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Abstract. We introduce AudioScopeV2, a state-of-the-art universal
audio-visual on-screen sound separation system which is capable of learn-
ing to separate sounds and associate them with on-screen objects by
looking at in-the-wild videos. We identify several limitations of previous
work on audio-visual on-screen sound separation, including the coarse
resolution of spatio-temporal attention, poor convergence of the audio
separation model, limited variety in training and evaluation data, and fail-
ure to account for the trade off between preservation of on-screen sounds
and suppression of off-screen sounds. We provide solutions to all of these
issues. Our proposed cross-modal and self-attention network architectures
capture audio-visual dependencies at a finer resolution over time, and
we also propose efficient separable variants that are capable of scaling to
longer videos without sacrificing much performance. We also find that
pre-training the separation model only on audio greatly improves results.
For training and evaluation, we collected new human annotations of on-
screen sounds from a large database of in-the-wild videos (YFCC100M).
This new dataset is more diverse and challenging. Finally, we propose a
calibration procedure that allows exact tuning of on-screen reconstruc-
tion versus off-screen suppression, which greatly simplifies comparing
performance between models with different operating points. Overall, our
experimental results show marked improvements in on-screen separation
performance under much more general conditions than previous methods
with minimal additional computational complexity.
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1 Introduction

Humans are able to effortlessly perceive sounds in a noisy scene, and associate
them with any corresponding visible objects. In audio processing, a corresponding
challenge is to isolate sound sources from a mixture waveform and identify the
associated visual appearance of each sound source. In this paper, we target the
task of universal audio-visual on-screen sound separation, where the goal is to
⋆ Work done during an internship at Google Research.
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Fig. 1: Left: illustration of the task where our models make no assumptions about
the existence, type, or count (up to a maximum) of on-screen and off-screen
sources. Right: illustration of our proposed calibration procedure for on-screen
separation models, which allows setting a specified tolerance level for off-screen
sound suppression which allows more user control and easier model comparison.

recover only the sounds that originate from on-screen objects, regardless of the
types of on-screen and off-screen objects as illustrated in Figure 1a.

This is a difficult task for numerous reasons. In stark contrast to visual objects
that generally occupy distinct regions of pixels, sound sources are superimposed
in the time domain. This imposes a challenge for unsupervised learning of audio-
visual separation, because unlike their visual counterparts, the audio sources
in a scene cannot be easily selected and aligned with video objects. Therefore,
separating the constituent sources is needed, by conditioning separation on
selected video objects and/or separating the audio a priori before associating the
sounds with video objects. The a priori separation of the sounds, which we pursue
here, has a few advantages. Thanks to recent work [47], it can be learned in an
unsupervised way, and it can handle an unknown number of sounds, including
those that do not appear on-screen. Also, the individual separated sounds are
available to downstream processes, in addition to the on-screen estimate.

Despite remarkable progress in the field of on-screen sound separation, most of
these works are constrained to isolating only a specific set of sound classes that can
appear on-screen such as speech [1,10,14] or music [11,12]. Although this strategy
works well under a restricted domain, where such labeled data are available, the
reliance on human labels precludes scaling to large open-domain data. Recent
works have started to expand beyond music and speech to a wider variety of
classes, such as using visual scene graphs to model audio-visual relationships [7],
but this approach still requires labeled data to train a supervised object detector.
Although the seminal works in on-screen sound separation proposed models that
were somewhat invariant to the types of sources [12, 32], those systems were
unable to be trained with real world videos mainly because they needed labeled
videos in which the sources always appeared on-screen during training.
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Recently, AudioScope [43] addressed several of the aforementioned problems
using mixture invariant training (MixIT) [47] with synthetic mixtures of video
soundtracks. The derived sources-to-soundtracks assignments from MixIT were
used as pseudo-targets to self-supervise the training of an audio-visual sound
separation model from in-the-wild videos, without requiring object detection
modules or assuming that all sources have to be on-screen. However, AudioScope
still suffers from generalization issues since it relies on training data filtered by an
unsupervised audio-visual coincidence model [22], which limits its generalization
ability, as we show in our experiments. We also hypothesize that AudioScope’s
performance is limited by the simplicity of its visually guided spatio-temporal
attention layer [5], and the low temporal resolution (one frame per second)
of its visual model. These factors may prevent AudioScope from capturing
synchronization features which can be crucial for detecting the audio-visual
interplay [2, 19, 26]. Another limitation of AudioScope is the lack of ability to
trade off between reconstruction of on-screen sounds and suppression of off-screen
sounds. These models achieve an arbitrary operating point during training, which
makes comparing performance between different models difficult (see Figure 1b).

