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Abstract. The existing work in cross-view geo-localization is based on
images where a ground panorama is matched to an aerial image. In this
work, we focus on ground videos instead of images which provides ad-
ditional contextual cues which are important for this task. There are no
existing datasets for this problem, therefore we proposeGAMa dataset,
a large-scale dataset with ground videos and corresponding aerial images.
We also propose a novel approach to solve this problem. At clip-level,
a short video clip is matched with corresponding aerial image and is
later used to get video-level geo-localization of a long video. Moreover,
we propose a hierarchical approach to further improve the clip-level geo-
localization. On this challenging dataset, with unaligned images and lim-
ited field of view, our proposed method achieves a Top-1 recall rate of
19.4% and 45.1% @1.0mile. Code & dataset are available at this link.

1 Introduction

Video geo-localization is a challenging problem with many applications such as
navigation, autonomous driving, and robotics [11,25,5]. The problem to estimate
geolocation of the source of a ground video is also faced by first respondents now
and then. There are two main formulations to address this problem; same-view
geo-localization [20,18,3] and cross-view geo-localization [13,36,17]. In same-view
geo-localization, the query ground image is matched with a street view image
from the reference set or gallery. Research in videos is limited to same-view
geo-localization where a frame-by-frame approach is followed. This approach
relies on availability of ground view images for all the locations which may not
be possible always.

In such scenarios, cross-view geo-localization is more useful where the query
image is matched with the corresponding aerial or satellite image. However,
cross-view geo-localization is a more difficult problem since there is a large do-
main shift between ground and aerial views. The limited field-of-view in the
ground view makes the problem even harder and it is sometimes difficult even
for humans to identify the correct location of an image.

The existing works in cross-view geo-localization follow an image based ap-
proach where a ground image is matched with an aerial image [17,30,27]. In such
an approach, the contextual information available with the video is lost. We pro-
pose to focus on the geo-localization of ground videos instead of images to take
advantage of the context, i.e. how the view in one frame is related/located w.r.t.

https://github.com/svyas23/GAMa
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Fig. 1. A) Sample ground video frames and corresponding aerial image from the pro-
posed GAMa dataset. The stars represent locations of video frames every second and
mark the trajectory of the video; B) An example of larger aerial region for a video
where stars represent the GPS points labeled every second and marked as X1, .. Xn.
The range µ is derived from the GPS points and corresponds to side of the bounding
box/square. In histogram, we show frequency of number of sample videos at a given
value of µ, in training set. The red dotted lines in histogram show the lower and and
upper threshold (i.e. 0.001 and 0.004) for selecting the videos

another frame. To the best of our knowledge there are no existing datasets which
are publicly available and can be used for this problem. Thus, we propose a new
dataset, named as GAMa (Ground-video to Aerial-image Matching), which con-
tains ground videos with GPS labels and corresponding aerial images. It consists
of ∼ 1.9M aerial images and 51K ground videos where each video is around 40
seconds long. An example video with representative frames and corresponding
aerial image is shown in Figure 1.

We propose GAMa-Net as a benchmark method to solve this problem at clip-
level where we match every 0.5 second (short clip), from a long video, with the
corresponding aerial view. A frame-by-frame approach can be a straightforward
method for video geo-localization, where a 2D convolutional network is used to
get the spatial features frame-by-frame. However, as mentioned before a frame-
by-frame approach ignores the rich contextual information available in a video.
Thus, we propose a 3D-convolution based approach to learn the spatial-temporal
features from a ground video. The proposed approach is trained using an image-
video contrastive loss which aims to match the ground view with the aerial view.
This provides a clip-level geo-localization which is unexplored.

Next, we propose a hierarchical approach which helps in improving the clip-
level geo-localization performance while providing a video-level geo-localization
with the help of clip-level predictions. Corresponding to each video, we get a
set of small aerial images as matched with 0.5 second clips. We match this set
of aerial images and against a larger geographical area. Therefore, we make use
of the contextual information, i.e. location of smaller aerial images w.r.t. each
other in a larger aerial region, to improve the geo-localization.
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We evaluate the proposed approach on GAMa dataset and demonstrate its
effectiveness for clip/video geo-localization. We provide an analysis and propose
a set of baselines to benchmark the dataset. We make the following contributions:

– A novel problem formulation i.e. cross-view video geo-localization and a
large-scale dataset, GAMa, with ground videos and corresponding aerial im-
ages. This is the first video dataset for this problem to the best of our
knowledge.

