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Abstract. We propose a pre-training strategy called Multi-modal Multi-
task Masked Autoencoders (MultiMAE). It differs from standard Masked
Autoencoding in two key aspects: I) it can optionally accept additional
modalities of information in the input besides the RGB image (hence
“multi-modal”), and II) its training objective accordingly includes pre-
dicting multiple outputs besides the RGB image (hence “multi-task”).
We make use of masking (across image patches and input modalities) to
make training MultiMAE tractable as well as to ensure cross-modality
predictive coding is indeed learned by the network. We show this pre-
training strategy leads to a flexible, simple, and efficient framework with
improved transfer results to downstream tasks. In particular, the same
exact pre-trained network can be flexibly used when additional infor-
mation besides RGB images is available or when no information other
than RGB is available — in all configurations yielding competitive to or
significantly better results than the baselines. To avoid needing train-
ing datasets with multiple modalities and tasks, we train MultiMAE
entirely using pseudo labeling, which makes the framework widely
applicable to any RGB dataset.

The experiments are performed on multiple transfer tasks (image clas-
sification, semantic segmentation, depth estimation) and datasets (Ima-
geNet, ADE20K, Taskonomy, Hypersim, NYUv2). The results show an
intriguingly impressive capability by the model in cross-modal/task pre-
dictive coding and transfer. Code, pre-trained models, and interactive
visualizations are available at https://multimae.epfl.ch.

Keywords: Masked Autoencoders, Multi-modal Learning, Multi-task
Learning, Transfer Learning, Vision Transformers

1 Introduction

Masked Autoencoders (MAEs) [28] have recently been demonstrated to be a
powerful, yet conceptually simple and efficient, self-supervised pre-training strat-
egy for Vision Transformers [22] (ViTs). Their training objective is to mask-out

a high number of patches in an input image and to predict the missing regions.
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image patches from multiple modalities and learn to reconstruct the remaining 5/6
masked patches from them. The figure shows validation examples from ImageNet,
where masked inputs (left), predictions (middle), and non-masked images (right) for
RGB (top), (middle), and semantic segmentation (bottom) are provided. Since
we do not compute a loss on non-masked patches, we overlay the input patches on the
predictions. More examples are shown in the supplementary and on our website.

To that end, only the small number of non-masked patches are first processed
using a Transformer encoder [68], and then decoded with a light-weight Trans-
former that reconstructs the original image. To solve this task sufficiently well,
it is assumed [28] that the network needs to learn representations that capture
more than just low-level image statistics.

So far, however, the MAE pre-training objective has been limited to a single
modality, namely RGB images, and does not make use of any other modalities
that are optionally present. In practice, often more than only a single modality of
information is available, either through sensing (e.g., a depth sensor) or pseudo
labeling (e.g., a powerful pre-trained depth estimation network). Multi-modality
is also argued to be employed by biological organisms to develop resilience and
better representations [17,18,58]. As we demonstrate in our experiments, making
use of such optionally present modalities has the potential to greatly improve
the performance of downstream tasks, compared to using only RGB images.

Besides multi-modality (i.e., different inputs), multi-taskness (i.e., different
outputs) is an important aspect, as it has been shown that there is usually
no single pre-training objective that transfers best to all possible downstream
tasks [43,54,79]. Instead, pre-training with a diverse set of tasks [8,60] has been
observed to improve the performance on downstream tasks [26,63] and poten-
tially learn a better representation. In general, modifying the training objectives
is a powerful way to steer what representation the model will learn.

In this paper, we present Multi-modal Multi-task Masked Autoencoders
(MultiMAE), a simple and effective method to make masked autoencoding in-
clude multiple modalities and tasks (see Fig. 2). In particular, in our current
instantiation of this general method, we study adding dense scene depth to
capture geometric information, as well as segmentation maps to include infor-
mation about the semantic content of the scene. We created a multi-task dataset
by pseudo labeling these tasks on ImageNet-1K [19,26]. This has the advantage
that in order to train a MultiMAE, one only requires a large unstructured RGB
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Fig.2: (Left) MultiMAE pre-training: A small subset of randomly sampled
patches from multiple modalities (e.g., RGB, depth, and semantic segmentation) is
linearly projected to tokens with a fixed dimension and encoded using a Transformer.
Task-specific decoders reconstruct the masked-out patches by first performing a cross-
attention step from queries to the encoded tokens, followed by a shallow Transformer.
The queries consist of mask tokens (in gray), with the task-specific encoded tokens
added at their respective positions. (Right) Fine-tuning: By pre-training on multi-
ple modalities, MultiMAE lends itself to fine-tuning on single-modal and multi-modal
downstream tasks. No masking is performed at transfer time.

dataset without annotations and off-the-shelf neural networks to perform the
pseudo labeling.