We propose solutions for all of the aforementioned problems and limitations:

1. AudioScopeV2 leverages richer cross-modal and self-attention network archi-
tectures that capture audio-visual dependencies at a finer time resolution,
as well as efficient separable variants that are capable of scaling to longer
videos without sacrificing much performance (Section 3). We also find that
pre-training the audio separation model using MixIT greatly improves results.

2. We provide a new dataset, for which we collected new human annotations of on-
screen sounds from a large database of in-the-wild videos (YFCC100M [38]),
described in Section 4.1. We show that our new proposed models both
generalize and perform better on the more diverse and challenging evaluations
sets compared to previous state-of-the-art methods.

3. We propose a novel calibration procedure (Section 4.4) that allows precise
tuning of on-screen reconstruction versus off-screen suppression, that can
also be used to greatly simplify model comparison across different models
that each have their own operating point.

Dataset recipes, demos, and other supplementary material are available online
google-research.github.io/sound-separation/papers/audioscope-v2.

2 Relation to Prior Work

Joint perception of audio and video modalities is not trivial, in part due to the
problems of alignment between corresponding representations in each modal-
ity. Nevertheless, a variety of works have shown promising results using multi-
modal neural network architectures [2, 6–8, 13, 43, 48]. Audio-visual sound separa-
tion [1,10,20], and specifically separation of on-screen versus off-screen sounds [32],
has enjoyed remarkable performance improvements since the initial works. Im-
portant innovations have included using localization of objects [29,48,51], forc-
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ing consistency between audio and visual representations [3,13,14,28], weakly-
supervised [34] and self-supervised [2, 26,35,43] approaches.

Recent work has shown that it is possible to train an open-domain audio-only
universal sound separation model using a mask-based convolutional architecture
regardless of the category of the sound [23,41]. A related direction is to extract
sources of interest by conditioning separation networks using identity or multi-
modal cues. This has yielded performance improvements for speech [45] as well as
universal source separation [16,24,30,31,42]. However, these experiments relied
on having sufficient supervised training data and were evaluated only on test sets
with similar environmental conditions and sound distributions. In order to extend
the reach of this approach, methods have been proposed to train separation
models with no access to ground truth clean sources by utilizing weak class
labels [33], the spatial separability of the sources [9, 36,40] and self-supervision
in the form of MixIT [47]. These methods make it possible to learn separation of
signals well outside the domains for which isolated source databases exist.

An open question in audio-visual correspondence models concerns the level of
processing at which audio and video objects can be aligned. Typically audio-visual
models have used high-level features at the output of neural networks to estimate
correspondence between audio and video signals [7, 22,26,28,39,43]. Such high-
level representations may tend to focus on semantic information about the class of
objects and sounds, especially when the features are computed at low video frame
rates. Such methods may work well for single instances of a class of object or
sound, but may struggle with identification for multiple instances of a class, or for
classes not seen during training. In contrast, there may be significant information
in the correspondence between lower-level features. Mutual information between
low-level features was used for audio-visual localization [19], and several more
recent works have shown promising results for self-supervised audio-visual learning
using low-level motion [51] and optical flow [2] features. Such features may help
with generalization and instance-level correspondence by detecting synchronous
dynamics of the audio and video, regardless of their semantic class.

