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1 Comparison with Prevalent Software

Technically, the prevalent document rectification algorithms in smartphones
commonly have a restriction that the document should be a regular quadri-
lateral shape. Specifically, such techniques first detect the four corner points of
the document to localize a quadrilateral document region and then apply per-
spective transformation to get the rectified image. As a result, they can not deal
with the situation when the captured document has any irregular deformations.

As shown in Figure 1, we compare our method with the prevalent software,
including the CamScanner Application, the internal document rectification al-
gorithm of IPhone 12, Huawei Nova 9, and Xiaomi 11. We can see that our Doc-
GeoNet is capable of rectifying the documents with irregular deformations. This
is because the predicted warping flow of DocGeoNet defines a non-parametric
transformation, thus being able to represent a wide range of distortions.
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Fig. 1. Qualitative comparisons of our method with the prevalent software, including
the CamScanner Application, the internal document rectification algorithm in smart-
phone of IPhone, Huawei, and Xiaomi.

⋆ Corresponding Authors: Wengang Zhou and Houqiang Li.
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2 More Qualitative Results

As shown in Figure 2, we present more qualitative rectified results on the Do-
cUNet Benchmark dataset [25]. Besides, as shown in Figure 5, we provide more
rectified results on real distorted document photos. As we can see, the proposed
DocGeoNet shows superior rectification quality.

Particularly, as shown in Figure 5, the distorted images show various physical
deformations, backgrounds, and illumination conditions. These photos are cap-
tured under various indoor (during day and night) and outdoor scenes. Besides,
the used documents contain text, tables, figures, or their mixture.

Fig. 2. Visualization of the rectified results on the DocUNet Benchmark dataset [25].
The first and third row are the input distorted images. The second and bottom row
show their corresponding rectified results.
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Fig. 3. Visualization of the rectified results on real distorted document photos under
various conditions. The first, third and fifth row are the distorted images, and the
remaining rows are their rectified results.
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3 DIR300 Dataset

Furthermore, we present the detail about the creation of the DIR300 test set.
Concretely, the images are firstly taken by three people with three different cell-
phones, including iPhone 12, Huawei Nova 9, and Mi 11. Each person captures
100 photos. Secondly, to involve various backgrounds and illumination condi-
tions, for each person, the indoor and outdoor scenes account for 70% and 30%,
respectively. For indoor scenes, 20% are taken in the evening. Thirdly, in terms
of distortions, 40% samples involve random curving; 40% samples contain ran-
dom folds; 10% samples are flat; the remaining 10% are heavily crumpled. Here
we do not fix the scenes for a certain distortion.

Note that the ground truth images are captured before the collection of the
distorted images. Specifically, we put the regular rectangular document on a
plane. Then, we align the four corner points of the rectangular document and
then get a perfect rectification. The rectified image is taken as the ground truth.
Another way is adopted by the successful DocUNet Benchmark dataset [25]
which scanned the printed document to image as GT, but a perfect alignment
is still difficult due to the scanning error.

As shown in Figure 5, we present more qualitative rectified results on the
DIR300 test set. It can be seen that, the proposed DocGeoNet shows superior
rectification performance.

4 OCR Visualizations

To reveal the impact of the geometric rectification on the OCR performance,
we further visualize their OCR results, respectively. We use the Tesseract [33]
as the OCR engine. As shown in Figure 4, after the geometric rectification, the
OCR performance makes remarkable improvements.
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Fig. 4. Visualization of two instances about the impact of the geometric rectification
on the OCR performance. The second and fourth column show the recognized text of
the distorted image and the rectified image of the proposed DocGeoNet, respectively.
Besides, we highlight the correct recognized text of DocGeoNet in the fifth column.
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Fig. 5. Visualization of the rectified results on the DIR300 test set. The first and fourth
row are the distorted images. The second and fifth row are their rectified results. The
remaining are their corresponding ground truth.
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5 Efficiency Analysis

In this section, we discuss the efficiency of the proposed DocGeoNet and other
learning-based methods. As shown in Table 1 in the manuscript, DocGeoNet is
efficient in terms of inference time and parameter count compared with existing
learning-based methods. One of reasons is that we predict the backward warping
flow directly that is used to sample the pixels from the input distorted image for
rectification, following [6,9,10]. In contrast, previous work DocUNet [25] predicts
the forward warping flow instead, which has to be converted to the backward
warping flow first using the unstructured points. In addition, DocProj [19] crops
the distorted image into patches first and then rectifies the patches to perform
rectification. However, the rectification of input distorted patches and the stitch-
ing of backward warping flow patches heavily increase the computational cost.