To train MultiMAE, we randomly sample a small set of patches from different
input modalities, and encode them using a Transformer encoder. MultiMAE’s
objective is then to reconstruct the masked-out patches of all tasks using task-
specific decoders. Figure 1 shows example predictions for the multi-task masked
reconstruction that MultiMAE performs. MultiMAE has to learn not only the
original MAE objective (within-RGB in-painting), but also to reconstruct any
task from any input modality (cross-modal prediction) all from a very sparse set
of input patches. The first objective leads to learning spatial predictive coding
while the second one leads to cross-modal predictive coding.

2 Related Work

Masked image prediction consists of learning useful representations by learn-
ing to reconstruct images corrupted by masking. This approach was pioneered
with denoising autoencoders [69] and context encoders [48]. With the introduc-
tion of Vision Transformers (ViT) [22] and motivated by the success of BERT [20]
in NLP, many recent works propose a variety of masked image prediction meth-
ods for pre-training vision models in a self-supervised way, using reconstruction
targets such as pixels [5,13,22,25,28,74], discrete tokens [7,81], and (deep) fea-
tures [6,70]. These methods scale very well and achieve strong results on various
downstream tasks including motor control [72]. In particular, the masked autoen-
coder (MAE) [28] approach accelerates pre-training by using an asymmetric ar-
chitecture consisting of a large encoder that operates only on unmasked patches
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followed by a lightweight decoder that reconstructs the masked patches from the
latent representation and mask tokens. Our approach leverages the efficiency of
the MAE approach and extends it to multi-modal and multi-task settings.

Multi-modal learning involves building models capable of relating information
from multiple sources. It can either involve training separate encoders or one

unified architecture (e.g., a Transformer [68]) to operate on modalities such as
images and text [3, 11, 15,29, 3134, 41,4259, 62, 75], video and audio [, 30,
,46], video, text and audio [2], and depth, images and video [27]. Our work

proposes a simple approach to pre-train Transformers on multiple dense visual
modalities and produce strong cross-modal interaction. Unlike most prior work
which assumes that all modalities are available during inference, our approach
is designed to perform well on any subset of the pre-training modalities.

Related to MultiMAE are several works that perform multi-modal autoen-
coding [45,56,60,61,71]. Our approach differs from them in that we use a more
flexible architecture and perform masked autoencoding to learn cross-modal pre-
dictive coding among optional inputs (as demonstrated in Fig. 1).

Multi-task learning consists of training models to predict multiple output do-
mains from a single input [10, 24, 35]. In computer vision, the input is usually
an RGB image. A common approach for multi-task learning is to use a single
encoder to learn a shared representation followed by multiple task-specific de-
coders [26,67]. These methods differ from our approach as we use multiple tasks
in both the input and the output along with masking.

In addition, many works study the importance of task diversity to improve
transfer performance [26,43,54,65,79]. These works argue that learning from one
task alone is insufficient and that a set of tasks can more effectively cover the
many possible downstream tasks in vision. Our pre-training method operates on
multiple tasks to learn more general representations capable of covering multiple
downstream tasks.

Self-training is a technique to incorporate unlabeled data into a supervised
learning setting [36, 53, 55, 77]. It is one of the earliest approaches to semi-
supervised learning. Self-training methods use a supervised model to generate
pseudo labels on unlabeled data and then train a student model on the pseudo la-
beled data. These approaches have been applied to a variety of vision tasks such
as image classification [19,73,76], object detection [32], and segmentation [12,82].
Most recently, multi-task self-training (MuST) [26] uses specialized teachers to
create a multi-task pseudo labeled dataset and then trains a multi-task student
model on this dataset to learn general feature representations. Our method also
relies on pseudo labeling to produce a large-scale multi-task dataset. However,
unlike prior work, pseudo labels are not only used as output targets but also as
masked input modalities.

3 Method Description

In this Section, we describe the Multi-modal Multi-task Masked Autoencoder
(MultiMAE) architecture (illustrated in Fig. 2), as well as the pre-training strat-
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egy in more detail. We first give an architectural overview of both the multi-
modal encoder (Sec. 3.1) and multi-task decoders (Sec. 3.2). We then describe
our multi-modal token sampling strategy (Sec. 3.3) and introduce the pseudo
labeled tasks we use for pre-training (Sec. 3.4). Finally, we display the most
important pre-training details (Sec. 3.5).