Attention mechanisms can align representations across modalities, both at
the level of semantic association and in terms of low-level correspondences. An
attention-based framework was recently used to modulate audio representations
using motion-based visual features [51] for separation and localization. Conversely,
modulating video features based on audio embeddings has also been used for
speech separation [28] as well as in AudioScope’s spatio-temporal attention
module [43]. Other works combined self-attention layers [44] for modeling inter-
modality temporal patterns, as well as cross-modal attention modules for intra-
modality associations [8,48,49], for sound localization and representation learning.
One issue with self-attention is that its complexity grows quadratically with the
dimensionality of the input length. We therefore propose a separable variants of
our proposed architectures that factorize attention across different dimensions
and modalities. This strategy allows us to achieve similar performance to full self-
attention with a much lower computational footprint. Other separable attention
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mechanisms have emerged recently [6, 50], but our approach differs in that we
process and capture intra-modality patterns from both audio and video features.
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Fig. 2: Illustration of AudioScopeV2’s architecture and its training procedure.

3 Model Architecture

Figure 2 illustrates the architecture and training procedure of AudioScopeV2. The
run-time architecture takes as input the video frames and a mixture waveform
x. The audio separation module estimates M = 4 sources. An audio embedding
network is run on each of the estimated sources, producing audio embeddings
ZA. In parallel, an image embedding network processes each input video frame
independently and produces the visual embeddings ZV. The audio and video
embeddings are fed to an audio-visual attention network, for which we propose a
family of attention-based architectures. The output of the audio-visual attention
network is passed to a final on-screen classifier head which produces a probability
ŷm corresponding to the event that the source m originates from an on-screen
object. Finally, the probabilities ŷm are used as weights to mix the separated
sources ŝm together, producing an estimate of on-screen audio. The training
procedure for this model is also illustrated, where we create mixtures of mixtures
(MoMs) for audio by adding the soundtrack from another random video. A MixIT
SNR loss is computed by finding the best combination of estimated sources to
approximate each one of the reference mixtures in terms of SNR. The assignments
of these best combinations are used as pseudo-labels in the classification loss. We
describe each of these components in more detail below.

3.1 Separation module
The separation module MS uses a dilated convolutional architecture [23] with
learnable encoder and decoder, which was also used in [43]. This module takes as
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input a mixture waveform x ∈ RT ′ , estimates M masks in the encoded latent
space, and outputs M estimated source waveforms ŝ ∈ RM×T ′ . The latter are
forced to add up to the input mixture through a mixture consistency layer [46].
However, in contrast to AudioScope [43], our separation model is not conditioned
on global visual embeddings, for two reasons. First, visual conditioning was not
shown to be effective [43], and second, this allows us to use MixIT to pre-train
the separation module on all YFCC100M [38] audio tracks to provide a better
initialization for training the audio-visual model. Thus, AudioScope∗ refers to our
AudioScope implementation with the aforementioned source separation module.

3.2 Audio and video embedding networks

Features are extracted for the M estimated sources ŝ and the corresponding T
input video frames (128 × 128 pixels), using a MobileNetV1 architecture [21], as
in [43]. The audio encoder takes as input the log mel-scale spectrogram of the
separated source waveforms ŝ, and audio features are extracted from the 23rd
layer. The visual embedding network is applied to each of the T input video
frames independently and extracts features with 8 × 8 spatial locations. Audio
and video features are converted to a common depth D = 128 with a dense layer.

3.3 Audio-visual attention

We propose attention mechanisms to identify dependencies across the M estimated
audio sources, space, and time between the audio features ZA ∈ RM×T ×D and
the video features ZV ∈ RG×T ×D. Our video encoder provides G = 82 spatial
locations, and the time dimension T is shared across both tensors. Specifically,
we propose to use audio-visual self-attention (SA) [44], which treats the audio
sources and visual locations as a joint attention space (see Section 3.3), and
cross-modal attention (CMA) layers, which perform attention between audio
sources and visual locations, but avoid uni-modal attention between sources and
between spatial locations (see Section 3.3). For both the SA and CMA attention
we consider two settings: a joint attention setting, in which attention operates
jointly over time and space / sources, and a separable attention setting, in which
attention across time is interleaved with attention across spatial locations and
sources. The joint attention scales quadratically with the product of dimensions
from all of the axes which is computed over whereas the more efficient separable
variation factorizes the operation across each axes individually, which makes an
important difference in practice (see Section 5.2).

