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Abstract. We propose to explore a new problem called audio-visual
segmentation (AVS), in which the goal is to output a pixel-level map
of the object(s) that produce sound at the time of the image frame. To
facilitate this research, we construct the first audio-visual segmentation
benchmark (AVSBench), providing pixel-wise annotations for the sound-
ing objects in audible videos. Two settings are studied with this bench-
mark: 1) semi-supervised audio-visual segmentation with a single sound
source and 2) fully-supervised audio-visual segmentation with multiple
sound sources. To deal with the AVS problem, we propose a new method
that uses a temporal pixel-wise audio-visual interaction module to inject
audio semantics as guidance for the visual segmentation process. We
also design a regularization loss to encourage the audio-visual mapping
during training. Quantitative and qualitative experiments on the AVS-
Bench compare our approach to several existing methods from related
tasks, demonstrating that the proposed method is promising for build-
ing a bridge between the audio and pixel-wise visual semantics. Code is
available at https://github.com/OpenNLPLab/AVSBench.
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1 Introduction

A human can classify an object not only from its visual appearance but also
from the sound it makes. For example, when we hear a dog bark or a siren wail,
we know the sound is from a dog or ambulance, respectively. Such observations
confirm that the audio and visual information complement each other.

To date, researchers have approached this problem of audio-visual classifi-
cation from somewhat simplified scenarios. Some researchers have investigated
audio-visual correspondence (AVC) [2,3,4] problem, which aims to determine
whether an audio signal and a visual image describe the same scene. AVC is
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Fig. 1. Comparison of the proposed AVS task with the SSL task. Sound
source localization (SSL) estimates a rough location of the sounding objects in the
visual frame, at a patch level. We propose AVS to estimate pixel-wise segmentation
masks for all the sounding objects, no matter the number of visible sounding objects.

based on the phenomenon that these two signals usually occur simultaneously,
e.g ., a barking dog and a humming car. Others studied audio-visual event local-
ization (AVEL) [20,22,38,42,44,45,30,31,9,51], which classifies the segments of a
video into the pre-defined event labels. Similarly, some people have also explored
audio-visual video parsing (AVVP) [37,41,21,46], whose goal is to divide a video
into several events and classify them as audible, visible, or both. Due to a lack of
pixel-level annotations, all these scenarios are restricted to the frame/temporal
level, thus reducing the problem to that of audible image classification.

A related problem, known as sound source localization (SSL), aims to locate
the visual regions within the frames that correspond to the sound [2,3,8,5,17,29].
Compared to AVC/AVEL/AVVP, the problem of SSL seeks patch-level scene
understanding, i.e., the results are usually presented by a heat map that is
obtained either by visualizing the similarity matrix of the audio feature and
the visual feature map, or by class activation mapping (CAM) [50]. It does not
consider the actual shape of the sounding objects.

In this paper, we propose the pixel-level audio-visual segmentation (AVS)
problem, which requires the network to densely predict whether each pixel corre-
sponds to the given audio, so that a mask of the sounding object(s) is generated.
Fig. 1 illustrates the differences between AVS and SSL. The AVS task is more
challenging than previous tasks as it requires the network to not only locate the
audible frames but also delineate the shape of the sounding objects.

To facilitate this research, we propose AVSBench, the first pixel-level audio-
visual segmentation benchmark that provides ground truth labels for sounding
objects. We divide our AVSBench dataset into two subsets, depending on the
number of sounding objects in the video (single- or multi-source). With AVS-
Bench, we study two settings of audio-visual segmentation: 1) semi-supervised
Single Sound Source Segmentation (S4), and 2) fully-supervised Multiple Sound
Source Segmentation (MS3). For both settings, the goal is to segment the ob-
ject(s) from the visual frames that are producing sounds. We test six methods
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from related tasks on AVSBench and provide a new AVS method as a strong
baseline. The latter utilizes a standard encoder-decoder architecture but with
a new temporal pixel-wise audio-visual interaction (TPAVI) module to better
introduce the audio semantics for guiding visual segmentation. We also propose
a loss function to utilize the correlation of audio-visual signals, which further
enhances segmentation performance. We conduct extensive experiments on the
AVSBench dataset to verify the benefits of considering audio signals for visual
segmentation, and the effectiveness of our proposed approach.