3.1 Multi-modal Encoder

Our multi-modal Transformer encoder is a ViT [22], but with patch projection
layers for each additional input modality. Specifically, 16x16 patches of each
modality are projected to tokens with the correct Transformer dimension using a
different linear projection for each modality. Projected patches are concatenated
into a sequence of tokens and given as input to the same Transformer encoder.
We also add an additional global token with a learned embedding, similar to the
class-token used in ViT. Due to the architectural similarities to ViT, MultiMAE
pre-trained weights can directly be used in a standard single-modal ViT by
loading only the desired input projection and ignoring the others.

Positional, Modality and Class Embeddings. Since all our modalities have
a 2D structure, we add 2D sine-cosine positional embeddings [14, 28] after the
linear projection. We do not explicitly add any modality-specific embeddings,
since the bias term in each linear projection can act as such. In order to perform
the semantic segmentation patch projection, we first replace each class index
with learned 64-dimensional class embeddings.

Low Computational Complexity. Just as in the RGB-only MAE [28], we
only pass the small randomly sampled subset of all tokens to the Transformer
encoder as part of the masked autoencoding objective. This is in contrast to the
masked autoencoding approaches of SiT [1], BeiT [7] and SimMIM [74], that
encode both the masked and visible tokens. Due to the quadratic complexity of
standard self-attention as a function of the number of tokens, encoding only the
random subset of visible tokens becomes increasingly important as the number
of input modalities grows. Indeed, the speedup and reduction in memory are
significant and crucial in enabling MultiMAE’s multi-modal pre-training with
three dense input modalities. A comparison of the pre-training time with and
without masked tokens is given in the supplementary.

3.2 Decoders

To reconstruct the masked-out tokens from the visible tokens, we use a separate
decoder for each task. The input to each decoder is the full set of visible tokens
from the respective task it is reconstructing. As in MAE [28], these visible tokens
are decoded jointly with a set of mask tokens, which serve as placeholders for the
decoders to write the reconstructed patches (as shown in Fig. 2). To integrate
information from the encoded tokens of other modalities, we add a single cross-
attention layer in each decoder using these tokens as queries and all the encoded
tokens as keys / values. Sine-cosine positional embeddings and learned modality
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embeddings are added to the tokens before this step. This is then followed by
a small MLP and Transformer blocks. Following MAE, we compute the losses
only on the masked tokens.

As each task requires its own decoder, the computational cost of decoders
scales linearly with the number of tasks. To keep pre-training efficient, we use
shallow decoders (a single cross-attention layer and MLP, followed by two Trans-
former blocks) with a low dimensionality (256 dimensional). Compared to the
encoder, these decoders add little to the overall computational cost, and as He
et al. [28] show, they perform similarly to deeper decoders on ImageNet-1K
fine-tuning.

3.3 Multi-modal Masking Strategies

For masked autoencoding to work well, a large percentage of tokens needs to be
masked-out. He et al. [28] showed that the choice of mask sampling strategy can
have a large impact on transfer performance. More specifically for MultiMAE and
generally learning multi-task representations, masking across different modalities
ensures the model develops predictive coding across different modalities besides
different spatial patches. For efficiency and simplicity, we choose a constant num-
ber of visible tokens for all our experiments, which we fix at 98. This corresponds
to 1/6 of all tokens when using three modalities of dimensions 224x224 pixels
and a patch size of 16x16. Adapting the MAE mask sampling strategy by select-
ing the visible tokens uniformly from all tokens would result in most modalities
being represented to similar degrees. Cases where one or more modalities have
very few or no samples would be very rare. We propose a multi-modal token
sampling strategy that allows for a more diverse sampling approach. It can be
broken down into two steps: First, selecting the number of tokens per modality,
and second, randomly sampling the set of tokens for each modality.