In the following formulations we use a slightly more general version of an
attention layer [5] to show how attention operates across different axes of the
corresponding tensors. Attention computes similarities between a packed tensor
of queries Q ∈ RXQ×TQ×D w.r.t. some packed keys K ∈ RXK×TK ×D, where
D is the depth dimensionality of the tensors. The similarities are computed
using a generalized version of the typical tensor inner product ⟨Z1, Z2⟩A, which
reduces across the specified dimensions A of the second tensor Z2. Note that
we assume that Z1’s dimensions are a subset of Z2’s. By using a scaled tensor
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(a) Self-Attention (SA).
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(b) Cross-modal attention (CMA).
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(c) Separable.

Fig. 3: AudioScopeV2’s attention architectures for audio-visual alignment and
feature extraction. Tensors are depicted by omitting batch and depth dimensions.

inner-product [44] and a softmaxA activation that averages over the dimensions
specified by A at the output of the tensor product ⟨K, Q⟩{D}, we produce the
resulting similarity tensor which modulates the values V ∈ RXV ×TV ×D:

AttA(Q, K, V ) = ⟨α, fV(V )⟩A, α = softmaxA

(
1√
D

⟨fK(K), fQ(Q)⟩{D}

)
, (1)

where Q, K, V , and α are the query tensor, the key tensor, the value tensor, and
the attention weight distribution tensor across the set of specified axes A of the
value/key tensors. For example, for an input query Q of shape XQ × TQ × D and
value V of shape XV × TV × D, Att{XV,TV}(Q, V, V ) performs attention over the
first and second axes of V , yielding an output tensor of shape XQ × TQ × D. The
dense layers fQ, fV, fK are trainable and applied to the depth dimension D.

We utilize the multi-head attention (MHA) layer [44]. Each one of the H
heads performs attention over some low-dimensional embeddings derived from
the tensors Q and V , with the output embedding depth reduced to D/H. These
independent attention heads have the capability to focus on different semantics
of the input tensors. After performing attention across the specified axes A, the
final output is given by aggregating across the head outputs o(h):

o(h) = AttA(f (h)
Q (Q), f

(h)
V (V ), f

(h)
V (V )),

MHAA(Q, V ) = f(Concat(o1, . . . , oH)),
(2)
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where f denotes a dense layer RXQ×TQ×D → RXQ×TQ×D and the dense layers
f

(h)
Q and f

(h)
V are linear maps RXQ×TQ×D → RXQ×TQ×D/H and RXV ×TV ×D →

RXV ×TV ×D/H , respectively for each one of the h ∈ 1, . . . , H heads, where for our
purposes we always assume that the keys and values tensors are the same size.
Using these definitions, we now formulate our proposed attention methods.

Self-attention (SA) First, we concatenate the audio tensor A
(0)
SA = ZA and

the video V
(0)

SA = ZV tensors across the first axis to form the (M + G) × T × D

tensor Z
(0)
SA , the input to the first self-attention layer.

Joint SA: Attention is performed jointly across space, time, and sources (see
Figure 3a). We express the l-th layer of a joint self-attention module as follows:

b(l) = MHA{M+G,T}(Z(l−1)
SA , Z

(l−1)
SA ) + Z

(l−1)
SA ,

Z
(l)
SA = LN(f (l)(Dropout(b(l))) + b(l)),

(3)

where f (l) is a dense layer, LN is layer normalization [4] and Dropout denotes
a dropout layer [37]. We define the sequence of operations in (3) as Z

(l)
SA =

SA{M+G,T}(Z(l−1)
SA ) where the self-attention is performed across the joint sources-

and-spatial dimension M + G and the time axis T. The final representation z,
after the repetition of L self-attention blocks, for all M sources, is obtained by
slicing and performing attentional pooling [43] across the time axis of ẑ:

z = MHA{T}(
∑T

t ẑt, ẑ) ∈ RM×D, ẑ = A
(L)
SA = Z

(L)
SA [1:M ] ∈ RM×T ×D. (4)

Separable SA: The l-th separable self-attention block can be expressed using
the SA module defined in (3):

a(l) = SA{T}(Z(l−1)
SA [1:M ]), v(l) = SA{T}(Z(l−1)

SA [M :M + G]),

Z
(l)
SA = SA{M+G}

(
Concat(a(l), v(l))

)
.