2 Related Work

Sound Source Localization (SSL). The most related problem to ours is SSL,
which aims to locate the regions in the visual frames that make sounds. Here
we focus on SSL with multiple sources, which requires to accurately localize the
true sound maker when there are multiple potential candidates [17,1,29,18]. As
a pioneer, Hu et al . [17] divide the audio and visual features into multiple cluster
centers and take the center distance as a supervision signal to rank the paired
audio-visual information. Some methods adopt a two-stage strategy that first
learn some prior knowledge of audio-visual correspondence from single sound
source scenes, and then use that for multiple sound sources localization [18,29].
Rouditchenko et al . [33] tackle this problem by disentangling category concepts
in the neural networks. This method is actually more related to the task of sound
source separation [49,11,48,12] and shows sub-optimal performance regarding
visual localization. It is worth noting that these SSL methods cannot clearly
delineate the shape of the objects. Rather, the location map is computed by the
audio-visual similarity matrix from a low resolution [2,3,36,8,28,5]. To overcome
these limitations, this paper provides an audio-visual segmentation dataset with
pixel-level ground truth to enable more accurate segmentation predictions.
Audio-Visual Dataset. To the best of our knowledge, there are no publicly
available datasets that provide segmentation masks for the sounding visual ob-
jects with audio signals. Here we briefly introduce the popular datasets in the
audio-visual community. For example, the AVE [38] and LLP [37] datasets are
respectively collected for audio-visual event localization and video parsing tasks.
They only have category annotations for video frames, and hence cannot be used
for pixel-level segmentation. For sound source localization problem, researchers
usually use the Flickr-SoundNet [36] and VGG-SS [5] datasets, where the videos
are sampled from the large-scale Flickr [4] and VGGSound [6] datasets, respec-
tively. The authors provide bounding boxes to outline the location of the target
sound source, which could serve as patch-level supervision. However, this still
inevitably suffers from incorrect evaluation results since the sounding objects
are usually irregular in shape and some regions within the bounding box actu-
ally do not belong to the real sound source. This is a reason why current sound
source localization methods can only roughly locate sounding objects but cannot
learn their accurate shapes, which inhibits the mapping from audio signals to
fine-grained visual cues.
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Table 1. AVSBench statistics. The videos are split into train/valid/test. The aster-
isk (∗) indicates that, for Single-source training, one annotation per video is provided;
all others contain 5 annotations per video. (Since there are 5 clips per video, this is 1
annotation per clip.) Together, these yield the total annotated frames.

subset classes videos train/valid/test annotated frames

Single-source 23 4,932 3,452∗/740/740 10,852
Multi-sources 23 424 296/64/64 2,120

Table 2. Existing audio-visual dataset statistics. Each benchmark is shown with
the number of videos and the annotated frames. The final column indicates whether
the frames are labeled by category, bounding boxes, or pixel-level masks.

benchmark videos frames classes types annotations

AVE [38] 4,143 41,430 28 video category
LLP [37] 11,849 11,849 25 video category

Flickr-SoundNet [36] 5,000 5,000 50 image bbox
VGG-SS [5] 5,158 5,158 220 image bbox