Number of Tokens per Modality. We select the proportion of tokens per
modality A by sampling from a symmetric Dirichlet distribution (Arcp, A, Ag) ~
Dir(«), where Agap +Ap +As = 1, A > 0. The sampling is controlled by the con-
centration parameter a > 0. When a = 1, the symmetric Dirichlet distribution
is equivalent to a uniform distribution over the simplex (i.e., it is uniform over
all points in its support). Smaller values (o << 1) result in a sampling behavior
where most of the tokens will be sampled from a single modality, while larger
values (o >> 1) result in an increasingly similar number of tokens to be sampled
from each modality. As a design decision, we do not bias the sampling towards
certain modalities (as we use a symmetric Dirichlet), since we want to be ag-
nostic to the choice of downstream input modalities and tasks that users might
want to consider. For simplicity and better representation of any possible sam-
pled mask, we use a concentration parameter v = 1 for all of our experiments.
Random masks sampled using o« = 1 are shown in Figure 1, and an ablation on
the choice of concentration parameter is given in the supplementary.

Sampling Tokens. From each modality, we sample the number of tokens, as
specified by the above Dirichlet sampling step, uniformly at random without
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replacement. Uniform sampling has been shown to work well for masked autoen-
coders, compared to less random alternatives [28].

3.4 Pseudo Labeled Multi-task Training Dataset

We pre-train MultiMAE with three tasks that we pseudo label on ImageNet-
1K [19]. Pseudo labeling has the advantage that we do not need a large multi-
task dataset with aligned task images. Instead, having access to a good set of
pre-trained neural networks for the tasks we want to train on can be effective.
Pseudo labeling scales to RGB datasets of arbitrary size and is a one-time pre-
processing step. Compared to the cost of training, this step is computationally
cheap and fast if parallelized.

Taskonomy [79] demonstrated computationally that common vision tasks
cluster into three main categories, namely low-level, geometric, and semantic
tasks. To have a coverage over such a space of vision tasks, we choose one repre-
sentative task from each of these three clusters. We note that except for object
detection and classification, these are the same pseudo labeled tasks that are
used in MuST [26]. In the following, we will describe them in more detail.

RGB and Per-Patch Standardized RGB. We use RGB images due to their
abundance and since RGB-only masked autoencoding is shown to be a powerful
pre-training task. He et al. [28] study both predicting standard RGB patches,
as well as per-patch standardized RGB patches. They find that predicting stan-
dardized patches slightly improves transfer performance. Since MultiMAE is
naturally a multi-task model, we add both versions as separate decoder heads
to get the representational benefits of predicting standardized patches, and to
get a version that we can visualize better. Note that we only add the per-patch
standardized version as an output task, and not as an input modality. For both
RGB versions, we follow MAE and compute the MSE loss between the ground
truth and predicted pixels. In the rest of the paper, we will refer to the RGB
and per-patch standardized RGB output tasks simply as RGB.

Scene Depth. Depth is a key task informative about scene geometry. As with
RGB, but unlike semantic segmentation, sensors exist to capture this modal-
ity, making it possible to use depth as an optional extra input for downstream
tasks. To pseudo label depth, we use a DPT-Hybrid [50] that was trained on
Omnidata [23]. Since monocular depth estimation is an inherently ill-posed task
due to scale and shift ambiguity, we standardize the depth values in a robust
way by ignoring the top and bottom 10% of values [78]. In addition, using stan-
dardized depth values as inputs allows us to use other depth images that might
have different depth ranges and scales, without needing to match them to the
Omnidata depth parameterization. We use the L1 loss for depth.

Semantic Segmentation. Lastly, we use a Mask2Former [16] with a Swin-S [38]
backbone trained on COCO [37] to pseudo label semantic segmentation maps
on ImageNet. For that, we extract 133 semantic classes by taking the argmax
of the network predictions. Unlike RGB and depth, the main purpose of this
task is to improve performance on downstream tasks, rather than using it as an
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input modality (though we show results using pseudo labeled semantic inputs
in Table 3). Since we use a network that was pre-trained on COCO, we do not
evaluate semantic segmentation transfers on that dataset. For this task, we use
the cross-entropy loss.

3.5 Pre-training Details

All our MultiMAE experiments use a ViT-B [22] with a patch size of 16x16
pixels. We pre-train the models for either 400 epochs (only for transfer ablation
study in Sec. 4.4) or 1600 epochs (for best results and to be comparable to the
MAE baseline) on 1.28M ImageNet images. We use the AdamW [10] optimizer
with base learning rate le-4 and weight decay 0.05. We warm up training for
40 epochs, starting from learning rate le-6, and decay it to 0 over the course of
training using cosine decay [39]. We set the batch size to a total of 2048 and train
the models using 8 A100 GPUs with automatic mixed precision enabled. Our
data augmentations are straightforward. We randomly crop the images, setting
the random scale between 0.2 and 1.0 and the random aspect ratio between 0.75
and 1.33, after which we resize the crops to 224 x224 pixels and apply a random
horizontal flip with probability 0.5. Additional pre-training details can be found
in the supplementary.

