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Abstract. Visual emotion recognition (VER), which plays an impor-
tant role in various applications, has attracted increasing attention of
researchers. Due to the ambiguous characteristic of emotion, it is hard
to annotate a reliable large-scale dataset in this field. An alternative solu-
tion is semi-supervised learning (SSL), which progressively selects high-
confidence samples from unlabeled data to help optimize the model. How-
ever, it is challenging to directly employ existing SSL algorithms in VER
task. On the one hand, compared with object recognition, in VER task,
the accuracy of the produced pseudo labels for unlabeled data drops a
large margin. On the other hand, the maximum probability in the predic-
tion is difficult to reach the fixed threshold, which leads to few unlabeled
samples can be leveraged. Both of them would induce the suboptimal
performance of the learned model. To address these issues, we propose
S2-VER, the first SSL algorithm for VER, which consists of two com-
ponents. The first component, reliable emotion label learning, aims to
improve the accuracy of pseudo-labels. In detail, it generates smoothing
labels by computing the similarity between the maintained emotion pro-
totypes and the embedding of the sample. The second one is ambiguity-
aware adaptive threshold strategy, which is dedicated to leveraging more
unlabeled samples. Specifically, our strategy uses information entropy to
measure the ambiguity of the smoothing labels, then adaptively adjusts
the threshold, which is adopted to select high-confidence unlabeled sam-
ples. Extensive experiments conducted on six public datasets show that
our proposed S2-VER performs favorably against the state-of-the-art
approaches. The code is available at https://github.com/exped1230/S2-
VER.

1 Introduction

Visual emotion recognition (VER) aims at identifying human’s emotions towards
different visual stimuli [37]. With the popularization of multimedia, many peo-
ple utilize images to record their feelings on social platforms, such as Instagram
and Twitter. Therefore, visual emotion has drawn increasing attention from
computer vision researchers [8, 24, 37] with its wide applications, e.g., opinion
mining [27, 52] and image captioning [1, 6]. Among them, recognizing the dom-
inant emotion evoked by affective images is one of the most popular research
directions [39,45].

https://github.com/exped1230/S2-VER
https://github.com/exped1230/S2-VER


2 Jia et al.

0%

20%

40%

60%

80%

100%

Anger

Amusement Awe Contentment

Disgust

Excitement

Fear Sadness

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

0%

20%

40%

60%

80%

100%

𝑷
𝒂
𝒄
𝒄

max probability

FI (𝑷𝒂𝒄𝒄)

CIFAR-10 (𝑷𝒂𝒄𝒄)

CIFAR-10 (Frequency)

FI (Frequency)

F
re

q
u

en
cy

(a) (b)

0.3

0.2

0.1

0.7

0.5

0.3

0.5              0.6              0.7               0.8         0.9             1.0

0.54

0.36

0.73

0.50

0.95

Fig. 1: Comparison between FI and CIFAR-10. (a) shows the frequency histogram and
pseudo label accuracy Pacc when training FixMatch on FI and CIFAR-10, respectively.
The maximum probability of the prediction is used to measure the confidence of the
pseudo labels in SSL. FixMatch sets 0.95 as threshold to select high-confidence samples.
(b) illustrates the label distribution of images from FI and CIFAR-10. The labels are
represented by different colors.

In the past decades, many works make considerable improvements to VER [28,
39,47]. However, most of these methods train networks in fully-supervised man-
ner, which need a large amount of labeled data. It is extremely time-consuming
to construct such datasets. Besides, due to the diversity of cultural backgrounds
and personalities, different viewers may have different emotions induced by the
same image [52]. Furthermore, a viewer may even have multiple emotions towards
an image, i.e., ambiguity [42]. Therefore, compared with object recognition, it
is challenging to annotate a reliable large-scale dataset for FER. In this paper,
we explore leveraging pseudo-labeling based semi-supervised learning (SSL) al-
gorithms to address this issue. On the one hand, with the help of SSL algorithm,
the cost of annotation can be significantly reduced. On the other hand, the al-
gorithms progressively adopt high-confidence samples to train the model, which
alleviates the impact of unreliable samples. We believe it is a promising direction
to address the difficulty of emotion annotation.

SSL aims to address the need for labeled data by designing an algorithm
to utilize unlabeled data [4]. As a representative method, FixMatch [30] selects
high-confidence predictions from weakly augmented unlabeled instances, and
then exploits them as the pseudo labels for the strongly augmented instances.
To explore the performance of FixMatch in VER, we conduct a comparison
experiment on FI [44] and CIFAR-10 [15]. Specifically, on both datasets we
sample 100 labeled samples and 1,000 unlabeled samples from each class to train
ResNet50 [9] with the same setting. The results are shown in Fig. 1 (a), and we
have two observations. First, when the maximum probability is 0.95, compared
with CIFAR-10, the accuracy of pseudo labels on FI drops a large margin. During
the training process, due to the challenge of VER, the accumulated mistakes of
pseudo labels result in confirmation bias, which is a common hazard in SSL [18,
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32]. Second, only a few samples have a high maximum probability. As shown
in Fig. 1 (b), different from the one-hot description for images in CIFAR-10,
the probability of dominant emotion may be limited by other existing emotions.
Therefore, the number of samples reaching the threshold is small, which limits
the performance of the model [35].