– We propose GAMa-Net, which performs cross-view video geo-localization at
clip-level by matching a ground video with aerial images using an image-
video contrastive loss.

– We also propose a novel hierarchical approach which provides video-level
geo-localization and utilizes aerial images at different scales to improve the
clip-level geo-localization.

2 Related works

Traditional classical features like SIFT, were earlier used for image matching in
geo-localization [21,34]. As deep learning has proven successful in feature learn-
ing most of the recent studies have adopted CNN based approach for learning
discriminative features for image matching [26]. The problem of image or video
geo-localization is solved using either the same view, which is mostly the ground
view, or cross-view. Same-view geo-localization makes use of the large col-
lections of geo-tagged images available online [16,35,20,18,3,2]. The problem is
approached with the assumption that there is a reference dataset consisting of
geo-tagged ground images and there is an image corresponding to each query
image. There is some research in video geo-localization as well which is solved
at frame level and is followed by trajectory smoothing [6,18,3]. However, a more
complete coverage by overhead reference data such as satellite/aerial imagery
has spurred a growing interest in cross-view geo-localization.

Cross-view Geo-localization. Most of the recent work adopt CNN based
approaches. Several studies have explored CNN architectures for matching ground-
level query images to overhead satellite images [29,27,37,12,8,30]. Triplet loss is
mostly used optimization function [8,17]; certain studies however report better
results with contrastive loss[16]. Field-of-view (FOV) also plays an important role
in deciding the recall rate and ground panorama is highly accurate as compared
to limited FOV [8,36]. Similarly, videos also contain more visual information as
seen through the trajectory of the camera and can be expected to provide more
accurate geo-localization as compared to images or frames with similar FOV.

Current works on cross-view geo-localization follow image based approach
since the existing datasets only contain image pairs for ground and aerial view
[26,17,9,32,19]. However, some papers do report testing their model on videos
using a frame-by-frame approach [9]. Most popular datasets, Cross-View USA
(CVUSA) dataset [31], CVACT [13], and Vo et al. [29] contain ground panorama
aligned with corresponding aerial image. Recent publications have shown very
high recall rate on these datasets while using panoramas however these values
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Table 1. Statistics of the proposed GAMa dataset. Note: Large aerial images are at
1792×1792 resolution whereas small aerial images or tiles are at 256×256 resolution

Parameter Train Test Train(day) Test(day)

Videos 45029 6506 21144 3103
Large aerial images 45029 6506 21144 3103

Clips 1.68M 243k 790k 116k
Centered (CN) small aerial images 1.68M 243k 790k 116k
Uncentered (UCN) small aerial images 2.21M 319k 1.04M 152k

are quite low when using limited FOV and unaligned images, i.e. top@1 recall
of upto 14% [23,32]. VIGOR [36] dataset also contains panorama however being
unaligned it is more realistic. All these datasets use ground panorama which is
not realistic from video geo-localization, as videos have limited FOV, neither
do they have time series data required for such training. It is possible to get
unaligned images and limited FOV from these datasets however, there is no
existing dataset with ground videos and aerial image pairs to solve cross-view
geo-localization in videos and the proposed dataset addresses this gap.

Cross-view is also used for fine geo-localization of UAVs or robots. Camera
feed (also frame-by-frame) and a known small region/map, of about a mile is used
to find a more exact location in the given map [7]. Sometimes a prior is given to
estimate the vehicle pose [10] or multiple modalities are used [14]. However, our
focus is on coarse geo-localization where the gallery spans over multiple cities.

A frame-by-frame geo-localization of videos is also possible with the proposed
GAMa dataset where 2D convolutional networks are used to extract the spatial
features from each frame. However, the contextual information as available from
a video is ignored with frame-by-frame processing. Fusion of features obtained
from 2D-CNN is also possible however it is more memory intensive as compared
to a 3D-CNN network. To address these limitations and challenges, we propose
a videos based cross-view geo-localization.

