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1 Video demos

Please see our project WebsiteE] for video demos using our proposed AudioScopeV2
and AudioScope [8]. For these demos, we run the following models trained
unsupervised on our proposed unfiltered YFCC100M [7] data: joint and separable
SA at 16 FPS, joint and separable CMA at 16 FPS, and AudioScope* (improved
version of AudioScope, as described in the main paper) at 16 and 1 FPS. We also
use an AudioScope model [§] at 1 FPS, which was trained on filtered YFCC100M.
We provide demos on two types of examples: synthetic mixtures of mixtures
(MoMs) from the unfiltered random background test set, and single real videos
drawn from the test split of unfiltered YFCC100M.
The demos highlight a variety of interesting cases.

— Real Example 1 shows a close-up of a child talking on-screen with strong non-
stationary noise in the background; the separable SA models do a remarkable
job of suppressing the background noise.

— In real Example 2, there is a child and an adult presumably talking on screen,
in the midst of loud off-screen speech from a news broadcast; the separable
SA models successfully suppress the off-screen voice while preserving the
presumed on-screen subjects of the video, despite their faces being obscured,
whereas the AudioScope models yield inconsistent results. Taken together
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these examples illustrate that the models can selectively preserve or block
speech depending on whether the talkers are on-screen, even without a frontal
view of the on-screen faces; presumably the model is able to use context and
other cues to infer which voices correspond to what appears on-screen.

— In real Example 3, a child is playing in a pile of dried leaves with ambient
noise in the background.

— In real Example 4, a rocking horse ridden by a child is impacting the walls in
a hallway, with some clicking and ambient background noise. In both of these
examples, the models are able to differentially suppress the background noise
and preserve the on-screen noises, even though both are noise-like sounds.

— The other real examples show operation in low-light conditions (Example
5), selective enhancement of a baseball hit while suppressing background
voices (Example 6), and selective enhancement of non-speech eating sounds
(Example 7).

In the synthetic demos, Examples 2 and 6 show the model selectively removing
or preserving stationary noise depending on the visual input. Synthetic Example
2 shows a person talking on-screen, with off-screen mechanical noise; the models
substantially reduce the mechanical noise. Synthetic Example 6 has on-screen
rain with off-screen wind noise and voices.

Overall the models show a variety of interesting emergent behaviors, such
as preserving inferred on-screen sources, and future work will require a more
systematic analysis of conditions amenable to good performance.

2 Analysis of calibration

In this section, we analyze the effect of calibration on the YFCC100M unfiltered
test data. We were motivated by the “no processing” baseline providing some
counter-intuitive results. As a reminder, we reported “no processing” baselines in
Table 1 of our main paper at 0 dB and 6 dB OSR. The 0 dB OSR model just
outputs the input audio x as the on-screen estimate z°". To calibrate the “no
processing” model to 6 dB OSR, we simply use one half the input audio z as the
on-screen estimate z°".

Counter-intuitively, the 0 dB OSR model achieves a lower median SNR, than
the 6 dB OSR model. To understand this effect, the left panel of Figure [I| shows
a scatter plot of individual examples for 0 dB OSR versus 6 dB OSR. We can
see that the median for 6 dB OSR is increased, at the expense of limiting the
maximum attainable SNR to 6dB, and results in a drop in the mean SNR.

We also provide a similar plot for the joint CMA AudioScopeV2’s configuration,
in the right panel of Figure [1} which plots SNR for the uncalibrated model, which
achieves 8.7 dB OSR, versus SNR for the model calibrated at 6 dB OSR, following
the procedure in Section 4.4 in the main paper. Note that in this case, in contrast
to the “no processing” plot, the calibration is adjusting from higher OSR to lower
OSR. Unlike the “no processing” case, the calibration procedure on AudioScopeV2
does not cause a drop in mean SNR, and improves SNR performance for examples
that had greater than 0dB SNR in the original model. SNR is decreased for
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Fig. 1: Left: scatter plot of “no processing” baseline SNRs at 0 dB OSR versus
SNRs at 6 dB OSR. Right: scatter plot of the joint CMA model’s SNRs before
calibration (8.7 dB OSR) versus SNR at 6 dB OSR.

examples that had less than 0dB SNR for the uncalibrated model, but the
SNR-limited behavior of the calibrated “no processing” model is avoided.

3 Ablations

This section presents several ablations that we could not include in the main
paper due to space constraints.