AVSBench (ours) 5,356 12,972 23 video pixel

3 The AVSBench

3.1 Dataset Statistics

AVSBench is designed for pixel-level audio-visual segmentation. We collected
the videos using the techniques introduced in VGGSound [6] to ensure that the
audio and visual clips correspond to the intended semantics. AVSBench con-
tains two subsets—Single-source and Multi-sources—depending on the number
of sounding objects. All videos were downloaded from YouTube with the Creative
Commons license, and each video was trimmed to 5 seconds. The Single-source
subset contains 4, 932 videos over 23 categories, covering sounds from humans,
animals, vehicles, and musical instruments. We provide the category names and
the video number for each category in the supplemental material. For the Multi-
sources subset, we picked the videos that contain multiple sounding objects,
e.g ., a video of baby laughing, man speaking, and then woman singing. To be
specific, we randomly chose two or three category names from the Single-source
subset as keywords to search for online videos, then manually filtered out videos
to ensure 1) each video has multiple sound sources, 2) the sounding objects are
visible, and 3) there is no deceptive sound, e.g ., canned laughter. In total, this
process yielded 424 videos for the Multi-sources subset, out of more than six
thousand candidates. The ratio of train/validation/test split percentages are set
as 70/15/15 for both subsets, as shown in Table 1. Several video examples are
visualized in Fig. 2, where the red text indicates the name of sounding objects.

In addition, we make a comparison between AVSBench with other popu-
lar audio-visual benchmarks in Table 2. The AVE [38] dataset contains 4,143
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Fig. 2. AVSBench samples. The AVSBench dataset contains the Single-source subset
(Left) and Multi-sources subset (Right). Each video is divided into 5 clips, as shown.
Annotated clips are indicated by brown framing rectangles; the name of sounding
objects is indicated by red text. Note that for Single-source training set, only the first
frame of each video is annotated, whereas 5 frames are annotated for all other sets.

videos covering 28 event categories. The LLP [37] dataset consists of 11,849
YouTube video clips spanning with 25 categories, collected from AudioSet [13].
Both the AVE and LLP datasets are labelled at a frame level, through audio-
visual event boundaries. Meanwhile, the Flickr-SoundNet [36] dataset and VGG-
SS [5] dataset are proposed for sound source localization (SSL), labelled at a
patch level through bounding boxes. In contrast, our AVSBench contains 5,356
videos with 12,972 pixel-wise annotated frames. The benchmark is designed to
facilitate the research on fine-grained audio-visual segmentation. Additionally,
it provides accurate ground truth for SSL, which could help the training of SSL
methods and serve as an evaluation benchmark for that problem as well.

3.2 Annotation

We divide each 5-second video into five equal 1-second clips, and we provide
manual pixel-level annotations for the last frame of each clip. For this sampled
frame, the ground truth label is a binary mask indicating the pixels of sounding
objects, according to the audio at the corresponding time. For example, in the
Multi-sources subset, even though a dancing person shows drastic movement
spatially, it would not be labelled as long as no sound was made. In clips where
objects do not make sound, the object should not be masked, e.g ., the piano in
the first two clips of the last row of Fig. 2b. Similarly, when more than one object
emits sound, all the emitting objects are annotated, e.g ., the guitar and ukulele
in the first row in Fig. 2b. Also, when the sounding objects in the video are
dynamically changing, the difficulty is further increased, e.g ., the second, third,
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and fourth rows in Fig. 2b. Currently, for large-scale objects, we only annotate
their most representative parts. For example, we label the keyboard of pianos
because it is sufficiently recognizable, while the cabinet part is often too varied.

For the videos in the training split of Single-source, we only annotate the first
frame (with the assumption that the information from one-shot annotation is
sufficient, as the Single-source subset has a single and consistent sounding object
over time). This assumption is verified by the quantitative experimental results
shown in Table 3. For the more challenging Multi-sources subset, all clips are
annotated for training, since the sounding objects may change over time. Note
that for validation and test splits, all clips are annotated, as shown in Table 1.

3.3 Two Benchmark Settings

We provide two benchmark settings for our AVSBench: the semi-supervised Sin-
gle Sound Source Segmentation (S4) and the fully supervised Multiple Sound
Source Segmentation (MS3). For ease of expression, we denote the video sequence
as S, which consists of T non-overlapping yet continuous clips {Sv

t , S
a
t }Tt=1, where

Sv and Sa are the visual and audio components, and T = 5. In practice, we
extract the video frame at the end of each second. Semi-supervised S4 cor-
responds to the Single-source subset. It is termed as semi-supervised because
only part of the ground truth is given during training (i.e., the first sampled
frame of the videos) but all the video frames require a prediction during evalua-
tion. We denote the pixel-wise label as Y s

t=1 ∈ RH×W , where H and W are the
frame height and width, respectively. Y s

t=1 is a binary matrix where 1 indicates
sounding objects while 0 corresponds to background or silent objects. Fully-
supervised MS3 deals with the Multi-sources subset, where the labels of all
five frames of each video are available for training. The ground truth is denoted
as {Y m

t }Tt=1, where Y m
t ∈ RH×W is the binary label for the t-th video clip.

