: the wild and the clean set. Each plot is a scatter plot
where each point corresponds to a 2s long mixture. As it can be observed, our
method especially outperforms Visual Voice in SIR while in SDR both methods



VoViT: AV Voice Separation Transformer 13

Fig. 4. Scatter plot showing the difference in SDR and SIR, ∆SDR and ∆SIR, as
functions of the SDR and SIR of the input mixture in the unseen-unheard wild and
clean test sets. The difference is: ∆SDR = SDR(VoViT) − SDR(Visual Voice) so a
positive value means VoViT outperforms Visual Voice.

have a comparable performance. In order to assess the significance of the results
of Table 3, we calculated the p-values with respect to the Visual Voice results.
Only the improvement on SIR is significant (p < 0.05). While the improvement
from stage 1 to 2 (Table 2) is significant both in SDR and SIR. In the wild
test set there are a few samples where our model performs worse than Visual
Voice. Those correspond to samples where the audio and video are extremely
unsynchronised or samples where the lip motion is mispredicted and the network
separates the other speaker. In those cases, the Visual Voice model might be able
to alleviate the situation either by relying on the appearance features to guide the
separation or by using the motion information present in the raw video despite
its poor quality (e.g. blur, compression artefacts, lack of sharpness). There are
no such cases in the clean set, as those type of samples were filtered out. Audio-
visual files with the topK worst performing examples and demos for both, Visual
Voice and VoViT models, are provided in the supplementary material.

5.3 Singing voice separation

In this last experiment we consider the task of singing voice. We are interested
in exploring how transferable models trained for speech separation are to the
case of singing voice. Since speech models were trained with two voices and no
extra sounds and in Voxceleb2, which contains mainly English, we restricted to
similar types of mixtures in singing voice. In particular, we create mixtures of
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two singers in English from the unseen-unheard test set of Acappella, with no
accompaniment. Table 4 compares the results of models trained directly with
samples of singing voice (top block of results in Table 4) versus models trained
with speech samples (bottom block). In the case of singing voice we used our
model with just the first stage and a 4-block AV ST-transformer. We observe that
dedicated models for singing voice perform largely better than models trained
for speech. This may be explained to particular differences between a speaking
and a singing voice. For example, vowels are much more sustained in singing
voice, there is much less coarticulation of consonants with surrounding vowels
and vibrato is not present in speech. Moreover, singing voice contains varying
pitches covering a wider frequency range.

Model SDR ↑ SIR ↑
Y-Net [24] 11.08 ± 7.51 17.18 ± 9.68
VoViT-s1 (4 blocks) 14.85 ± 7.87 21.06 ± 9.69

VoViT-s1 3.89 ± 9.28 5.89 ± 11.15
VoViT 4.04 ± 10.30 7.21 ± 13.26
Visual Voice [10] 4.52 ± 8.64 7.03 ± 7.11

Table 4. Singing voice separation. Mixtures of two singers with no additional accom-
paniment from the test set unseen-unheard (only samples in English) of Acappella.
Results in top block: models trained directly with samples of singing voice; bottom
block: models trained with speech samples.

6 Conclusions & Future work

In this work we present a lightweight audio-visual source separation method
which can process 10s of recordings in less than 0.1s in an end-to-end GPU pow-
ered manner. Besides, the method shows competitive results to the state-of-the-
art in reducing distortions while clearly outperforming in reducing interferences.
We show that face landmarks are computationally cheaper alternatives to raw
video and help to deal with large-scale datasets. For the first time, we evalu-
ate AV speech separation systems in singing voice, showing empirically that the
characteristics of the singing voice differ substantially from the ones of speech.

As future work we would like to explore lighter and faster embedding gen-
erators for the transformer and different optimisations in its architecture which
leads to a fast and powerful system.
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