4 Experiments

Optimizing the pre-training objective of MultiMAE is successful as apparent
in the various results shown in the main paper, the supplementary, and the
interactive visualizations shown on our website. In this section we provide a
transfer study to measure the effectiveness of MultiMAE pre-training compared
to relevant baselines. This section is organized in the following manner: After in-
troducing the downstream tasks and datasets (Sec. 4.1), we show transfer results
for the case where the only available input modality is RGB (Sec. 4.2). Then,
we show that MultiMAE can significantly improve downstream performance if
other modalities like depth are either available as ground truth (sensor), or can
be cheaply pseudo labeled (Sec. 4.3). We follow up with an ablation on the influ-
ence of pre-training tasks on the downstream performance (Sec. 4.4), and finally
we visually demonstrate that MultiMAE integrates and exchanges information
across modalities (Sec. 4.5).

4.1 Transfer Tasks and Datasets

We perform downstream transfers on a variety of semantic and dense regression
tasks. For all transfers, we replace the pre-trained decoders by randomly initial-
ized task-specific heads, and train them along with the pre-trained encoder. In
the following, we give an overview over all tasks and datasets used in our transfer
experiments. Exact training details are presented in the supplementary.
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Classification. We evaluate our models and baselines by fine-tuning them on
the supervised ImageNet-1K [19] 1000-way object classification task. We fine-
tune our models for 100 epochs on the entire ImageNet-1K train split (1.28M
images) and report the top-1 validation accuracy.

Semantic Segmentation. We further evaluate our models on semantic seg-
mentation tasks on the ADE20K [80] (20’210 training images and 150 classes),
NYUv2 [57] (795 training images and 40 classes), and Hypersim [52] (51’674
training images and 40 classes) datasets. NYUv2 and Hypersim contain ground-
truth depth maps that allow us to evaluate semantic segmentation with RGB
and depth as input modalities. For all datasets, we report the mean intersec-
tion over union (mloU) metric. On ADE20K and Hypersim, we report it on the
validation split, while on NYUv2, we show the test set mIoU.

Dense Regression Tasks. Finally, we study how our models transfer to ge-
ometric tasks, such as surface normals, depth and reshading, as well as tasks
extracted from RGB images, such as keypoint or edge detection. For depth es-
timation, we use NYUv2 (795 training and 655 test images), while for all other
tasks we train transfers on a subset of the Taskonomy dataset [79] (800 training
images). As performance metrics, we report d; on the NYUv2 test set, showing
the percentage of pixels p with error max{ 3—2, Z—Z} less than 1.25 [21], while on
Taskonomy we report L1 losses on the tiny-split test set.

In the tables, classification, semantic segmentation, and depth estimation are
denoted by (C), (S), and (D), respectively.

4.2 Transfers with RGB-Only

In this section, we show our transfer results when fine-tuning using only the
RGB modality as input.

Baselines. For this setting, we compare MultiMAE with various ViT-B models,
namely DeiT [64] (without distillation) representing an ImageNet-supervised
baseline, MoCo-v3 [14], DINO [9], and MAFE [28]. All these models are pre-
trained on ImageNet-1K. We use the official weights for DeiT, MoCo-v3, and
DINO, and reproduce MAE using the official PyTorch [17] codebase following
the setting specified in [28] (i.e., decoder of depth 8 and width 512, per-patch
standardized pixel loss, 1600 pre-training epochs, 75% mask ratio). In the sup-
plementary, we compare the transfer performance of this MAE model to one
with a shallower and narrower decoder (depth 2 and width 256), closer to the
one used for MultiMAE.