The goal for both settings is to correctly segment the sounding object(s) for
each video clip with the audio and visual cues, i.e., Sa and Sv. Generally, Sa is
expected to indicate the target object, while Sv provides information for fine-
grained segmentation. The predictions are denoted as {Mt}Tt=1, Mt ∈ RH×W .

4 A Baseline

We propose a new baseline method for the pixel-level audio-visual segmenta-
tion (AVS) task as shown in Fig. 3. We use the same framework in both semi-
and fully-supervised settings. Following the convention of semantic segmentation
methods [24,32,39,43], our method adopts an encoder−decoder architecture.

The Encoder: We extract audio and visual features independently. Given an
audio clip Sa, we first process it to a spectrogram via the short-time Fourier
transform, and then send it to a convolutional neural network, VGGish [16]. We
use the weights that are pretrained on AudioSet [13] to extract audio features
A ∈ RT×d, where d = 128 is the feature dimension. For a video frame Sv, we
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Fig. 3. Overview of the Baseline, which follows a hierarchical Encoder-Decoder
pipeline. The encoder takes the video frames and the entire audio clip as inputs, and
outputs visual and audio features, respectively denoted as Fi and A. The visual feature
map Fi at each stage is further sent to the ASPP [7] module and then our TPAVI
module (introduced in Sec. 4). ASPP provides different receptive fields for recognizing
visual objects, while TPAVI focuses on the temporal pixel-wise audio-visual interaction.
The decoder progressively enlarges the fused feature maps by four stages and finally
generates the output mask M for sounding objects.

extract visual features with popular convolution-based or vision transformer-
based backbones. We try both two options in the experiments and they show
similar performance trends. These backbones produce hierarchical visual feature
maps during the encoding process, as shown in Fig. 3. We denote the features
as Fi ∈ RT×hi×wi×Ci , where (hi, wi) = (H,W )/2i+1, i = 1, . . . , n. The number
of levels is set to n = 4 in all experiments.
Cross-Modal Fusion: We use Atrous Spatial Pyramid Pooling (ASPP) mod-
ules [7] to further post-process the visual features Fi to Vi ∈ RT×hi×wi×C ,
where C = 256. These modules employ multiple parallel filters with different
rates and hence help to recognize visual objects with different receptive fields,
e.g ., different sized moving objects.

Then, we consider introducing the audio information to build the audio-
visual mapping to assist with identifying the sounding object. This is particularly
essential for the MS3 setting where there are multiple dynamic sound sources.
Our intuition is that, although the auditory and visual signals of the sound
sources may not appear simultaneously, they usually exist in more than one
video frame. Therefore, integrating the audio and visual signals of the whole
video should be beneficial. Motivated by [40] that uses the non-local block to
encode space-time relation, we adopt a similar module to encode the temporal
pixel-wise audio-visual interaction (TPAVI). The current visual feature map Vi

and the audio feature A of the entire video are sent into the TPAVI module.
Specifically, the audio feature A is first transformed to a feature space with the
same dimension as the visual feature Vi, by a linear layer. Then it is spatially
duplicated hiwi times and reshaped to the same size as Vi. We denote such
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processed audio feature as Â. Next, it is expected to find those pixels of visual
feature map Vi that have a high response to the audio counterpart Â through
the entire video.