(5)

The final audio-visual representation is obtained through attentional pooling and
slicing as before (see also Figure 3c).

Cross-modal attention (CMA) In this attention layer we keep the audio and
the video modality tensors separate, and we perform queries from one modality
to another. Formally, the input to the stacked CMA blocks is a pair of an audio
A

(0)
CMA ∈ RM×T ×D and a video V

(0)
CMA ∈ RG×T ×D feature tensors.

Joint CMA: We perform a directional attention from the audio (video)
modality tensor to the video (audio) tensor, attending across both sources and
time (space and time) axes. Formally, at the l-th layer we have the following
sequence of operations for the directional attention where we use as a query the
audio modality, also illustrated in Figure 3b:

a
(l)
1 = MHA{G,T}(A(l−1)

CMA, V
(l−1)

CMA ), a
(l)
2 = LN(a(l)

1 + A
(l−1)
CMA),

A
(l)
CMA = LN(f(Dropout(a(l)

2 )) + A
(l−1)
CMA).

(6)
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For the other direction, we modulate the video features v(l) using the audio
features a(l) by swapping ACMA and VCMA and attending over {M, T} in (6).

We define (6) as A
(l)
CMA, V

(l)
CMA = CMA{M|G,T}(A(l−1)

CMA, V
(l−1)

CMA ), where each
cross-modal attention is performed across the dimension of audio sources M or
spatial locations G (denoted in our notation as "M|G") and the time axis T. The
output audio-visual embedding z contains information for all M sources and is
obtained after the repetition of L cross-modal attention blocks via attentional
pooling across time (4) on the output audio tensor ẑ = A

(l)
CMA ∈ RM×T ×D.

Separable CMA: Similar to Section 3.3, we can reduce the space complexity
of the proposed CMA layer by first performing self-attention across the time axis
for each modality separately, then performing CMA across the remaining axis
(i.e. sources or spatial locations) as shown next, also illustrated in Figure 3c:

a(l) = SA{T}(A(l−1)
CMA), v(l) = SA{T}(V (l−1)

CMA ),

A
(l)
CMA, V

(l)
CMA = CMA{M|G}(a(l), v(l)).

(7)

3.4 Audio-visual on-screen sound classifier

For each estimated source ŝm, AudioScopeV2 predicts the probability ŷm that it
originates from an on-screen object. These probabilities are computed using the
extracted audio-visual representation from the output z of our attention-based
models for the self-attention and cross-modal attention encoders. Specifically, for
each source m, we feed the audio-visual embedding zm ∈ RD through a dense
layer fz tied across sources to produce logits ℓ̂m, and then apply an element-wise
sigmoid activation σ to compute the audio-visual coincidence probability ŷm.
The final on-screen waveform estimate x̂on is produced using these probabilities
as soft weights and multiplied with the corresponding estimated sources:

ℓ̂m = fz(zm), ŷm = σ
(

ℓ̂m

)
∈ [0, 1], x̂on =

∑M
m=1ŷmŝm. (8)

3.5 Training procedure

To train the separation model, we use MixIT [47]. Given two reference mixtures
r1, r2 ∈ RT ′ , M separated sources ŝ predicted from the MoM x = r1 + r2, and a
signal-level training loss L, MixIT infers an optimal 2 × M binary mixing matrix
A where each column sums to one. This mixing matrix assigns each estimated
source sm to one of the reference mixtures r1 or r2:

LMixIT (r, ŝ) = min
A∈B2×M

∑2
n=1L (rn, [Aŝ]n) . (9)

For L, we use the negative thresholded SNR loss [43,47].
We use purely unsupervised training, which uses batches composed of noisy-

labeled on-screen (NOn) examples. Each NOn example consists of the video
frames and audio for a primary input 5-second video clip, where additional
audio from another random 5-second video clip serves as synthetic off-screen
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audio that is mixed with the primary video soundtrack. These examples provide
noisy pseudo-labels, because even after optimal MixIT combination, the primary
soundtrack may contain off-screen background noise.