3 GAMa dataset

The proposed GAMa (Ground-video to Aerial-image Matching) dataset com-
prises of select videos from BDD100k [33] and aerial images from apple maps.

Ground video selection: Most of the videos in BDD100k dataset are 40 sec
long and usually have GPS label every second. The selection of videos from
dataset was based on the range of latitude and longitude for a given video where
we use a range parameter µ. We label the GPS points at nth second as Xn

(latn, longn), where the corresponding latitude is latn and longitude is longn
(Figure 1B, Aerial image). Thus, for the whole video we have GPS points as
X1(lat1, long1), X2(lat2, long2),.., Xn(latn, longn). If max latitude = latk and
min latitude = latl, then Latitude range = latk – latl. Also, if max longitude =
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Fig. 2. A: Sample aerial images from GAMa dataset. a) A large aerial image corre-
sponding to a video, b) Small UCN aerial image (Zoomed-in) and possible locations
(stars) for a matching clip, and c) small centered (CN) aerial image as centered around
the GPS label; B: An outline of the proposed approach. From a given ground video,
clips of 0.5 sec are input to GAMa-Net, one clip at a time is matched to an aerial image.
The sequence of aerial images thus obtained for a video is input to the Screening net-
work, to retrieve the large aerial region for video-level geo-localization. Top predictions
of larger aerial regions provide the updated gallery for GAMa-Net

longp and min longitude = longq, then Longitude range = longp – longq. Range,
µ = max(Latitude range, Longitude range) In order to eliminate stationary and
very fast videos, we select videos with µ from 0.001 to 0.004. Figure 1B. shows
the distribution of training videos with range, µ. The distribution was similar for
training and test sets. This selection left us with 46596 training and 6728 testing
videos which were further screened based on the availability of GPS labels.

Aerial images: For the selected videos, aerial images are downloaded as tiles
from Apple maps at 19× zoom [1]. The dataset comprises of one large aerial
image (1792×1792) corresponding to each video of around 40 sec. and 49 un-
centered small aerial images (256×256) for these large aerial regions. Table 1
summarizes the dataset statistics. Since, most of the videos have a GPS label
every second we divide the videos into smaller clips of 1 sec. each and for each
clip we have an aerial tile. In Figure 1A, we see an example of a large aerial
region, along with the video frames at each second.

Aerial image centering: We have a centered (CN) and an uncentered (UCN)
set of small aerial images, as reported in Table 1. As shown in Figure 2Aa, UCN
aerial images are obtained by dividing the large aerial image into smaller tiles.
The GPS label in these UCN smaller aerial images can be anywhere besides the
center, Figure 2Ab. There are three labels in the figure and for each of these GPS
points the same tile will be considered as the ground truth. For making a CN
set, as shown in Figure 2Ac, we take a crop centered around the corresponding
GPS point however it leads to overlap among the aerial images since in some
videos we have a distribution where GPS points are nearby. In the dataset, we
still have a one-to-one correspondence among aerial images and short ground
clips. The overlap among the aerial images increases the difficulty level for top-1
retrieval, thus we evaluate with distance thresholds.
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Table 2. Comparison of GAMa dataset with existing cross-view geo-localization
datasets. Note that the previous datasets do not contain ground videos

Vo[29] CVACT[13] CVUSA[31] GAMa (proposed)

Ground videos no no no 51535
Panorama 450,000 128,334 44,416 no
Aerial images 450,000 128,334 44,416 1.92M
Aerial img resolution - 1200×1200 750×750 256×256 & 1792×1792
Multiple cities yes no yes yes

The ground videos in the proposed GAMa dataset are selected from BDD100k
dataset[33]. They are distributed all over the US and also from middle eastern
region. However, most of the videos are from four US cities; New York, Berkeley,
San Francsico, and Bay area. They show different weather conditions, as well as
different times of the day including day and night.

There is occlusion in videos and shadows of the skyscrapers in aerial images.
Limited FOV in videos and all stated characteristics bring it closer to a realistic
scenario, making it a difficult dataset for geo-localization. In Table 2, we show
a comparison with existing datasets for cross-view geo-localization.

