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A Transformer and Deformable-DETR

The core of a transformer [12] is the attention mechanism. Let us consider an
image feature map f I , the qth query with associated features f q and kth key

with associated image features fk
I . One can define the multi-head attention for

M number of heads and K number of key elements as

MultiHeadAttn
(
f q,f I

)
=

M∑
m=1

Wm

[
K∑

k=1

Amqk ·W ′
mfk

I

]

where W ′
m and Wm are learnable weights. The attention weights Amqk ∝

exp

{
f⊤

q W ′′⊤
m W ′′′

mfk
I√

dk

}
are normalized as

∑K
k=1 Amqk = 1, where W ′′

m,W ′′′
m are

also learnable weights and dk is the temperature parameter. To differentiate
position of each element uniquely, f q and f I are given a distinct positional
embedding.

In our work, we use the multi scale deformable attention [14]. Let us consider
the reference point associated with f q as xq. First, for them

th attention head, we

need to compute the kth sampling offset ∆xmqk based on the query features f q.
Subsequently, the sampled image features f I(xq +∆xmqk) go through a single

layer W
′

m followed by a multiplication with the attention weight Amqk, which
is also obtained from the query features f q. Finally, another single layer Wm

merges all the heads. Formally, the deformable attention operation (DefAttn)
for M heads and K sampling points is defined as:

DefAttn(f q,xq,f I) =

M∑
m=1

Wm

[
K∑

k=1

Amqk ·W
′

mf I(xq +∆xmqk)

]
(1)
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The multi-scale deformable attention for L number of level is given as

MSDefAttn(f q,xq, {f l
I}Ll=1) =

M∑
m=1

Wm

[
L∑

l=1

K∑
k=1

Amlqk ·W
′

mf l
I(ϕl(xq) +∆xmlqk)

]

where ϕl rescales the normalized reference point coordinates appropriately in
the corresponding image space.

B Dataset

Here we describe the individual datasets used in our experimentation in detail.
We also elaborate on generating train-test sets for our experiments. For 20 U.S.
Cities and 3D synthetic vessel we extract overlapping patches from large images.
This provides us a large enough sample size to train our Relationformer from
scratch. Since, a DETR like architecture is not translation invariant because of
learned [obj]-tokens in the decoder, extracting overlapping patches drastically
increases the effective sample size within a limited number of available images.

B.1 Toulouse Road Network

The Toulouse Road Network dataset [1] is based on publicly available satellite
images from Open Streetmap and consists of semantic segmentation images with
their corresponding graph representations. For our experiments we use the same
split as in the original dataset paper with 80,357 samples in the training set,
11,679 samples in the validation set, and 18,998 samples in the test set [1].

B.2 20 U.S. Cities Dataset

For the 20 U.S. Cities dataset [3], there are 180 images with a resolution of
2048x2048. We select 144 for training, 9 for validation, and 27 for testing. From
those images, we extract overlapping patches of size 128x128 to construct the
final train-validation-test split. We crop the RGB image and the corresponding
graph followed by a node simplification. Following Belli et al. [1], we prune the
dense nodes by computing the angle between two road-segments at each node
of degree 2 and only keep a node if the road curvature is less than 160 degrees.
This allows eliminating redundant nodes and simplifying the graph prediction
task. Fig. 1 illustrates the pruning process.

B.3 3D Synthetic Vessels

Our synthetic vessel dataset is based on publicly available synthetic images gen-
erated in Tetteh et al. [11]. In this dataset, the ground truth graph was generated
by [10] and from that, corresponding voxel-level semantic segmentation data was
generated. Grey valued data was obtained by adding different noise levels to the



Relationformer 3

Image Patch Segmentation Patch Cropped Graph Pruned Graph 

Fig. 1. Preprocessing steps for the 20 U.S. Cities dataset. The same steps are followed
in the 3D Synthetic Vessel dataset curation.

segmentation map. Specifically, we train on greyscale ”images” and their corre-
sponding vessel graph representations, where each node represents a bifurcation
point, and the edges represent their connecting vessels. The whole dataset con-
tains 136 3D volumes of size 325x304x600. First, we choose 40 volumes to create
a train and validation set and next pick 10 volumes for the test set. From this,
we extract overlapping patches of size 64x64x64 to construct the final train-
validation-test set. Similar to the 20 U.S. cities dataset, we prune nodes having
degree 2 based on the angle between two edges.