We report the results in Table 1. We find that MultiMAE performs best on all
tasks, matching MAE’s performance on ImageNet-1K classification and ADE20K
semantic segmentation, and outperforming it on all other tasks and datasets.
These results show the effectiveness of MultiMAE as a pre-training strategy: it
retains the benefits of MAE when RGB is the only fine-tuning modality but can
also accept other modalities, as shown next.
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Table 1: Fine-tuning with RGB-only. We report the top-1 accuracy (1) on
ImageNet-1K (IN-1K) [19] classification (C), mIoU (1) on ADE20K [80] , Hyper-
sim [52] , and NYUv2 [57] semantic segmentation (S), as well as ;1 accuracy (1)
on NYUv2 depth (D). Text in bold and underline indicates the first and second-best
results, respectively. All methods are pre-trained on ImageNet-1K (with pseudo labels
for MultiMAE)

Method IN-1K (C) ADE20K (S) Hypersim (S) NYUv2 (S) NYUv2 (D)
Supervised [64]  81.8 45.8 33.9 50.1 80.7
DINO [9] 83.1 44.6 325 47.9 81.3
MoCo-v3 [14] 82.8 43.7 31.7 46.6 80.9
MAE [2¢] 83.3 46.2 36.5 50.8 85.1
MultiMAE 83.3 46.2 37.0 52.0 86.4
Table 2: Fine-tuning with RGB and ground truth . We report semantic
segmentation transfer results from combinations of RGB and , measured in mloU
(1)- MultiMAE can effectively leverage additional modalities such as , while MAE
cannot. Text in indicates a modality that the model was not pre-trained on
Hypersim (S) NYUv2 (S)
Method RGB RGB-D RGB RGB-
MAE 36.5 50.8

MultiMAE 37.0 38.5 47.6 52.0 41.4 56.0

4.3 Transfers with Multiple Modalities

Since MultiMAE was pre-trained on RGB, depth, and semantic segmentation, it
can optionally accept any of those modalities as input during transfer learning
should they be available. In this set of experiments, we study on three semantic
segmentation downstream tasks how much MultiMAE can benefit from using
additional modalities during transfer. Often, ground truth depth maps are not
available for a given downstream dataset and for that reason, we perform addi-
tional transfers using pseudo labeled depth. As there are several datasets that do
in fact contain aligned RGB and depth images (e.g., Hypersim, NYUv2, Taskon-
omy, etc.) and since sensors exist that can measure depth, we consider it as a
more realistic input modality compared to semantic segmentation. Since our
model was trained with semantic segmentation as an input modality, we per-
form additional experiments using pseudo labeled semantic segmentation maps
as inputs.

All multi-modal transfers are performed by concatenating the projected patches
of all modalities into a single sequence (i.e., no masking is performed here). Us-
ing more than two modalities during transfer quickly becomes computationally
expensive, since without masking, our method now scales with the full number
of modalities and tokens. For performing multi-modal transfers with the stan-
dard MAE, we train a new input projection for the additional modalities while
fine-tuning. Further training details can be found in the supplementary.

Transfers Using Sensory Depth. First, we consider that we have access to
an aligned RGB-D dataset, like NYUv2 or Hypersim. We treat depth in the
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Table 3: Fine-tuning with RGB and pseudo labels. Semantic segmentation

transfer results using pseudo labeled and semantic segmentation maps, measured

in mIoU (1). MultiMAE benefits much more than MAE from pseudo labeled modalities

as input. Text in indicates a modality that the model was not pre-trained on
ADE20K () Hypersim (S) NYUv2 (S)

Method RGB RGB- RGB-pS RGB-pD-pS RGB RGB- RGB-pS RGB-pD-pS RGB RGB- RGB-pS RGB-pD-pS

MAE 46.2 36.5 50.8
MultiMAE 46.2 34.4 46.8 45.7 47.1 37.0 30.6 37.9 38.4 40.1 52.0 39.9 53.6 53.5 54.0

exact same way as during pre-training, i.e., pre-process it by standardizing it in
a robust manner [78]. Because ground-truth depth maps might contain invalid
measurements, we further set all these masked-out values to 0.

Table 2 shows RGB-D transfer results on Hypersim and NYUv2. Compared
to the RGB-only results in Table 1, we see a substantial increase in performance
when ground truth depth is available for MultiMAE. The standard MAE on the
other hand is not able to sufficiently make use of the additional depth, since it
was only trained on RGB images. We observe a similar story when evaluating
transfers from depth-only, in that MultiMAE works well, even when no RGB
information is available, while MAE does not. On Hypersim, MultiMAE depth-
only transfer is even able to surpass MultiMAE RGB-only transfer, and, as
expected, RGB-D works better than either RGB or depth alone.

Transfers with Pseudo Labels. In case ground truth modalities are not avail-
able, we can pseudo label them in the same way we did for pre-training. To
pseudo label depth, we use the same Omnidata DPT-Hybrid model that we
used for pre-training on both ADE20K and NYUv2. On Hypersim, we use a Mi-
DaS [51] DPT-Hybrid, since the Omnidata depth model was partially trained on
this dataset. For semantic segmentation pseudo labels, we use the same COCO
Mask2Former model as in pre-training.