Such an audio-visual interaction can be measured by dot-product, then the
updated feature maps Zi at the i-th stage can be computed as,

Zi = Vi + µ(αi g(Vi)), where αi =
θ(Vi) ϕ(Â)

⊤

N
(1)

where θ, ϕ, g, and µ are 1×1×1 convolutions, N = T×hi×wi is a normalization
factor, αi denotes the audio-visual similarity, and Zi ∈ RT×hi×wi×C . Each visual
pixel interacts with all the audios through the TPAVI module. We provide a
visualization of the audio-visual attention in TPAVI later in Fig. 6, which shows
a similar “appearance” to the prediction of SSL methods because it constructs
a pixel to audio mapping.
The Decoder: We adopt the decoder of Panoptic-FPN [19] in this work for its
flexibility and effectiveness, though any valid decoder architecture could be used.
In short, at the j-th stage, where j = 2, 3, 4, both the outputs from stage Z5−j

and the last stage Z6−j of the encoder are utilized for the decoding process. The
decoded features are then upsampled to the next stage. The final output of the
decoder is M ∈ RT×H×W , activated by sigmoid.
Objective function: Given the prediction M and the pixel-wise label Y , we
adapt the binary cross entropy (BCE) loss as the main supervision function.
Besides, we use an additional regularization term LAVM to force the audio-visual
mapping. Specifically, we use the Kullback–Leibler (KL) divergence to ensure the
masked visual features have similar distributions with the corresponding audio
features. In other words, if the audio features of some frames are close in feature
space, the corresponding sounding objects are expected to be close in feature
space. The total objective function L can be computed as follows:

L = BCE(M ,Y ) + λLAVM(M ,Z,A), (2)

LAVM = KL(avg (

n∑
i=1

Mi ⊙Zi),Ai), (3)

where λ is a balance weight, ⊙ denotes element-wise multiplication, and avg
denotes the average pooling operation. At each stage, we down-sample the pre-
diction M to Mi via average pooling to have the same shape as Zi. The vector
Ai is a linear transformation of A that has the same feature dimension with Zi.
For the semi-supervised S4 setting, we found that the audio-visual regularization
loss does not help, so we set λ = 0 in this setting.

5 Experimental Results

5.1 Implementation details

We conduct training and evaluation on the proposed AVSBench dataset, with
both convolution-based and transformer-based backbones, ResNet-50 [15] and
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Table 3. Comparison with methods from related tasks. Results of mIoU (%)
and F-score under both S4 and MS3 settings are reported.

Metric Setting SSL VOS SOD AVS (ours)

LVS[5] MSSL[29] 3DC[26] SST[10] iGAN[27] LGVT[47]ResNet50 PVT-v2

mIoU S4 37.94 44.89 57.10 66.29 61.59 74.94 72.79 78.74
MS3 29.45 26.13 36.92 42.57 42.89 40.71 47.88 54.00

F-score S4 .510 .663 .759 .801 .778 .873 .848 .879
MS3 .330 .363 .503 .572 .544 .593 .578 .645

Pyramid Vision Transformer (PVT-v2) [39]. The backbones have been pretrained
on the ImageNet [34] dataset. All the video frames are resized to the shape of
224 × 224. The channel sizes of the four stages are C1:4 = [256, 512, 1024, 2048]
and C1:4 = [64, 128, 320, 512] for ResNet-50 and PVT-v2, respectively. The chan-
nel size of the ASPP module is set to C = 256. We use the VGGish model to
extract audio features, a VGG-like network [16] pretrained on the AudioSet [13]
dataset. The audio signals are converted to one-second splits as the network in-
puts. We use the Adam optimizer with a learning rate of 1e-4 for training. The
batch size is set to 4 and the number of training epochs are 15 and 30 respec-
tively for the semi-supervised S4 and the fully-supervised MS3 settings. The λ
in Eq. (2) is empirically set to 0.5.