B.4 Visual Genome

Visual Genome is one of the largest scene graph datasets consisting of 108,077
natural images [6]. However, the original dataset suffers from multiple annotation
errors and improper bounding boxes. Lu et al. [9] proposed a refined version of
Visual Genome with the most frequent occurring 150 objects classes and 50
relation categories. It also proposed its own train/val/test splits and is the most
widely used data-split [13,5,7,8] for SGG. For fair comparison, we only train on
the Visual Genome dataset and do not use any pre-training.

C Metrics Details

Metrics for Spatio-Structural Graph: We use three different kinds of metrics
to capture spatial similarity alongside the topological similarity of the pre-
dicted graphs. The graph-level metrics include; 1) Street Mover Distance (SMD):
SMD[1] compute Wasserstein distance between the uniformly sampled fixed
number of points (See Fig. 2) from the predicted and ground truth edges; and
2) TOPO Score: TOPO Score[3] computes precision, recall, and F-1 score for
topological mismatch in terms of the false-positive and false-negative topolog-
ical loop. Alongside, we use 3) Node Detection: For this, we report mean av-
erage precision (mAP) and mean average recall (mAR) over a threshold range
[0.5,0.95,0.05] for node box prediction. Similarly, we use 4) Edge Detection: We
compute the mAP and mAR for the edge in the same way as above. The edge
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Fig. 2. Sampled points, node objects and edge objects for computing different spatio-
structural graph metrics. The same notion is used for 3D graphs.

boxes are constructed from the center points of two connecting nodes (See Fig.
2). For vertical and horizontal edges we assume an hypothetical width of 0.15 to
avoid objects with near zero width.

Metrics for Spatio-Semantic Graph: We evaluate Relationformer on the most
challenging Scene Graph Detection(SGDet) metrics and its variants. Unlike other
scene graph metrics like Predicate Classification (PredCls) or Scene Graph classi-
fication (SGCls) , SGDet does not use apriori information on class label or object
spatial position and does not rely on complex RoI-align based spatial features.
SGDet jointly measures the predicted boxes (with 50% overlaps) class labels of
an object, and relation labels. The variants of SGDet include 1) Recall: Recall
at the different K (20, 50 and 100) of predicted relation that reflects overall re-
lation prediction performance, 2) Mean-Recall: mean-Recall computes mean of
each relation class-wise recall that reflects the performance under the relational
imbalance or long-tailed distribution of relation class, 3) ng-Recall: ng-Recall is
recall w/o graph constraints on the prediction, which takes the top-k predictions
instead of just the top-1. Additionally, we use 4) AP@50: Average precision at
50% threshold of IOU reflects an average object detection performance.

D Model Details

Table 1. The model parameters used in Relationformer experiments across the various
datasets. Specifically, we list details on the backbone and the transformer’s number of
layers, feature dimension and other details.

DataSet Backbone
Transformer

MLP Dim
Enc. Layer Dec. Layer # [obj]-tokens demb

Toulouse ResNet-50 4 4 20 256 512
20 US cities ResNet-101 4 4 80 512 1024
Synth Vessel SE-Net 4 4 80 256 1024
Visual Genome ResNet-50 6 6 200 512 2048
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Table 1, describes the backbone and important parameters of the Relation-
former. We experiment with different ResNet backbones to show the flexibility
of our Relationformer. In order to reduce energy consumption, we use the lighter
ResNet50 for most 2D datasets. For the 3D experiment, we used Squeeze-and-
Excite Net [4]. We used the number of encoder and decoder layers and the
number of [obj]-tokens in the increasing order of dataset complexity. We find
that four transformer layers and 20 [obj]-tokens suffice for Toulouse, while we
need four transformer layers and 80 [obj]-tokens are required for 20 U.S. cities
and synthetic vessel datasets. We need 6 layers of transformer and 200 [obj]-
tokens for the visual genome. The ablation on the number of transformer layers
and number of [obj]-tokens are shown in the next section.

E Training Details

Table 2. A list of the important set of parameters used in Relationformer for respective
training. Furthermore, we list the weights for bipartite matching costs and training
losses.