For training AudioScopeV2’s audio-visual on-screen classifier with NOn ex-
amples, we use the active combinations loss LAC [43] computed between the
pseudo-label assignments y provided by MixIT and the predictions ŷ of the clas-
sifier. LAC corresponds to the minimum cross-entropy loss LCE over all settings
℘≥1

(
BM

)
of the labels such that at least one label is 1 (equivalent to at least

one source appearing on-screen):

LAC (y, ŷ) = min
ℓ∈℘≥1(BM )

∑
mLCE(ℓm, ŷm). (10)

4 Experimental Framework

4.1 Data preparation and labeling

For our open-domain experiments we use Flickr Creative Commons 100 Million
Dataset (YFCC100M) [38] CC-BY videos respecting published train/validation/test
splits [18]. Instead of using only a filtered subset of the data, as previous state-of-
the-art methods suggested [43], our proposed training recipe is able to leverage
unrestricted open-domain datasets by using better pre-trained separation models.

The unfiltered training data consists of ≈ 1600 hours, and we extract 5-
second clips with a hop of 1 second (4.85M total clips). We also gathered human
annotations for 5-second clips from unfiltered videos from the train, validation,
and test splits. The count of total clips rated, unanimously-rated on-screen-only
clips, and unanimously rated off-screen clips were 20000/480/4664 for training,
6500/109/1421 for validation, and 3500/43/762 for test. Notice that during
training we dynamically create mixtures of pairs of these clips, so the effective
number of unique examples is O(1013). We also experiment with faster video frame
rate of 16 frames per second (FPS), instead of 1 FPS used by AudioScope [43].

4.2 Training details

Both audio and visual embedding networks were pre-trained on AudioSet [15]
for unsupervised coincidence prediction [22]. We also found that freezing these
networks during training leads to better results. Also, instead of training the
separation model from scratch, we pre-train the separation model with MixIT
on unfiltered audio-only MoMs drawn from YFCC100M for 3.6M steps, which
also significantly boosted the performance of our models. We use L = 4 stacked
proposed layers of joint/separable SA/CMA (ablation studies can be found in
the supplementary material). All models were trained on 32 Google Cloud TPU
v3 cores with the Adam optimizer [25], batch size 128, and learning rate 10−4.



AudioScopeV2: Audio-Visual Attention for Calibrated On-Screen Separation 11

4.3 Evaluation datasets

In order to compare with the current state-of-the-art, we use the AudioScope
dataset splits [43] provided online [17], which were drawn from a subset of
YFCC100M filtered by an unsupervised coincidence model [22]. These datasets (we
refer to them as filtered off-screen background) contain two kinds of examples: on-
screen MoMs, where additional off-screen audio was injected into the soundtrack
of a unanimously-rated on-screen-only video (i.e. input audio x = xon + xoff),
and off-screen MoMs, where additional audio was mixed into the soundtrack of a
unanimously-rated off-screen-only video (input audio x = xoff).

Similarly, we construct new evaluation sets of MoMs using videos from
unfiltered validation and test splits of YFCC100M, which we call unfiltered random
background. Instead of using off-screen-only audio, our dataset uses randomly
sampled audio from all unfiltered videos as synthetic off-screen background for
unanimously-rated on-screen-only or off-screen-only videos (see Section 4.1).

4.4 Evaluation metrics and calibration

For on-screen examples with input audio x = xon + xoff , we report the recon-
struction fidelity of on-screen estimates x̂on (8) using signal-to-noise ratio (SNR)
in dB. For off-screen examples with input audio x = xoff where we know that no
audio originates from on-screen objects, we measure the ability of our models to
suppress off-screen sources using off-screen suppression ratio (OSR).

SNR(xon, x̂on) = 20 log10
∥xon∥

∥xon − x̂on∥
, OSR(x, x̂on) = 20 log10

∥x∥
∥x̂on∥

. (11)

OSR measures the power reduction of the on-screen estimate x̂on relative to the
input audio, and is only measured on examples where the input audio x = xoff is
entirely off-screen. Prior work [43] has also used scale-invariant signal-to-noise
ratio (SI-SNR) [27] instead of SNR; however, this allows a model to obtain large
OSR, without sacrificing SI-SNR, by scaling down its estimates.