4 Method

An overview of the proposed approach which works on clip and video level is show
in Figure 2B. Ground-video to Aerial-image Matching Network (GAMa-Net)
learns features for ground view clips and aerial images; and bring the matching
pair closer in the feature space by applying a contrastive loss. This provides a
clip-level geo-localization for a long video. In addition, we propose an hierarchical
approach, where we perform video-level geo-localization and use it to update the
gallery of aerial images by selecting top matched large aerial regions (Figure 2B).
The reduced gallery helps improve the clip-level geo-localization by screening out
some of the visually similar however incorrect aerial images.

4.1 GAMa-Net: Clip-level Geo-localization

The proposed network takes as input a short clip from a ground video and
matches it with corresponding aerial image. An overview of the proposed network
is shown in Figure 3.

Visual encoders In GAMa-Net, we have a video encoder i.e. Ground Video
Encoder (GVE) to get features from ground video frames and an image en-
coder for aerial image features i.e. Aerial Image Encoder (AIE). GVE uses 3D-
ResNet18 as backbone and a two layer transformer encoder. Given a ground
video C, GVE provides features for a 8 frame clip Ci at the ith second of the
video. There is a skip-rate of one frame so we are covering around half a second
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Fig. 3. Network diagram of GAMa-Net proposed for clip-level geo-localization. We
use 3D-CNN as our base network for learning features from a ground clip (around
0.5sec). Similarly, for aerial image features, we use a 2D CNN backbone. Since only
some parts of aerial images are covered by the video feed, using a transformer encoder
improves the learning. Number of frames, k=8 with skip rate=1

in the clip, Ci. AIE on the other hand uses 2D-ResNet18 as the backbone. It
takes the corresponding aerial image, Ai as the input and learns the features to
match with that of the ground video.

Transformer encoding: In the ground video all the visual features are not
of equal importance for matching with the aerial view. This is true for aerial
images as well and few features are more important when matching with ground
videos. For example, the top of a building as seen from aerial images is not visible
from a ground video and hence cannot be used to match the pair. To address
this, we experimented with multi-headed self attention. We input the features
obtained from convolutional networks to a transformer encoder framework which
comprises of 4 heads and 2 layers, and uses positional encoding. A small neural
network i.e. projection head is used to map the representations to the space
where contrastive loss is applied. We use a MLP with one hidden layer to obtain
the ground video and aerial image feature vectors eci and eai, respectively.

Image-video contrastive loss: We utilize contrastive loss formulation,
base on NT-Xent [4,15,24], to train our network. For a given ground video the
corresponding aerial image is considered a positive sample and rest of the sam-
ples are considered as negatives. This is a image-video contrastive loss applied
on features from two different visual modalities i.e. ground videos and aerial
images. In the loss formulation, the focus is on reducing the distance between
the positive pair. We have a total of 2(N) data points in any mini-batch with
N examples. The image-video contrastive loss for a pair of positive examples is
defined as,

lc,a = − log
exp(sim(eci, e

a
i)/τ)∑N

k=1 1[k ̸=i] exp(sim(eci, eck)/τ) +
∑N

k=1 1[k ̸=i] exp(sim(eci, eak)/τ)
,

(1)
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where eci and eai is a positive pair, eci and (eck or eak) are negative pairs,
1[k ̸=i] ∈ {0, 1} is an indicator function with value 1 if k ̸= i, τ is a temperature
parameter, sim is the cosine similarity between a pair of features. The final loss
is computed for all the positive pairs, both (ec, ea) and (ea, ec).

4.2 Hierarchical approach

In this approach, we introduce video-level geo-localization in contrast to clip-
level geo-localization which also helps in reducing the search space for GAMa-Net
(Figure 2B). The clips of a given video are temporally related and provide con-
textual information to help improve the geo-localization. Similarly, while looking
at this problem from aerial image view point, the sequence of aerial images cor-
responding to clips from a given video are also related geographically and some
of the correct prediction at clip-level can be used to update the gallery. Using a
smaller gallery also reduces the possibility of error in feature matching.