DataSet
Batch
Size

Learning
rate

Epoch
Cost Coeff. Loss Coeff.
cls reg gIoU λreg λgIoU λcls λrln

Toulouse 64 10−4 50 2 5 0 5 2 2 1

20 US cities 32 10−4 100 3 5 0 5 2 3 4

3D Vessel Net 48 10−4 100 2 5 0 2 3 3 4

Visual Genome 16 10−4 25 3 2 3 2 2 4 6

Table. 2, summarizes some principal parameters we use in the training. We
use AdamW optimizer with a step learning rate. For scene graph generation,
we use the prior statistical distribution or frequency-bias [13] of relation for
each subject-object pair. To minimize the data imbalance for a relation label
present in the Visual Genome, we use log-softmax distribution [7] to soften
the frequency bias. Finally, we add this distribution with the predicted relation
distribution from the relation head. For the spatio-structural dataset, we set
the cost coefficient for the GIoU in the bipartite matcher to be zero because
we assume 0.2 widths of the normalized box for each node. Hence, ℓ1 cost is
sufficient to consider for the spatial distances.

F More Ablation Studies on [obj]-tokens and Transformer

We conduct two more ablation studies on Visual Genome for analyzing the
influence of [obj]-tokens and optimal number of layers in transformer for the
joint graph generation. Furthermore Figure. 3 gives additional insight how [rln]-
token is beneficial for joint object-relation graph.
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Table 3. Impact of the [obj]-tokens on
joint object and relation detection.

#[obj]-tokens AP@50 R@20 R@50 R@100

75 25.1 20.6 26.1 29.5
100 25.8 21.1 27.4 30.6
200(ours) 26.3 22.2 28.4 31.3
300 26.3 21.9 27.9 31.0

Table 4. Impact of the transformer’s
layers on joint object-relation detection

# layer AP@50 R@20 R@50 R@100

4 24.6 20.5 26.5 28.8
5 25.2 21.0 27.2 29.9
6(ours) 26.3 22.2 28.4 31.3

As shown in Table 3, it can be observed that increasing [obj]-tokens does
increase object and relation detection performance. However, it becomes rela-
tively stable with increasing object quarries. DETR-like architectures rely on an
optimal number of [obj]-tokens to balance positive and negative simple which
also helps in object detection as observed in [2]. Thus, in a joint object and rela-
tion prediction, a gain might come from optimal number [obj]-tokens, as relation
prediction is linearly co-related to object detection performance. It demonstrates
that joint object and relation detection can perfectly coexist without hurting the
object detection performance. Instead, it can exploit [obj]-tokens enriched with
global relational reasoning for efficient relation extraction.

During the ablation with transformer layers, we observe decreasing number
of transformer layers shows an initial gain in object and relation detection. How-
ever, they lead to early plateau and inferior performance as depicted in table 4.
One intuitive reason is that with less parameter and insufficient contextualiza-
tion Relationformer quickly learn the initial biases present in both object and
relation detection and failed to learn the complex global scenario. We use the
same number of layers for both encoder and decoder.

G Qualitative Results

Fig. 4 and 5 shows additional qualitative example from our experiments.
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Fig. 3. Typical qualitative results (please zoom in) from our ablation on the synthetic
vessel-graph and visual genome datasets. We observe that Relationformer w/o [rln]-
token is missing vessel edges while Relationformer w/ [rln]-token produces correct
edges. For visual genome, we can see w/o [rln]-token the [obj]-tokens have to carry
extra burden for relation prediction and sometimes fail to incorporate the global rela-
tion. However, the inclusion of [rln]-token provides an additional path to flow relation
information that benefits the joint object and relation detection.
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Fig. 4. Qualitative results (please zoom in) for the 20 US cities road-network and syn-
thetic vessel-graph experiments. We observe that Relationformer is able to produce
correct results. The segmentation map is given for better interpretability of road net-
work satellite images. For vessel-graphs, we surface-render the segmentation of the
corresponding greyscale voxel data.
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Fig. 5. Qualitative results (please zoom in) from the Toulouse road-network and scene-
graph generation experiments. For both datasets, we observe that Relationformer is
able to generate an accurate graph. For scene graphs, we visualize the attention map
between detected [obj]-tokens and [rln]-token, which shows that the [rln]-token ac-
tively attends to objects that contribute to relation formation.
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