Both OSR and SNR are important, but there is an inherent trade-off between
them, since OSR can always be increased by scaling down the output, at the
expense of SNR. This makes it difficult to compare models that have different op-
erating points in this trade-off, a problem not addressed by [43]. To illustrate this,
Figure 4 plots OSR versus SNR for the models we consider in this paper. Notice
that each model achieves a different operating point. Because of these differences,
SNR cannot be meaningfully compared across models without considering OSR.
For example, one of our proposed models achieves a lower SNR of about 5.3 dB
at 10.8 dB OSR, compared to an AudioScope* model that achieves a higher SNR
of 5.5 dB at 8.9 dB OSR. It is difficult to say which model is better.

To solve this problem, we propose a novel calibration method for these on-
screen separation models, where we adjust a bias in the classifiers to achieve a
target average OSR. This is akin to choosing a threshold for a detector to achieve
a target false positive rate. For our procedure, we define a calibrated on-screen
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Fig. 4: OSR versus SNR curves when calibration offset θ in (12) is varied, on
unfiltered random background test set for all models in Table 1 (except for
AudioScope [43], which achieves 23.4 dB OSR / 1.1 dB SNR for 1 FPS).

estimate given by adding a global scalar offset θ to the on-screen logits ℓ̂1:M (8):

x̃on(θ) =
∑

mŝmσ(ℓ̂m + θ). (12)

The offset θ is tuned such that the median OSR (11) across all Noff off-screen
examples, medNoff

j=1 OSR
[
xj , x̃on

j (θ)
]

, is equal to a desired OSRtarget. The curves
in Figure 4 illustrate the effect on OSR and SNR when θ is varied, and are akin
to receiver operating characteristic (ROC) or precision-recall curves.

In practice, θ has a monotonic relationship to OSR. As θ tends towards 0
(inversely ∞), the on-screen probabilities ŷm tend towards 0 (inversely 1), and
thus OSR approaches ∞ (inversely 0) dB. Because of this property, optimization
of θ is very simple, and can be accomplished efficiently via binary search.

For our results, we use OSRtarget = 6dB, which corresponds to all off-screen
sources sounding as if they are twice as far away. To choose the early stopping
point, we evaluate all models on the unfiltered random background validation
data. Running calibration on each step of model training would be prohibitively
expensive. Thus, we choose the point which maximizes the minimum of SNR and
OSR, favoring models which are not strongly biased towards any metric.

We also report the performance of classification using weighted area under
the curve of the ROC (AUC-ROC), where the weight for each probability ŷm is
the normalized power of the corresponding source ŝm: ∥ŝm∥2

2/
(∑

m′∥ŝm′∥2
2
)
.

5 Results

5.1 Open-domain on-screen separation

Results are shown in Table 1 for the filtered off-screen background dataset
from [43], and our new and challenging unfiltered random background dataset.
We include two “no processing” baselines, with the on-screen estimate equal to
the input audio x̂on = x (0 dB OSR), or half the input x̂on = x/2 (6 dB OSR).
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Table 1: Evaluation results for filtered off-screen background (from [43]) and
unfiltered random background (our new proposed) test sets at 1 and 16 FPS.
Separate models are trained for 1 FPS and 16 FPS. For each model, calibration
to 6 dB OSR is performed separately on the filtered and unfiltered test sets. “PT”
indicates separation model pre-training, “Filt.” means training on filtered data,
and “Complexity” is the theoretical complexity of each AV-alignment module.

Filtered [43] Unfiltered (new proposed)

1 FPS 16 FPS 1 FPS 16 FPS

AV alignment Complexity PT Filt. SNR AUC SNR AUC SNR AUC SNR AUC

No processing (x̂on = x with 0dB OSR) 4.4 – 4.4 – 2.5 – 2.5 –
No processing (x̂on = x/2 with 6dB OSR) 4.7 – 4.7 – 4.1 – 4.1 –

AudioScope [43] O(T MG) ✓ 6.0 0.79 – – 2.7 0.69 – –
AudioScope* O(T MG) ✓ 8.2 0.80 5.9 0.77 5.8 0.78 5.2 0.71