5.2 Comparison with methods from related tasks

We compare our baseline framework with the methods from three related tasks,
including sound source localization (SSL), video object segmentation (VOS), and
salient object detection (SOD). For each task, we report the results of two meth-
ods on our AVSBench benchmark, i.e., LVS [5] and MSSL [29] for SSL, 3DC [26]
and SST [10] for VOS, iGAN [27] and LGVT [47] for SOD. We select these meth-
ods as they are the SOTA in their fields: 1) LVS uses the background and the
most confident regions of sounding objects to design a contrastive loss for audio-
visual representation learning. The localization map is obtained by computing
the audio-visual similarity. 2) MSSL is a two-stage method for multiple sound
source localization and the localization map is obtained by Grad-CAM [35]. 3)
3DC adopts an architecture that is fully constructed by powerful 3D convolu-
tions to encode video frames and predict segmentation masks. 4) SST introduces
a transformer architecture to achieve sparse attention of the features in the spa-
tiotemporal domain. 5) iGAN is a ResNet-based generative model for saliency
detection, considering the inherent uncertainty of saliency detection. 6) LGVT
is a saliency detection method based on Swin transformer [23], whose long-range
dependency modeling ability leads to a better global context modeling. We adopt
the architecture of these methods and fit them to our semi-supervised S4 and
fully-supervised MS3 settings. For a fair comparison, the backbones of these
methods are all pretrained on the ImageNet [34].
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Table 4. Impact of audio signal and TPAVI. Results (mIoU) of AVS with and
without the TPAVI module. The middle row indicates directly adding the audio and vi-
sual features, which already improves performance under the MS3 setting. The TPAVI
module further enhances the results over all settings and backbones.

AVS method S4 MS3

ResNet50 PVT-v2 ResNet50 PVT-v2

without TPAVI 70.12 77.76 43.56 48.21
with A⊕V 70.54 77.65 45.69 51.55
with TPAVI 72.79 78.74 46.64 53.06

The quantitative results are shown in Table 3, with Mean Intersection over
Union (mIoU) and F-score1 as the evaluation metrics. There is a substantial gap
between the results of SSL methods and those of our baseline, mainly because the
SSL methods cannot provide pixel-level prediction. Also, our baseline framework
shows a consistent superiority to the VOS and SOD methods in both settings. It
is worth noting that the state-of-the-art SOD method LGVT [47] slightly out-
performs our ResNet50-based baseline on the Single-source set (74.94% mIoU
vs. 72.79% mIoU), mainly because LGVT uses the strong Swin Transformer
backbone [23]. However, when it comes to the Multi-sources setting, the perfor-
mance of LGVT is obviously worse than that of our ResNet50-based baseline
(40.71% mIoU vs. 47.88% mIoU). This is because the SOD method relies on the
dataset prior, and cannot handle the situations where sounding objects change
but visual contents remain the same (further discussed in the supplementary
material). Instead, the audio signals guide our method to identify which object
to segment, leading to better performance. Moreover, if also using a transformer-
based backbone, our method is stronger than LGVT in both settings. Besides,
we notice that although SSL methods utilize both the audio and visual signals,
they cannot match the performance of VOS or SOD methods that only use visual
frames. It indicates the significance of pixel-wise scene understanding. The pro-
posed AVS baselines achieve satisfactory performance under the semi-supervised
S4 setting (around 70% mIoU), which verifies that one-shot annotation is suf-
ficient for single-source cases. Some qualitative examples are provided in our
supplementary material to compare the proposed baseline with these methods.

5.3 Ablation Study

Impact of audio signal and TPAVI. As introduced in Sec. 4, the TPAVI
module is designed to formulate the audio-visual interactions from a temporal
and pixel-wise level, introducing the audio information to explore the visual
segmentation. We verify its impact in Table 4. Two rows show the proposed AVS
method with or without the TPAVI module, while “A⊕V” indicates directly

1 F-score considers both the precision and recall: Fβ = (1+β2)×precision×recall

β2×precision+recall
, where β2

is set to 0.3 in our experiments.