As shown in Table 3, MultiMAE can use pseudo labeled depth or semantic
segmentation to boost performance beyond the RGB-only setting, although the
gain is smaller than using real depth. Moreover, performance can further be
improved by adding both of these pseudo labeled modalities to the input. This
setting performs the best out of all settings involving pseudo labels.

4.4 Influence of Pre-training Task Choices and Masking on Transfer
Performance

How does the choice of MultiMAE pre-training tasks affect downstream transfer
performance? In this subsection, we aim to address this question by performing
transfers from MultiMAE models that were pre-trained with RGB-D, RGB-S,
or RGB-D-S. We further compare MultiMAE against MAE, single-task, and
multi-task baselines.

All experiments are performed on ViT-B models that were pre-trained for 400
epochs. We transfer the pre-trained models to ImageNet, NYUv2 segmentation,
as well as nine dense regression tasks on Taskonomy. On Taskonomy, we report
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Table 4: Ablation experiments. We study the impact of additional modalities in
Tab. 4a, and compare MultiMAE to non-masked pre-training in Tab. 4b. All mod-
els are pre-trained for 400 epochs. We report the top-1 accuracy (1) on ImageNet-1K
(IN-1K) [19] classification (C), mIoU (1) on NYUv2 [57] semantic segmentation (S),
01 accuracy (1) on NYUv2 depth (D) and avg. rank (}) on Taskonomy [79]. While
some specialized pre-trained models perform better at certain downstream tasks, they
perform poorly at others. MultiMAE pre-trained with RGB, and semantic seg-
mentation is a more generalist model that does well at transferring to a range of
downstream tasks

(a) Impact of additional modali-
ties. Transfer results of several MultiMAE
models pre-trained on different input
modalities / target tasks, compared
against MAE (single-modal baseline). D2
MAE pre-trained with a decoder of
depth 2 and width 256, comparable in size
to the decoders of MultiMAE

(b) Comparison to non-masked pre-
training. We compare standard single-
task and multi-task baselines pre-trained
using non-masked RGDB inputs against
the RGB-D-S MultiMAE. The RGB—D-
S model is conceptually similar to MuST
using depth and semantic segmentation as
target tasks

Method  IN-1K (C) NYUv2 (S) NYUv2 (D) Taskonomy (D) Method  IN-1K (C) NYUv2 (S) NYUv2 (D) Taskonomy (D)
MAE (D2) 83.0 44.0 81.3 3.8 RGB— 82.7 44.0 87.1 1.6
RGB- 82.8 45.8 83.3 2.1 RGB—S 82.5 46.8 82.9 4.0
RGB-S 83.2 51.6 85.5 2.6 RGB—D-S 82.8 48.6 84.6 2.9
RGB-D-S 83.0 50.6 85.4 1.5 MultiMAE 83.0 50.6 85.4 1.5

the ranking of different pre-trained models, averaged over all nine tasks. Detailed
per-task results on Taskonomy can be found in the supplementary.

Masked Multi-modal Pre-training. This experiment studies the influence
that the choice of pre-training modalities has, when the input and output modal-
ities are the same in MultiMAE pre-training. The transfer results are displayed
in Table 4a. The RGB-S model performs best on ImageNet classification and
NYUv2 semantic segmentation, whereas the RGB-D-S model has the best av-
erage rank on Taskonomy. The slight increase in performance of RGB-S on Im-
ageNet and semantic segmentation compared to RGB--S comes at the cost
of reduced flexibility, as models that were not pre-trained on depth can not as
easily and effectively use it to boost performance (see Sec. 4.3).

Comparison to Non-masked Pre-training. We further compare MultiMAE
against standard single-task and multi-task baselines, that were pre-trained with
RGB as the only input modality and without applying any masking. Since we
train on pseudo labels, the RGB—D-S multi-task model is conceptually similar
to a MuST [26] model using depth and semantic segmentation targets. The
transfer results are detailed in Table 4b. On nearly all categories, MultiMAE
outperforms the supervised baselines.