SA Joint O(T 2[M + G]2) ✓ 10.0 0.84 9.9 0.86 7.2 0.82 7.7 0.83
Sep. O(T 2 + [M + G]2) ✓ 9.6 0.84 8.2 0.83 6.6 0.78 6.6 0.80

CMA Joint O(T 2MG) ✓ 10.0 0.88 10.0 0.85 7.3 0.83 7.7 0.84
Sep. O(T 2 + MG) ✓ 9.5 0.83 9.3 0.82 6.4 0.78 7.1 0.80

On the filtered test set, our proposed models significantly outperform the
previous state-of-the-art AudioScope model [43] trained on filtered data, by more
than 4dB in terms of SNR and 0.09 in AUC-ROC. Training on unfiltered data,
including pre-training the separation model on this data (AudioScope*), improves
over the baseline AudioScope model trained on filtered data (6.0 dB → 8.2 dB).

On our newly introduced unfiltered random background dataset, AudioScope
[43] trained on mismatched filtered data suffers from poor generalization, achieving
only 2.7 dB SNR, which is worse than doing no processing (4.1 dB SNR). This
demonstrates the limitation of training on filtered data. For our proposed models,
joint CMA yields the best improvements over AudioScope* trained with matched
unfiltered data (5.8 dB → 7.7 dB SNR and 0.78 → 0.84 AUC-ROC). Also, notice
that the much more efficient separable versions of SA and CMA only suffer
minor degradation compared to the joint versions (7.2 dB → 6.6 dB for SA,
7.3 dB → 6.4 dB for CMA). Our proposed models can perceive and leverage
higher-frequency dynamics from the audio-visual scene and thus, using a higher
frame rate of 16 FPS provides improvement of up to 0.7 dB SNR. On the other
hand, AudioScope* seemingly cannot scale to higher frame-rates (8.2 dB → 5.9
dB for filtered and 5.8 dB → 5.2 dB for unfiltered, going from 1 FPS to 16 FPS),
presumably because its audio-visual alignment is limited by only using shallow
spatio-temporal attention. It is also possible that filtering with the audio-visual
coincidence model [22], which averaged coincidence scores over frames at 1 FPS,
may have biased towards video clips with always-visible sounding objects.

5.2 Computational efficiency

In theory, joint SA has complexity O(T 2[M + G]2), which scales poorly relative
its separable version with complexity O(T 2 +[M +G]2). Joint CMA has a slightly
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better complexity O(T 2MG) but still lags behind its separable counterpart
O(T 2 +MG). However, it is important to evaluate how the computation scales in
practice. The execution time versus input video length for all models is depicted in
Figure 5. The efficiency of the proposed separable self- and cross-modal attention
becomes apparent for longer videos. These separable variants perform comparably
to the much more complex joint CMA and joint SA models (see Table 1) but
have computational requirements on par with the simpler AudioScope [43].

Fig. 5: Computation requirements AudioScope [43] and our proposed models with
separable and joint SA and CMA for different video input lengths at 16 FPS. All
measurements were taken on a machine with 16 GB of RAM and 2 Intel Xeon
CPU @ 2.20GHz cores. Input duration is increased until out-of-memory error.

6 Conclusion

We identified several issues with the previous state-of-the-art open-domain audio-
visual on-screen sound separation model, AudioScope [43]. These issues include
oversimplicity of shallow attention used for audio-visual alignment, lack of gener-
alization due to filtering video data with an unsupervised audio-visual coincidence
model [22], and inability to specify the trade off between on-screen reconstruction
and off-screen suppression. We proposed more sophisticated self- and cross-modal
attention architectures, along with more efficient separable versions, that improve
performance and are able to leverage higher video frame rates. To address lack
of generalization, we provide annotations for a new dataset constructed from
YFCC100M [38] that is unfiltered by the audio-visual coincidence model. As a
result, this dataset is more diverse and representative of in-the-wild video data.
Finally, we proposed a calibration procedure that allows any on-screen separation
model to be tuned for a specific level of off-screen suppression, which allows
more control over model behavior and much easier comparison between different
models. Using our calibration procedure, our results show that our proposed
architecture is able to generalize to our more challenging test set and achieve
clear improvements over the previous state-of-the-art AudioScope model [43].
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