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A Applications of our system

Our system registers feature maps extracted from images and their corresponding
labels to the database, as described in Section 3.2 of the main paper. A feature
map can be linked with not only a single label but multiple labels as well.
For example, when extracting a feature map from a cat image, our system can
register not only the cat label but also the labels tabby (the subcategory) and
mammal or animal (the broad category or superclass) with the feature map.
In the main paper, we introduced the procedure of linear search for all feature
maps in the storage when calculating the distance with the feature maps of
the query image. Our system can use multiple registered labels to refine the
search according to the classification setting. For instance, in the case of an
animal classification problem, our system can selectively list the files of image
feature maps linked to the animal label before the distance calculation. Then, by
loading only the listed image feature maps to the computing device, the distance
calculation can be processed even with limited memory resources.

By analyzing the number of references for each sample in the database, we
can identify frequently or rarely referred samples, and interpret what knowledge
is currently required or unnecessary. The information on the number of references
can be used for prioritization when verifying the validity of stored knowledge. For
example, when checking labels of samples within a limited amount of time, users
can review the labels of frequently referred samples first, instead of checking
all the samples in the storage. Moreover, if users need to reduce the storage
size, rarely referred samples can be deleted from the storage like pruning model
parameters.

In addition, the inference time of our system is as short as a few milliseconds,
as shown in Fig. 5 of the main paper. Therefore, we believe that our system can be
implemented in real-time applications, e.g., infrastructure monitoring systems,
where objects to be detected change temporally and need to be identified in real
time without training. Our system can log the samples referred for inference,
along with the original images and file names. When some anomaly or error
occurs, operators can effectively investigate the cause later by checking the logs.
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Table A1l. Details of image encoder models.

Output feature Input ResNet
Model dimension resolution blocks width
RN50 1024 224 (3,4,6,3) 2048
RN101 512 224 (3,4,23,3) 2048
Output feature Input Vision Transformer
Model dimension resolution layers width head
ViT-B/32 512 224 12 768 12
ViT-B/16 512 224 12 768 12
ViT-L/14 768 224 24 1024 16

B Pretrained image encoder models

In the main paper, we primarily employed image encoder models pretrained by
CLIP [9]. We summarize the details of the image encoders in Table Al.

C Processing time for distance calculation

As described in Section 3.3 of the main paper, our system retrieves nearest neigh-
bor samples based on the cosine distance between a query and the stored feature
maps. In the experiments in this work, the memory capacity required for using
the stored feature maps is 5.3 GB at most. Therefore, all of them can be fully
loaded into GPU memory, and a linear search based on the distance calculation
is executed on GPU. Fig. Al shows the processing time for distance calculation
between a query and the stored feature maps measured on the NVIDIA A100
GPU. As shown in Fig. Al, the processing time increases with the number of
stored feature maps. However, in terms of the overall inference procedure, the
processing time for query encoding is more dominant than that for distance cal-
culation, so the total processing time does not increase much as the number of
stored feature maps increases, as shown in Fig. 5 in the main paper.

If the number of stored feature maps is scaled up (e.g., 10x), all the feature
maps may not fit completely into the memory. Then, the time required for mem-
ory access will be non-negligible. As methods for scaling up our system, we can
utilize (i) large-scale fast ANN (approximate nearest neighbor) search with stor-
age [4,6], (ii) larger memory with the latest GPUs, and/or (iii) computational
storage [12], and we are currently investigating them as future work.

D Hyperparameter settings in continual learning
scenarios

In Section 4.2 of the main paper, we compared the performance of our system
with those of conventional methods proposed for continual learning scenarios
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Fig. A1. Processing time for distance calculation measured on the NVIDIA A100 GPU.

(iCaRL, ER, GEM, A-GEM, and EWC [10,11,8,3,7]). We employed a fully con-
nected layer as a classifier head for these methods, and applied pretrained models
by CLIP to the initial values. We employed a stochastic gradient descent algo-
rithm as an optimizer and trained the image encoder and classifier models for
50 epochs on the Split CIFAR-100 dataset [3,13]. We set the learning rate to
0.01 and the mini-batch size to 32. In iCaRL, ER, GEM, and A-GEM, we set
memory buffer size to 500 for storing a part of training data learned in the past
in the memory. In EWC, we set A\ for the penalty term to 0.5 without storing
any training data learned in the past. For these hyperparameter settings, we
referred to the values in Refs. [1,2].

E Final accuracy evaluation in class incremental setting

In Table 4 in Section 4.2 of the main paper, we evaluated the performance in
class-incremental learning with the averaged accuracy values from the first to the
last set of classes. We can also evaluate the performance with the final accuracy
values after the last set of classes has been learned. Table A2 summarizes the
final accuracy in class-incremental learning with ResNet-50 on Split CIFAR-100.
As shown in Table A2, our approach is also effective when evaluating the final
accuracy.

Table A2. Final accuracy evaluation in class incremental setting with ResNet-50 on
Split CIFAR-100.

ResNet-50 on Split CIFAR-100
Method  Owurs CLIP iCaRL ER GEM A-GEM EWC
Accuracy [%] 55.9 42.8 27.8 9.8 7.0 48 3.0




4 K. Nakata et al.
F Future works for better pretraining

In Section 3.1 of the main paper, we described that the performance of our
system depends on the pretraining methods of image encoder models. In this
work, we directly used the image encoder models pretrained by CLIP, and we
did not optimize the pretraining condition or the architecture of the pretrained
models (e.g., the number of output feature dimensions) for our system.

CLIP contrastively learns image and text encoders such that relevant image-
text pairs are mapped to the neighborhood in the latent space. In this pretrain-
ing, a kNN classifier is not employed as a head model to calculate the contrastive
loss, and the pretrained models are not optimized for the kNN classifier. Recently,
Ref. [5] has proposed a contrastive learning method that explicitly incorporates a
nearest neighbor algorithm into the pretraining for image encoders. This method
contrastively learns image encoders so that input images and retrieved ones from
a support set by a nearest neighbor search are mapped to the neighborhood in the
latent space. To further improve the accuracy of our system, we need to devise
better pretraining method and condition suitable for similarity-based retrieval
using kNN, which is a future work.
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