To summarize, the results in this section show that using all modalities to
pre-train a MultiMAE results in a more generalist model that does well at trans-
ferring to a range of downstream tasks. We find that there are some specialized
pre-trained models that perform better at certain downstream tasks (e.g., mod-
els pre-trained with depth perform better at transferring to geometric tasks),
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Fig. 3: Single-modal predictions. We visualize MultiMAE cross-modal predictions
on ImageNet-1K validation images. Only a single, full modality is used as input. The
predictions remain plausible despite the absence of input patches from other modalities.

but they will perform poorly at others. This is supported by previous find-
ings [13,54,79] showing that there is usually no single visual pre-training task
that transfers well to any arbitrary other task, and instead, a set is required.

4.5 Cross-modal Exchange of Information

In this section, we explore visually how MultiMAE predicts the three pre-
training tasks by changing the inputs it receives. Figure 1 already showcased
how MultiMAE is able to reconstruct images from various randomly sampled
input patches. Here, we will further show non-masked cross-modal predictions,
and will also give examples on how MultiMAE predictions change when we
change certain details about the inputs.

Single-modal Predictions. Figure 3 displays several examples of cross-modal
prediction without any masking. We show examples where, from one single
modality, the two remaining ones are predicted. We note here that even though
the number of patches we input to the model is 2x higher than what was seen
during training, the model still predicts very reasonable results despite the dis-
tribution shift.

Demonstration of Cross-modal Interaction. We demonstrate in Figure 4
how MultiMAE predicts completely different but plausible RGB images when
given a full depth image and three edited versions of the same two RGB input
patches (no semantic segmentation maps are given as inputs). We keep one RGB
patch the same, while changing the hue of another patch (part of a lizard for
the first image). We can see how MultiMAE recovers all the details in the image
from the full depth input, but paints the entire lizard in the colors given in the
modified patch. All the while, the background does not change. This suggests
an intriguingly good representation is learned by the model as it extends the
colors to the right segments without any segmentation provided in the input.
More interactive examples can be seen on our website.
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5 Discussion

We presented Multi-modal Multi-task Masked Autoencoders
(MultiMAE), an effective and simple pre-training strategy for
Vision Transformers. MultiMAE encodes a small random sub-
set of visible tokens from multiple modalities and is trained to
reconstruct the missing ones. By encoding only a fixed num-
ber of non-masked tokens, we can keep the bulk of the com-
putation in the Transformer encoder constant, while only the
shallow task-specific decoders scale with the number of tasks.
Masking (across image patches and input modalities) ensures
the network learns to perform predictive coding across differ-
ent modalities, besides across different spatial patches. The
experiments showed intriguing capabilities of MultiMAE at
cross-modal coding and demonstrated this pre-training strat-
egy can result in notable gains in transfer performance when
additional input modalities are optionally available, either as
ground truth or pseudo labels.

In the following, we briefly discuss some limitations to our
approach and present exciting future directions:

i Original RGB image
Full depth input A
~

+

Variants of masked
RGB input

MultiMAE

predictions

L™
Hue +0° J
e

-

N~

\I
{
N

£

Hue +180°

BN
E

[

Hue -60°

Fig.4: Cross-
modal interac-
tion.

By editing the
hue of a single
input token, the

Scaling Pre-training Modalities. We pre-trained MultiMAE entire  lizard’s
on a set of three visual modalities, chosen to cover a large frac- ¢olor ~ can  be
changed, while

tion of common vision problems based on prior studies [79]. It
is, however, conceivable that our method can benefit from a
rather straightforward inclusion of a more diverse set of modal-
ities and tasks, such as videos, text, bounding boxes, sparse depth, feature maps,
and more. In addition to providing more ways to use optional modalities as in-
puts, scaling up the number of pre-training modalities could have further transfer
benefits by covering a larger space of useful vision problems and enabling more
complex cross-modal predictive coding.

keeping the back-
ground constant.

Scaling Pre-training Datasets. For pragmatic reasons and enabling compar-
ison with prior works, we trained all of our models on pseudo labeled ImageNet-
1K, but there is no reason to limit ourselves to a (classification) dataset of
this size. Since we use pseudo labels, any dataset that is used for RGB-only
self-supervised learning can be considered for training MultiMAE. Our method
further benefits from any future improvements in model architectures, training
strategy and supervised datasets that can be used to improve the quality of
pseudo labels.

Masking Strategies. Lastly, we used a simple approach of sampling random
tokens from each modality in an unbiased way. While this worked well for
MultiMAE training, it does not have to be the optimal choice for learning a
transferable representation. It will be an interesting direction to explore biasing
the masking towards certain modalities and/or spatial locations.

Acknowledgments. We thank Stefan Stepanovic and Alexander Sax for their help
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