Approach: We have four steps in this approach. In Step-1, we use GAMa-
Net which takes one clip (0.5 sec) at a time and matches with a small aerial
image. Using multiple clips of a video, we get a sequence of aerial images for the
whole video, i.e. around 40 images. In Step-2, we use predictions of aerial images
and match them to the corresponding larger aerial region. We use a screening
network to match the features in the same view i.e aerial view. In Step-3, we
use screening network predictions to reduce the gallery size (i.e. search space)
by selecting top ranked large aerial regions corresponding to a video. These
large aerial regions define our new search area for a given video. In Step-4, we
use GAMa-Net i.e. the same network as in Step-1, however localize using the
updated gallery. More explanation in supplementary.

Visually correct predictions from Step-1 which may not be the ground truth
are used to reduce the gallery using this approach. This approach helps improve
the clip-level geo-localization since the reduction of the gallery is based on the
fact that all the clips of a given video are geolocated nearby. Thus, the aerial
images predicted by GAMa-Net can be used to find that large aerial region where
all these clips have been captured. In this case, the probability of finding all those
visually correct aerial images in the same region is higher when we are searching
at the correct geolocation. Hence, it is likely to match with correct large aerial
region provided that meaningful and enough information is available.

Screening Network: Video-level Geo-localization We use the screen-
ing network to match a sequence of smaller aerial images with the corresponding
larger aerial region. The network is similar to GAMa-Net, however the sequence
of aerial images is input to Small Aerial Encoder (SAE) with 2D-ResNet18 back-
bone and the sequence of features are later averaged to obtain a 512D feature
vector (Figure 4A). We also experimented with a 3D-ResNet18 backbone which
is discussed later. The feature vector thus obtained is matched with the feature
vector of corresponding large aerial image from Large Aerial Encoder (LAE). We
apply contrastive loss similar to Equation 1. The predictions from this network
are used to update the gallery for GAMa-Net.
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Fig. 4. A) Network diagram of the Screening network used for video-level geo-
localization in our proposed Hierarchical approach. B) Predictions at video level (2
samples), where a representative frame of video (top-row) is shown along with correct
matched large aerial region (bottom-row)

5 Experiments and Results

Implementation and training details: We implement the proposed GAMa-
Net and screening network using PyTorch [15] and train the networks using
Adam optimizer with a learning rate (lr) of 8e-5. We use a lr scheduler with lr
decay rate of 0.1. The screening network is trained in two step; first with the
actual ground truth sequences, and then finetuned with predictions from GAMa-
Net. The finetuning step allows the network to adapt to noisy aerial sequences
which will be used during inference. We use pre-trained weights from Kinetics-
400 for 3D-ResNet18 and ImageNet weights for 2D-ResNet18. The ground videos
in the proposed dataset are from different times of the day. For faster training,
we used only day videos in our experiments unless stated otherwise.

Evaluation: We use top-k recall for clip-level and video-level matching at
different values of k. Given a video query, its closest k reference neighbors in the
feature space are retrieved as predictions. Similar to image based geo-localization
methods we use recall rates at top-1, top-5, top-10, and top 1%. More details can
be found in [29,8,22]. We have UCN and CN sets of aerial images corresponding
to each clip. In UCN set there is one-to-one correspondence between the clip and
aerial image. The GPS point can be anywhere within the aerial image however in
the CN set there is an overlap among the aerial images. To keep the evaluation
similar to UCN set it is considered a correct match if the predicted GPS is within
the range of 0.05 mile of the correct location. We also report top-1@t rate where
t is a distance threshold to be used for correct prediction.