Audio−Visual Segmentation 11

playing_acoustic_guitar/-FIGpCo9VoM

Raw 
image

Ground
truth

AVS wo.
TPAVI

AVS w.
TPAVI

Audio

cap_gun_shooting/2eEPiCh9bZo

gun shooting gun shooting gun shooting gun shooting gun shootingplaying guitar playing guitar playing guitar playing guitar playing guitar

Fig. 4. Qualitative results under the semi-supervised S4 setting. Two benefits
are noticed by introducing the audio signal (TPAVI): 1) learning the shape of the
sounding object, e.g ., guitar in the video (Left); 2) segmenting according to the correct
sound source, e.g ., the gun rather than the man (Right).

adding the audio to visual features. It will be noticed that adding the audio
features to the visual ones does not result in a clear difference under the S4
setting, but lead to a distinct gain under the MS3 setting. This is consistent
with our hypothesis that audio is especially beneficial to samples with multiple
sound sources, because the audio signals can guide which object(s) to segment.
Furthermore, with TPAVI, each visual pixel hears the current sound and the
sounds at other times, while simultaneously interacting with other pixels. The
pixels with high similarity to the same sound are more likely to belong to one
object. TPAVI helps further enhance the performance over various settings and
backbones, e.g ., 72.79% vs. 70.54% when using ResNet50 as the backbone under
the S4 setting, and 53.06% vs. 51.55% if using PVT-v2 under the MS3 setting.
Additionally, it is worth noting that the convolution blocks in the TPAVI module
allow to project the input visual and audio features to the latent spaces that are
suitable for attention computation. For instance, under the S4 setting and using
ResNet50, if abandoning the four convolution blocks (θ, ϕ, g, and µ) in the
TPAVI module, the mIoU will significantly drop from 72.79% to 59.21%.

We also visualize some qualitative examples to reflect the impact of TPAVI.
As shown in Fig. 4, the AVS method with TPAVI depicts the shape of sounding
object better, e.g ., the guitar in the left video, while it can only segment several
parts of the guitar without TPAVI. Such benefit can also be observed in MS3
setting, as shown in Fig. 5, the model enables to ignore those pixels of human
hands with TPAVI. More importantly, with TPAVI, the model is able to segment
the correct sounding object and ignore the potential sound sources which actually
do not make sounds, e.g ., the man on the right of Fig. 4. Also, the “AVS w.
TPAVI” has stronger ability to capture multiple sound sources. As shown on the
right of Fig. 5, the person who is singing is mainly segmented with TPAVI but
is almost lost without TPAVI.
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Fig. 5. Qualitative results under the fully-supervised MS3 setting. Note that
AVS with TPAVI uses audio information to perform better in terms of 1) filtering out
the distracting visual pixels that do not correspond to the audio, i.e., the human hands
(Left); 2) segmenting the correct sound source in the visual frames that matches the
audio more accurately, i.e., the singing person (Right).
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Fig. 6. Audio-Visual attention maps from the fourth stage TPAVI. A brighter
color indicates a higher response. Such heatmaps are adopted as the final results for
the SSL task, but just the intermediate output of the TPAVI module. TPAVI helps the
model focus more on the visual regions that are semantic-corresponding to the audio.

Besides, we also visualize the audio-visual attention matrices to explore what
happens in the cross-modal fusion process of TPAVI. As shown in Fig. 6, the high
response area basically overlaps the region of sounding objects. The attention
matrix is obtained from αi in Eq. (1) of the fourth stage TPAVI. This is visually
similar to the localization heatmap of these SSL methods, but only the interme-
diate result in our AVS method. It suggests that TPAVI builds a mapping from
the visual pixels to the audio signals, which is semantically consistent.

Comparison with a two-stage baseline. The AVS task can also be tackled
by two stages. In the first stage, an off-the-shelf segmentation model extracts
instance segmentation maps. Then, the maps and visual features from the first
stage are concatenated with audios, and fed into a PVT-v2 structure to predict
the final results. We denote this method as TwoSep, and the results are shown
in Table 5. It indicates the AVS task is Not bottlenecked by the segmentation
quality, as the final performance is almost unchanged with a much stronger Mask
R-CNN (backbone from ResNet50 to powerful ResNeXt101), e.g ., mIoU 50.32%
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Table 5. Comparison with a two-stage baseline (TwoSep), which first gener-
ates instance segmentation maps by off-the-shelf Mask R-CNN [14] and then combines
the audio signal for final sounding objects segmentation. Its performance is not bot-
tlenecked by the segmentation quality (using different Mask-RCNN backbones) but is
largely influenced by the audio signal.