3.1 Scale-invariant SNR (SI-SNR)

For measuring the fidelity of the reconstruction of the on-screen component, we
also report the scale-invariant signal-to-noise ratio (SI-SNR) [6] of the on-screen
estimate z°", which is defined as follows:

2 T3
SI-SNR(z, &) = 101log,, ”||a:U|| « = argmin,, |lax — &)? = ﬁ

In the course of our experiments, we discovered that SI-SNR is a potentially
optimistic measure of on-screen separation quality, especially when comparing
SI-SNR to OSR. Since SI-SNR scales the reference signal to compensate for
gain errors on the estimate, this means that a model can predict scaled-down
probabilities that maximize OSR without affecting SI-SNR and producing an
on-screen estimate that has a gain error. However, SI-SNR is useful in cases
where one can obtain higher OSR values by scaling down the estimate and obtain
falsely higher OSR numbers (see Table [1)).

From Table [I, we see that by halving the gain of the input mixture itself,
we are able to increase the SNR 2.5 dB — 4.1 dB, which is also close to the
performance that the previous state-of-the-art model obtains when trained with
our recipe on the unfiltered YFCC100M data (SNR of 5.2 dB). This is due to

(1)
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Table 1: Evaluation results, including median SI-SNR and SNR, along with the
AUC-ROC, for filtered off-screen background (from [8]) and unfiltered random
background (our new proposed) test sets at 16 FPS. For each model, calibration
to 6 dB OSR is performed separately on the filtered and unfiltered test sets.
“AudioScope*” is our improved implementation of AudioScope [8] and using our
proposed training procedure while also pre-training the audio source separation
module.

Filtered 8] Unfiltered (new proposed)
AV alignment SI-SNR SNR AUC SI-SNR SNR AUC
No processing (£°" = z with 0dB OSR) 44 44 - 2.5 2.5 -
No processing (£°" = /2 with 6dB OSR) 4.4 4.7 - 2.5 4.1 -
AudioScope* (previous state-of-the-art) 9.5 59  0.77 5.5 5.2 0.71
AudioScopeV2 with Joint CMA (Ours) 10.8 10.0 0.85 7.8 7.7 0.84

SNR providing an overly optimistic measure when the estimate’s gain is less than
the correct gain [6], and this is the main reason that we also include the SI-SNR
metric to all the reported ablation studies.

On the contrary, reporting SI-SNR only could also sometimes lead to false
conclusions. For instance, our highest performing model evaluated on the filtered
YFCC100M data, joint CMA, clearly outperforms the previous state-of-the-art
model by 4.1 (5.9 dB — 10.0 dB) in terms of SNR but only by 1.3 (9.5 dB —
10.8 dB) in terms of SI-SNR. This is due to the fact that a model is able to
always perform higher OSR by scaling down all the estimated probabilities, at
the expense of decreasing the gain on the on-screen estimate. As a result, the
SNR metric shows that our method is able to estimate a more accurate gain of
the on-screen estimate and truly increase its reconstruction fidelity.

3.2 Ablations for proposed separable SA

The hyperparameters for our architecture were chosen according to informal
tuning during model development. To determine if there are better settings of
our proposed attention-based architectures, we performed a number of ablations.
Since results were fairly similar among different architectures, we selected our
proposed unsupervised separable SA model as a representative, and retrained
this model with a number of different settings. The results are shown in Table 2]

Though there are some settings that work a bit better for separable SA in
these ablations (e.g. using fewer attention heads), we decided to present results
with the original default settings in our main paper. Generally these results
indicate that some additional performance may be available with additional
hyperparameter exploration. We do observe that a deeper model with 8 blocks
seems to have a negative effect on the performance across the board, perhaps
because of overfitting to the training set, or failure to converge.
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Table 2: Ablation results, including median SI-SNR, SNR, and OSR, along with
the AUC-ROC, for the proposed 16 FPS unsupervised separable SA with 4
attention heads, embedding dimension D = 128, L = 4 blocks, 8 x 8 spatial
locations from the visual embedding network, and a dropout rate of 0.2. We per-
form the ablations on the introduced unfiltered random background YFCC100M
test partition at 2 calibration points with a specified OSR at 6 and 10 dB. The
separation performance of the oracle MixIT* assignment is 10.4 dB SNR and
10.1 dB SI-SNR.