Baselines: We propose several baselines for comparison. For ground image
based baselines we use the center frame of the clip as an input. Image-CBn, our
proposed baseline uses 2D-CNN ResNet18 model to encode the ground video
frame with similar contrastive loss formulation as GAMa-Net. We use two dif-
ferent loss functions for video based baselines (Triplet-Bn and CBn); margin
triplet loss [28] and contrastive loss [4]. In these baselines, we utilize 2D-CNN
ResNet18 for aerial images and 3D-CNN ResNet18 for ground videos.
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Table 3. Comparison with proposed baselines; CBn(Contrastive Baseline) &
Bn(Baseline). Recall rates in parentheses() are for uncentered set. Top three rows show
results with image based methods

Model Video R@1 R@5 R@10 R@1%

Image-CBn x 9.5(1.5) 18.8(5.5) 24.6(9.0) 87.7(50.7)
Shi et al.[23] x 9.6 18.1 26.6 71.9
L2LTR [32] x 11.7 20.8 28.2 87.1

Triplet-Bn ✓ <1(<1) <1(1.2) 1.1(2.4) 33.1(33.8)
CBn ✓ 11.5(3.2) 21.7(10.9) 27.8(16.7) 89.2(65.0)
GAMa-Net ✓ 15.2 27.2 33.8 91.9
GAMa-Net (Hierarchical) ✓ 18.3 27.6 32.7 -

5.1 Results

The evaluations of GAMa-Net and a comparison with baselines is shown in Table
3. We observe a Top-1 recall rate of 18.3% and 15.2%, using GAMa-Net with
and without the hierarchical approach, respectively. On UCN set, we observe
poor performance as compared to CN set which was expected.

Comparison: In first row, we show results with our image-based baselines
which uses a single frame from the ground video. We also compare with other
image based methods using a single frame as input and observe that the proposed
approach outperforms all these baselines. While training with a single image is
faster we do not have the temporal information which can be perceived as relative
positioning or contextual information. As the camera moves along a path or
trajectory we can see the buildings or objects pass-by giving an idea of their
respective location. The information of distance/relative-positioning as seen by
a 3D-CNN is the additional information when we train with videos. As shown
in the Table 3, using a video provides better results as compared to images.

Few studies have reported better performance with contrastive loss [16], how-
ever triplet loss is also frequently used for geo-localization [36,18]. We also ob-
serve better performance with contrastive loss as compared to triplet loss (Table
3). In GAMa-Net, we have features from two different visual modalities i.e. one
from ground videos and other from aerial images, which is different from tra-
ditional contrastive loss. Similarly, training with triplet loss also use image-video
features and this difference is likely responsible for the poor training with triplet
loss.

Qualitative analysis: Figure 5 show sample Top-5 predictions with differ-
ent models where the leftmost is Top-1 and the rightmost is 5th. The combined
model, i.e. GAMa-Net without transformer encoder, makes visually meaningful
predictions. In the leftmost example, camera is passing under a fly-over and the
predictions show a similar locations. The middle example is of a road without
any crossings or red lights in sight, and right-most example is of a city street
with crossing markings on road. The predictions by combined model match these
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Fig. 5. Geo-localization results for three query clips, using different models. Top-row
shows frames of the query clips. Second row is for combined model (Top-5 predictions),
and third row is GAMa-Net. Bottom row shows predictions by GAMa-Net with Hier-
archical approach ( gallery reduced to 1% of larger aerial regions). Correct predictions
have a green outline. Owing to close GPS labels there are multiple correct aerial images

Table 4. Screening network matches large aerial regions using a sequence of matched
aerial images. In this Table, we compare 3D-CNN and 2D-CNN backbone for aerial
image sequence of 8 or 32 images

Model R@1 R@10 R@1% R@10%

3D-CNN (seq of 8 aerial) 7.5 24.9 39.8 67.9
3D-CNN (seq of 32 aerial) 3.8 19.8 36.1 74.9
2D-CNN (seq of 8 aerial) 12.2 35.3 49.3 77.2
2D-CNN (seq of 32 aerial) 8.2 20.9 29.3 83.8

specifications. However, in these samples, the ground truth is in top-1% but not
in top-5 images. The predictions by GAMa-Net, with multi-headed self-attention
improves the network performance and correct prediction moves up in the top-5.