Metric Setting
TwoSep wo. audio TwoSep w. audio Ours

Res50 ResNeXt101 Res50 ResNeXt101 -

mIoU S4 69.56 69.98 71.73 71.81 78.74

MS3 47.25 47.40 50.32 50.22 54.00

Table 6. Effectiveness of LAVM. The two variants of LAVM both bring a clear
performance gain compared with only using a standard BCE loss.

Objective function MS3 (mIoU) MS3 (F-score)

ResNet50 PVT-v2 ResNet50 PVT-v2

LBCE 46.64 53.06 .558 .626
LBCE + LAVM-VV 46.71 53.77 .577 .644
LBCE + LAVM-AV 47.88 54.00 .578 .645

vs. 50.22% in MS3 setting. Instead, without or with audios would largely affect
the performance, e.g ., mIoU 47.25% vs. 50.32%. This again reflects the positive
impact of audio signals, especially in the MS3 setting.

Effectiveness of LAVM. We expect that constructing the mapping between
audio and visual features will enhance the network’s ability to identify the cor-
rect objects. Therefore, we propose a LAVM loss to introduce a soft constraint.
We only apply LAVM in the fully-supervised MS3 setting because the change of
sounding objects only happens there. As shown in Table 6, we explore two vari-
ants of the LAVM loss. LAVM-AV is the one introduced in Eq. (3). It encourages
the visual features masked by the segmentation result to be consistent with the
corresponding audio features in a statistical way. Alternatively, LAVM-VV first
finds the closest audio partner for each candidate audio, and then computes the
KL distance of the corresponding visual features (also masked by segmentation
results). This is based on the idea that if two clips share similar audio signals,
the visual features of their sounding objects should also be similar. As shown in
Table 6, both variants achieve a clear performance gain. For example, LAVM-AV

improves the mIoU by around 1% and F-score by about 2%. In practice, we just
use LAVM-AV, since LAVM-VV inconveniently requires a ranking operation.

Without backbone pre-training.We try to train the AVS framework without
the pretrained backbones. As expected, we observe an obvious performance drop,
e.g ., the mIoU decreases from 72.79% to 44.05% under S4 setting with ResNet50
as backbone. We speculate that it is difficult for the model to learn the audio
and visual representation totally from scratch, especially for this challenging
pixel-wise segmentation task.
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(a) without audio (b) with audio

Fig. 7. T-SNE [25] visualization of the visual features, trained with or with-
out audio. We divided the audio features into K = 20 clusters via PCA, and then
assign the cluster labels to the corresponding visual features. The points with the same
color share the same audio cluster labels. When training is accompanied by audio
signals (right), the visual features illustrate a closer trend with the audio feature dis-
tribution, i.e., points with the same colors gather together (Best viewed in color.)

T-SNE visualization analysis. On the test split of the Multi-sources set, we
use the PVT-v2 based AVS model to obtain the visual features. Since the Multi-
source set do not have category labels (its videos may contain several categories),
we use the principal component analysis (PCA) to divide the audio features into
K = 20 clusters. Then we assign the audio cluster labels to the corresponding
visual features. In this case, if the audio and the visual features are correlated,
the visual features should be clustered as well. We use the t-SNE visualization to
verify this assumption. As shown in Fig. 7a, without audio signals, the learned
visual features distribute chaotically; whereas in Fig. 7b, the visual features
sharing the same audio labels tend to gather together.

6 Conclusion

We have proposed a new task called AVS, which aims to generate pixel-level
binary segmentation masks for sounding objects in audible videos. To facilitate
research in this area, we collected the first audio-visual segmentation benchmark
(called AVSBench). We presented a new pixel-level AVS method to serve as a
strong baseline, which includes a TPAVI module to encode the pixel-wise audio-
visual interactions within temporal video sequences and a regularization loss to
help the model learn audio-visual correlations. We compared our method with
several existing state-of-the-art methods of the related tasks on AVSBench, and
further demonstrated that our method can build a connection between the sound
and the appearance of an object. For future work, we believe this research will
pave the way for multimodal semantic segmentation.
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