OSRiarget = 6dB OSRiarger = 10dB
Ablation SI-SNR SNR OSR AUC SI-SNR SNR OSR AUC
- 73 66 60 0.80 66 55 10.0 0.80
4x4 spatial 84 70 60 083 78 58 100 0.83
No dropout 69 7.0 6.0 081 70 61 10.0 081
2 heads 81 74 6.0 083 81 63 100 0.83
8 heads 72 62 60 0.77 67 47 100 0.77
2 blocks 71 65 60 0.80 72 53 100 0.80
8 blocks 25 35 1.1 048 25 35 1.1 048
D=256 76 68 60 0.78 82 57 100 0.78
D=64 74 72 60 0.80 75 60 100 0.80

3.3 Unsupervised vs semi-supervised results

We also experimented with semi-supervised training, where we leverage videos
annotated for the presence of on-screen and off-screen sounds. Semi-supervised
training uses unsupervised NOn examples as described in the main paper, plus
additional “human-labeled on-screen-only (LOn)” and “human-labeled off-screen-
only (LOfI)” examples. For these examples we use both single-mixture and MoM
versions. LOn single-mixture examples are just video frames and audio drawn
from a unanimously-rated on-screen-only video. LOn MoM examples are the same
as LOn single-mixture, except that synthetic off-screen audio from a random
video is added. LOAI single-mixture and MoM examples are the same as LOn
examples, except that unanimously-rated off-screen-only videos are used for the
primary video frames and audio. An exact cross-entropy loss is used for training
the on-screen classifier with these labeled examples, where the MixIT assignments
are used as classifier labels y for on-screen examples, and the classifier labels y are
set to zero for off-screen examples. For semi-supervised training, examples in the
batch are dynamically sampled, with 50% NOn MoM, 12.5% LOn single-mixture,
12.5% LOn MoM, 12.5% LOfI single-mixture, and 12.5% LOff MoM.

We show the results using our proposed models at 16 FPS and at 2 different
OSR target levels in Table [3] Our results are somewhat mixed. For separable
models, AUC-ROC improves by up to 0.09, but does not improve for joint models.
Also, even when AUC-ROC improves, this does generally improve calibrated
on-screen reconstruction in terms of SI-SNR and SNR. We think this is due to
the fact that AUC-ROC is measured across all the possible operating points of
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Table 3: Evaluation results, including median SI-SNR and SNR, along with
the AUC-ROC, on the unfiltered random background test set at 16 FPS for
the proposed models for unsupervised or semi-supervised training. Models are
calibrated to 2 different OSR levels: 6 dB and 10 dB. The detection capability
of the models for the on-screen presence of the estimated sources, measured by
the weighted area under the ROC curve (AUC), remains unaltered with different
specified OSR operating points.

Semi- OSRtarget = 6dB OSRtarget = 10dB

AV alignment Supervised SI-SNR SNR  SI-SNR SNR AUC
Joint 7.7 7.7 7.6 6.9 0.83

SA v 6.5 5.0 6.5 5.5 0.80
Sep. 7.3 6.6 6.6 5.5 0.80

v 7.2 7.0 8.0 6.4 0.88

Joint 7.8 7.7 8.3 6.7 0.84
CMA v 6.2 6.5 6.4 5.6 0.83
Sep. 7.5 7.1 7.2 5.8 0.80

v 6.3 6.5 7.4 6.7 0.89

the classifier, whereas the SNR evaluation can only be obtained after choosing
a specified OSR target level. We postulate that one might be able to extend
our work using appropriate signal-level reconstruction losses and also improve
reconstruction fidelity performance for semi-supervised cases, but we defer this
to future work.

3.4 Ablation on selected calibration points

Another important aspect of our proposed calibration method is that the tolerance
of off-screen sound interference can be specified. To that end, we show the
importance of our method by comparing to uncalibrated model evaluations at a
few interesting OSR operating points. The results of this ablation study are in
Table [l

Notice that the uncalibrated joint SA seems to be performing significantly
better than separable SA in terms of on-screen SNR: 7.1 dB vs 5.3 dB. However, if
we also consider the ability of these models to suppress the off-screen component,
the comparison becomes less clear since joint SA and separable SA obtain 8.3
dB and 10.8 dB OSR, respectively. To allow a more fair and easy-to-understand
comparison of these models, our proposed calibration method can compensate
for the OSR mismatch by tuning both models to specified OSR target level (e.g.
OSRyarget = 6dB). After doing this, we can see that the actual SNR difference
is almost 1 dB (joint SA and separable SA obtain 7.7 dB and 6.6 dB SNR,
respectively).