6 Performance on DocUNet Benchmark

In Table 1 of the manuscript, we report the performance on the corrected Do-
cUNet Benchmark dataset [25]. In this section, for clarity, we also report the
results on the DocUNet Benchmark dataset [25] with two mistaken image sam-
ples. The results are shown in Table 1. Note that the two mistaken images are
not contained in the sub-set for the OCR evaluation. Hence, they only affect the
evaluation of MS-SSIM and LD.

Table 1. Quantitative comparisons of the existing learning-based methods in terms of
image similarity, distortion metrics, OCR performance, and running efficiency on the
DocUNet Benchmark dataset [25] with two mistaken image samples. “↑” indicates
the higher the better, while “↓” means the opposite.

Methods Venue MS-SSIM ↑ LD ↓ ED ↓ CER ↓ FPS ↑ Para.
Distorted - 0.2464 20.51 2111.56/1552.22 0.5352/0.5089 - -

DocUNet [25] CVPR’18 0.4094 14.22 1933.66/1259.83 0.4632/0.3966 0.21 58.6M
AGUN [22] PR’18 0.4491 12.06 - - - -

DocProj [19] TOG’19 0.2928 18.19 1712.48/1165.93 0.4267/0.3818 0.11 47.8M
FCN-based [42] DAS’20 0.4361 8.50 1792.60/1031.40 0.4213/0.3156 1.49 23.6M
DewarpNet [6] ICCV’19 0.4692 8.98 885.90/525.45 0.2373/0.2102 7.14 86.9M

PWUNet [7] ICCV’21 0.4879 9.23 1069.28/743.32 0.2677/0.2623 - -
DocTr [9] MM’21 0.5085 8.38 724.84/464.83 0.1832/0.1746 7.40 26.9M

DDCP [41] ICDAR’21 0.4706 9.51 1442.84/745.35 0.3633/0.2626 12.38 13.3M
FDRNet [43] CVPR’22 0.5440 8.75 794.54/514.90 0.2010/0.1846 - -
RDGR [14] CVPR’22 0.4929 9.11 693.38/420.25 0.1654/0.1559 - -

Ours - 0.5027 8.37 692.86/379.00 0.1797/0.1509 - 24.8M

7 Metric Analysis

During the experiments, we find that the SSIM [38] is not a very appropriate
metric for document image rectification. Document image rectification is not a
pixel-aligned task, different them the typical pixel-aligned tasks, such as derain-
ing and denoising. SSIM [38] and MS-SSIM [39] are designed to capture the
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perceptual distortion of images with respect to a reference image. Blur, noise,
color shifts, and halos are the types of artifacts they are designed to capture,
rather than geometric distortion (i.e., misalignment of the pixels between a ref-
erence and a corrupted image). For future works, we recommend removing it and
leaving the other metrics. If the authors think they should keep it to be consis-
tent with previous work, we recommend adding a note that that is the purpose
of providing that number. A typical example is FDRNet [43]. The SSIM score
in Table 1 in the manuscript is smaller than that in Table 1 in this supplemen-
tary material. However, Table 1 in the manuscript shows the performance on
the corrected DocUNet Benchmark dataset [25].

8 Limitation Discussion

Existing methods all limit the size of background area of the distorted images
when training the rectification networks. This is because the background area
of distorted images in DocUNet Benchmark dataset [25] is small. As a result,
when increasing the camera distance, the background area becomes larger and
the performance drops. It is the same with our method. We hope future works
can propose more robust methods.
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