Hierarchical approach The predictions from the screening network are used
for video-level geo-localization and to reduce the gallery for GAMa-Net. We ex-
perimented with both 2D-CNN and 3D-CNN backbone for aerial image sequence.
As shown in Table 4, better results were achieved with 2D-CNN backbone likely
due to better spatial features. A comparison of number of input aerial images
show that 2D-CNN with 8 frames retains more ground truths at Top-1 (12.2%),
Top-10 (35.3%) and Top-1% (49.3%). We do not have 32 samples in some of
the samples which likely effects the performance. However, when we evaluated
GAMa-Net after gallery reduction, Screening network i.e. 2D-CNN network
with 32 aerial images provided the best results. Figure 4B shows qualitative
results for video-level geo-localization. It shows one frame of the video input to
GAMa-Net, the predicted seq of aerial images thus obtained was used to identify
the larger aerial regions. The bottom row shows the correct matched large aerial
regions for video-level geo-localization. More results are in supplementary.

Gallery sizes: In Table 5, we discuss the results with GAMa-Net using
various gallery sizes, i.e. Top-10, Top-1%, and Top-10% of large aerial regions,
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Table 5. Results with GAMa-Net, without and with the hierarchical approach

Gallery size R@1 R@5 R@10 R@1%

Full 15.2 27.2 33.8 91.9

With Hierarchical Approach

Top-10 16.2 22.8 25.5 -
Top-1% 18.3 27.6 32.7 -
Top-10% 16.6 28.2 34.6 76.6

Table 6. Results with our best model and ablations for comparison. Here we show Top-
1@threshold for comparison, with threshold values of 0.1, 0.2, 0.5 and 1.0 mile. CBn-
UCN and CBn-CN, represent the contrastive baselines with uncentered and centered
aerial images, respectively. Hierarchical approach uses one percent of the gallery

Model Recall @
Top-1 Top-5 Top-10 Top-1% Top-1@0.1 Top-1@0.2 Top-1@0.5 Top-1@1.0

CBn-UCN 3.2 10.9 16.7 65.0 3.6 5.9 11.3 18.6
CBn-CN 11.5 21.7 27.8 89.2 15.7 19.0 25.1 32.1
Combined 11.6 23.4 30.4 92.4 15.6 19.0 25.0 32.7

Video-Tx 14.1 25.4 31.8 90.8 18.7 22.1 28.1 35.7
GAMa-Net 15.2 27.2 33.8 91.9 19.6 23.0 28.7 36.1
Dual-Tx 14.6 26.1 32.7 91.8 19.0 22.2 28.2 35.5

Hierarchical 18.3 27.6 32.7 - 23.5 27.8 34.9 43.6

identified using screening network. We see better Top-1 results with Top-1%
gallery as compared to Top-10 and Top-10%. There is a trade-off between re-
duced search space which improves matching and retaining the ground truth.
As observed from Table 4, in Top-10 we have ground truth for only 20.9% of
videos which increases to 83.8% at 10% gallery. However, this percentage will
be different if we consider clips since we get different number of clips from each
video, as per GPS labels. We evaluated GAMa-Net, which is clip level, using a
reduced gallery. Even when ground truth was not available for many samples we
see a Top-10 recall rate of 25.5%. When gallery is reduced to Top-10 and Top-1%
of larger aerial regions we do not have enough clips to make upto 1% of the total
gallery. In Figure 5, we show three example predictions and it is evident that
results by GAMa-Net are improved with hierarchical approach.

5.2 Ablations

Combined model: In Table 6, we observe better performance with combined
model as compared to baselines, and a Top-1% recall of 92.4%. As expected, the
performance improves as we increase the distance threshold. In the combined
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model, we have various augmentations which includes spatial and temporal cen-
tering, and random crop. Since images are not aligned in GAMa we stochastic-
ally rotate the aerial view (0, 90, 180, 270 deg) for view-point invariance. All
these augmentations have been reported to help improve geo-localization. We
also include hard negatives for better training however transformer encoder is
not a part of combined model.

Transformer encoder: Similar to an aerial image, not all visual features
in the ground video have the same importance for cross-view geo-localization.
Thus, we implemented transformer(Tx) encoder on ground video(Video-Tx) and
aerial images(Aerial-Tx), individually. In both cases, we observe an increase in
recall @Top-1. The performance is better with GAMa-Net(i.e. Aerial-Tx) and
we observe 15.2% Top-1 recall which is higher than 14.1% with Video-Tx (Table
6). Observing an improvement in both cases we used transformer encoder on
both sides(Dual-Tx) however it did not perform better than the GAMa-Net.