Unsurprisingly, for increasing levels of specified OSR target levels, the SNR
performance on the reconstruction of the on-screen component gradually declines.
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Table 4: Evaluation results, including median SI-SNR, SNR, and OSR, along
with the AUC-ROC, on the unfiltered random background test set at 16 FPS for
the proposed models with different levels of calibrated OSR levels. All models
have been trained using our proposed unsupervised learning procedure on the
unfiltered dataset YFCC100M train partition while also pre-training the audio
source separation network. We show the results when we use the raw pre-trained
models with no calibration and when we calibrate AudioScopeV2 at 3 different
OSR levels of 6, 10, and 15 dB. The detection capability of the models for the
on-screen presence of the estimated sources, measured by the weighted area under
the ROC curve (AUC), remains unaltered with different specified OSR operating

points.
Calibration AV alignment SI-SNR SNR OSR AUC
gp Joint 7.8 7.1 8.3 0.83
D Sep. 6.7 5.3 10.8 0.80
A Joint 8.3 7.0 8.7 0.84
Sep. 7.2 5.8 9.3 0.80
gp Joint 7.7 7.7 0.83
_ Sep. 7.3 6.6 0.80
OSRtarget = 6dB A Joint 7.8 7.7 6.0 0.84
Sep. 7.5 7.1 0.80
gp Joint 7.6 6.9 0.83
B Sep. 6.6 5.5 0.80
OSRiarger = 10dB CMA Jomt 8.3 6.7 10.0 0.84
Sep. 7.2 5.8 0.80
gp Joint 7.6 6.0 0.83
_ Sep. 7.0 3.4 0.80
OSRtarget = 15dB M Joint 8.3 5.5 15.0 0.84
Sep. 7.2 4.3 0.80

However, we want to emphasize that in practice the operating point can be cali-
brated on validation data, according to the needs of an application, or according
to user preferences. We also see that the separable versions of SA and CMA
are able to perform on-par with the much more computationally expensive joint
counterparts across all the specified OSR target levels.

4 Evaluation on restricted-domain datasets

Though our goal is to train a general-purpose on-screen separation model, it
is interesting to see how well AudioScopeV2 performs on specialized domains
without any further fine-tuning. We evaluated our models on these datasets, but
were unable to include these results in the main paper due to space constraints.
In the following subsections, we present these results.



8 E. Tzinis et al.

Our purpose is not to compete with prior methods that use carefully cu-
rated training data to match these test sets (e.g. Mandarin has a very small
corresponding training set, and approaches in the literature have crafted custom
training sets) as we anticipate that our general model will do less well than a
model specifically trained towards a more specialized task and domain. We show
these mismatched evaluations to examine whether more general approaches like
ours could be used in handling more specialized tasks.

4.1 MUSIC dataset for audio-visual musical instrument separation

To measure performance on a non-speech task, we evaluated our proposed models
on the MUSIC dataset [12]|, which is a dataset of single-source videos of people
playing musical instruments. We used the standard protocol [3] to prepare the
dataset, where we created 10 mixtures for each of the 55 possible pairs of 11
instrument classes, for a total of 550 examples. For each example, we use the video
for one of the instruments as the video input to AudioScopeV2, and we do this for
both videos (thus the total number of examples is 2 - 550 = 1100). Performance
is measuring using bss_eval_sources [9], which measures signal-to-distortion
ratio (SDR), signal-to-inference ratio (SIR), and signal-to-artifact ratio (SAR).
These measures find an optimal time-invariant 512-tap filter that can be applied
to the reference to maximize SDR. We compare our methods to a number of
other recent approaches that also evaluate on this dataset.

There are a few things to notice from these results. First, neither our proposed
methods nor AudioScope reach state-of-the-art performance on this task compared
to models trained on matched data with various degrees of supervision. However,
the oracle MixIT* performance of the audio-only separation component of our
proposed models, where separated sources are assigned to one of the ground-truth
reference audio sources, is quite strong, within only 1.4 dB SDR for the best
matched-training model (10.0 dB versus 11.4 dB). This MixIT* performance is
also better than AudioScope, which only achieves 8.8 dB SDR. This improvement
over AudioScope is presumably due to audio-only pre-training of our separation
model on unfiltered YFCC100M with MixIT.