Hierarchical approach: We use hierarchical approach to improve the per-
formance of GAMa-Net by reducing the gallery. Top-1@threshold (Table 6)
shows that using the hierarchical approach makes the matching more effective
by predicting the aerial images closer to the correct GPS location or ground
truth. The difference in Top-1 recall, with and without hierarchical approach,
is even higher at higher thresholds i.e 7.5% at 1.0 mile vs 3.9% at 0.1 mile. An
increase in recall to 43.6% at 1.0 mile threshold shows that the ground truth is
not very far from the Top-1.

6 Discussion

Videos and contextual information: In videos, we have more information
which can be considered as contextual information from geo-localization point
of view. It enables the network to locate a given frame or view with respect to
the other frames in the video. One frame may contain features to complement
another and together they are likely to provide more or complete information
required for geolocating. In Table 3, we have compared video based method with
frame based baselines. Better recall rate with videos show that the network is
able to utilize the additional information available with videos.

Centered vs Uncentered: In an UNC aerial image the corresponding GPS
point can be anywhere in the tile. In cases where the GPS point is near the
boundary, the visual information from the video is less likely to match the corre-
sponding tile. As expected, after centering (CBn-CN) we observed an improve-
ment in the recall rate as compared with the uncentered set (i.e. CBn-UCN).

Full Dataset: GAMa dataset is a large dataset which has its pros and
cons. With large amount of data networks are better trained however this also
increases the training time and memory requirement. Here we discuss results
with models trained on full dataset (Table 7) i.e. both day and night videos.
There is an improvement of 1-4% in recall at all k. Thus, using the hierarchical
approach our best R@Top-1 and R@Top-1@1.0 is 19.4% and 45.1%, respectively.
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Table 7. Training on full dataset and evaluation on day videos

Model Recall @
Top-1 Top-1% Top-1@0.1 Top-1@1.0

Combined 14.7 94.8 19.2 36.7
GAMa-Net 17.5 94.7 22.3 39.3
Hierarchical 19.4 - 25.0 45.1

Comparison: Our results are comparable to existing image based meth-
ods. One recent study reports R@1=13.95% on CVUSA when images are
unaligned and have around 70% field of view (FOV) [32]. Most of the cross-view
geo-localization datasets such as CVUSA report high R@k while using ground
panorama and aligned aerial images; which is unrealistic since a normal camera
lens has a FOV of around 72% and alignment is also not possible always. In
GAMa dataset, the aerial images and ground videos are unaligned, and ground
videos have a limited FOV which makes it a more realistic and difficult dataset.

Challenges: In GAMa dataset among the two sets of small aerial images, i.e.
CN and UCN, the UCN set is more realistic however difficult for geo-localization.
Lack of alignment increase this difficulty however, the orientation information
can be extracted from the GPS information and is likely to improve the perfor-
mance [13]. Also, the ground videos have varying lengths and in some videos
GPS label is not available every second. Thus, the video length available for
geo-localization is less than 40 sec. Additionally, there is occlusion because of
the car hood and other objects. Such cases are more likely to appear in fail cases.

Limitations: The proposed hierarchical approach performs better with longer
videos (8 sec. or more), however it can be used with shorter clips as well. The
aim behind using a hierarchical approach is to filter out confusing samples to im-
prove the retrieval rate. However, this sometimes leads to filtering of the ground
truth from the gallery. The model is also likely to fail with indoor videos since
it will not be possible to match the features with an aerial image. However, this
limitation is common to all cross-view geo-localization methods.

7 Conclusions

In this work, we focus on the problem of video geo-localization via cross-view
matching. We propose a new dataset for this problem which has more than 51K
ground videos and 1.9 million satellite images. The dataset spans multiple cities
and is a more realistic dataset, unaligned and limited FOV. We believe that this
dataset will be useful for future research in cross-view video geo-localization. Our
proposed GAMa-Net effectively makes use of the rich contextual information
available with video. In addition, we propose a hierarchical approach which also
utilize the contextual information to further improve the geo-localization.
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