Unfortunately, the non-oracle £°" output, which uses the predicted on-screen
probabilities as mixing weights, still lags behind the oracle MixIT* scores. How-
ever, our proposed Z°" models do achieve better performance than AudioScope:
in the best case, unsupervised joint CMA achieves 3.1 dB SDR, compared to -0.5
dB SDR for AudioScope, which is a significant boost. This suggests that using
a wider variety of YFCC100M data helps AudioScopeV2 generalize, but that
there may still be mismatch between videos in the MUSIC dataset and videos in
YFCC100M. We anticipate that fine-tuning one of our proposed models on data
from a target domain could help reduce this gap in performance.
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Table 5: Results on the MUSIC dataset, including mean SDR, SIR, and SAR.
Model Oracle? Training data SDR SIR SAR

Sound-of-Pixels [12] MUSIC 5.4 11.0 9.8
Sound-of-Motions [11] MUSIC 4.8 11.0 8.7
MP-Net [10] MUSIC 5.7 11.4 10.4
Co-Separation |3] MUSIC 7.4 13.7 10.8
Cascaded Opponent Filter |14] MUSIC 10.1 16.7 13.0
A(Res-50, att) + S(DV3P) [13] MUSIC 9.4 15.6 12.7
A(Res-50, class.) + S(DV3P) [13] MUSIC 10.6 17.2 12.8
AVSGS |1 MUSIC 11.4 17.3 13.5

AudioScope [8] z°" Filtered YFCC100M -0.5 2.8 11.2

AudioScope [8] MixIT* v' Filtered YFCC100M 8.8 13.0 13.1
Joint SA (unsup), MixIT* v YFCC100M 10.0 14.1 14.6
Joint SA (unsup), £°* YFCC100M 2.1 3.6 18.1
Joint SA (semi-sup), MixIT* v YFCC100M 9.8 13.8 14.7
Joint SA (semi-sup), £°% YFCC100M 1.7 3.3 18.3
Sep. SA (unsup), MixIT* v YFCC100M 10.0 14.1 14.4
Sep. SA (unsup), £°° YFCC100M 0.4 1.3 19.7
Sep. SA (semi-sup), MixIT* v YFCC100M 9.8 13.8 14.6
Sep. SA (semi-sup), £°* YFCCI100M 04 1.6 18.1
Joint CMA (unsup), MixIT* v YFCC100M 9.7 13.9 14.6

Joint CMA (unsup), £°"
Joint CMA (semi-sup), MixIT* v

YFCC100M 3.1 4.8 18.6
YFCC100M 9.8 13.8 14.5

Joint CMA (semi-sup), " YFCC100M 2.1 3.5 19.1
Sep. CMA (unsup), MixIT* v YFCC100M 9.9 13.9 14.5
Sep. CMA (unsup), £°° YFCC100M 1.9 3.3 17.5
Sep. CMA (semi-sup), MixIT* v YFCC100M 9.9 14.0 144
Sep. CMA (semi-sup), £°" YFCC100M 0.0 0.325.4
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4.2 Mandarin dataset for audio-visual speech enhancement

Audio-visual speech enhancement, which is the task of separating speech of an
on-screen talker given video and noisy speech audio, has been explored by many
recent works. To measure performance on this more restricted task, we use the
Mandarin dataset [5], which consists of video clips of 3-5 seconds of a person
speaking Mandarin sentences, where background noise has been artificially added.
The results are shown in Table [6] which includes several models from recent
works which were trained specifically for the audio-visual speech enhancement
task.

Table 6: Results on Mandarin audio-visual speech enhancement evaluation set,
in terms of mean SDR.

Model Oracle? Training task SDR
Hou et al. [5] AV speech enhancement 2.8
Ephrat et al. [2] AV speech enhancement 6.1
Gao and Grauman [4] AV speech enhancement 6.7
AudioScope (8] £°* AV universal on-screen sep. 2.5
AudioScope [8] MixIT* v AV universal on-screen sep. 3.4
Joint SA (unsup), MixIT* v Audio-only universal on-screen sep. 9.8
Joint SA (unsup), £°" AV universal on-screen sep. 1.5
Joint SA (semi-sup), MixIT* v' Audio-only universal on-screen sep. 9.8
Joint SA (semi-sup), £°° AV universal on-screen sep. -0.2
Sep. SA (unsup), MixIT* v' Audio-only universal on-screen sep. 9.6
Sep. SA (unsup), £°° AV universal on-screen sep. -0.1
Sep. SA (semi-sup), MixIT* v Audio-only universal on-screen sep. 10.0
Sep. SA (semi-sup), £°" AV universal on-screen sep. 0.6
Joint CMA (unsup), MixIT* v Audio-only universal on-screen sep. 9.6
Joint CMA (unsup), £°* AV universal on-screen sep. 2.3
Joint CMA (semi-sup), MixIT* v Audio-only universal on-screen sep. 10.0
Joint CMA (semi-sup), £°" AV universal on-screen sep. -0.5
Sep. CMA (unsup), MixIT* v Audio-only universal on-screen sep. 9.7
Sep. CMA (unsup), #°" AV universal on-screen sep. 1.8
Sep. CMA (semi-sup), MixIT* v Audio-only universal on-screen sep. 9.9
Sep. CMA (semi-sup), £°° AV universal on-screen sep. 1.1

First, note that our oracle MixIT* models outperform state-of-the-art on
this dataset (10.0 dB SDR, versus 6.7 dB SDR for the best matched-training
baseline). This implies that the general-purpose separation model pre-trained
with MixIT is quite strong. Also, pre-training on unfiltered YFCC100M is perhaps
why the MixIT* performance of our models is so much better than the MixIT*
performance of AudioScope, which was only trained on filtered YFCC100M.

However, as with the MUSIC dataset, the non-oracle output of £°" degrades
compared to the oracle performance. We postulate that due to the mismatch
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between the Mandarin video data and YFCC100M video data, our proposed
models score 2.3 dB in terms of SDR which could be potentially boosted using
fine-tuning on matched video samples.

5 Visualizations of attention maps

In Figure [2] several attention maps are displayed for the proposed audio-visual
attention architectures. Each heatmap is derived by using the per-source on-screen
classifier probability score to weight the attention map for the corresponding input
frame while also summing across the different heads. In most of the displayed
examples, the warm color regions co-locate with regions of the video frame
that represents on-screen objects. Note that for the unsupervised models (two
columns on the left), the attention maps are more dispersed across the image
and sometimes focused on the background of each image (see rows 2-4 at the
last column). We postulate that with strongly labeled data and/or pre-trained
segmentation models one could possibly sharpen the accuracy of such attention
mechanisms, but we defer that to future work.

Although the analysis of the attention maps for the on-screen objects hints at
the capability of the model to understand the audio-visual alignment, we would
like to better understand the implicit representation obtained from the SA and
CMA models. To help with this, several attention maps obtained by different
heads of the first layer of the semi-supervised separable SA model and the semi-
supervised separable CMA model are shown in Figures [3] and [4] respectively.
Notice that in both cases of attention architectures there are heads which attend
to different parts of the input frame potentially showing the expressiveness of
the proposed layers even in the case of the more efficient separable variation.
Interestingly, “Head 1” (third column) in Figure [3| seems to have a more disperse
attention pattern, possibly showing that this head learns to attend more to the
background compared to other heads e.g. “Head 0”.
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Input video
frame

Separable SA
semi-supervised

Separable CMA Separable SA Separable CMA
semi-supervised unsupervised unsupervised

i —
Fig. 2: Weighted attention maps for different training conditions with the proposed
audio-visual attention models using uncalibrated separable self-attention (SA) and
cross-modal attention (CMA) for a given input video frame. The attention maps

have been weighted using the on-screen estimated probability per corresponding
source.
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Input video
frame Head 3

Fig. 3: Attention maps obtained from the different heads of the first separable
audio-visual self-attention (SA) layer.
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Input video
frame Head 1

Fig. 4: Attention maps obtained from the different heads of the first separable
audio-visual cross-modal attention (CMA) layer.
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Attributions

Still images from the following videos are used in Figures [2] [3] and [4
“Tiny End Mill” by ukweli, license: CC-BY-SA 2.0

“Shinkansen” by pauldesu.com, license: CC-BY 2.0

“A Sample of Broken Mouth Annie” by Tobyotter, license: CC-BY 2.0

“A rainy autumn afternoon in Norcross” by sylvar, license: CC-BY 2.0
“3rd frothy Cup of java, good morning.” by miheco, license: CC-BY-SA 2.0
“MVI 6134” by kenner116, license: CC-BY 2.0
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