To address these problems, we propose S2-VER, the first semi-supervised
VER algorithm, which consists of two components. First, the reliable emotion
label learning module adopts label smoothing to improve the accuracy of pseudo
labels. Label smoothing has been proven to implicitly calibrate the learned mod-
els so that the confidences are more aligned with the accuracies of their predic-
tions [22]. Inspired by this, we generate smoothing labels for affective images.
Specifically, we calculate the similarity between embeddings and the emotional
prototypes. To capture the associations among emotions, the smoothing labels
are multiplied with a maintained emotional relation matrix. Furthermore, since
the quality of smoothing labels depends on the embeddings, we introduce an
continuous contrastive loss to obtain emotionally discriminative representations.
Second, we propose an ambiguity-aware adaptive threshold strategy, which aims
to exploit more emotionally high-confidence unlabeled samples. For each sam-
ple, the strategy measures the ambiguity of the smoothing labels by information
entropy and the polarity cue of emotions. Based on this strategy, the threshold is
adaptively adjusted and more high-confidence unlabeled data can be leveraged.

Our contributions are summarized as follows: 1) We address the difficulty
of annotating emotion datasets by SSL. To the best of our knowledge, this is
the first visual emotion work that focuses on learning in semi-supervised man-
ner. 2) We propose S2-VER, which can improve the accuracy of pseudo labels,
and leverage more emotionally high-confidence unlabeled data for VER. 3) We
conduct extensive experiments on six datasets and the results demonstrate the
effectiveness of S2-VER.

2 Related Work

2.1 Visual Emotion Recognition

The research on visual emotion recognition has developed for more than two
decades [49, 52]. In the early years, researchers exploit handcrafted features to
recognize the dominant emotion conveyed by an affective image. Inspired by the
theory of psychology and art, Machajdik et al. [20] extract features from four as-
pects, containing color, texture, composition, and content. It is a representative
low-level handcrafted feature. Zhao et al. [48] explore the research of principles-
of-art, and propose a mid-level representation of visual emotion. To understand
the visual concepts that are strongly related to emotion, Borth et al. [5] auto-
matically collect adjective-none pairs (ANP) as the high-level representation.

Recently, many methods [34,45] exploit convolutional neural network (CNN)
for VER. Considering the localized information, Yang et al. [39] design a weakly
supervised coupled network to integrate recognition and detection tasks. To ex-
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tract various levels of related visual features, Rao et al. [28] construct a region-
based CNN network with multi-level framework. [13, 14] analyze the relation
between person and context scene to extract rich information about emotional
states. Furthermore, [36] proposes a novel Scene-Object network, which lever-
ages reasoning network to mine the relations among objects and the correlation
between the objects and scene. Different from previous methods, [38] proposes a
stimuli-aware visual emotion model consisting of Global-Net, Semantic-Net, and
Expression-Net, which extracts three aspects of emotional stimulus simultane-
ously. Although these methods have made great progress in VER, a fundamental
weakness of these deep models is that they typically require a lot of accurately
annotated data to work well [35]. However, it is still one of the main challenges
for VER. Therefore, we explore SSL algorithm to address this issue.

2.2 Semi-Supervised Learning

SSL trains models incorporating labeled and unlabeled samples. Many classic
methods have been proposed, such as transductive models [10, 11], generative
models [12, 29], and graph-based models [54, 55]. In addition, [17] proposes to
generate pseudo labels by picking up the category which has the maximum
probability in the predicted distribution. ICT [33] regularizes the model based
on the liner interpolation assumption.

Consistency regularization is an effective method, which is based on the
smoothness theory that slight perturbations on the data points will not change
the output of the network [23]. UDA [35] and ReMixMatch [3] generate targets
from weakly augmented images, and then enforce consistency against strongly
augmented images. In recent years, pseudo-labeling combined with strong aug-
mentations becomes a powerful method for SSL [43]. For the pseudo-labeling
methods, the network predicts pseudo labels of unlabeled samples, then trains
itself with these labels. FixMatch [30] leverages a confidence-based strategy to
obtain reliable pseudo labels. Considering the different learning status and diffi-
culties of each class, FlexMatch [46] proposes a curriculum learning approach to
address this issue. For VER, these SSL algorithms suffer from the low accuracy
of generated pseudo labels and the lack of high-confidence unlabeled data. In
this paper, we leverage the label smoothing method to improve the accuracy of
pseudo labels, and adaptively adjust this threshold based on the ambiguity.

3 Methodology

3.1 Overview

Our proposed S2-VER is illustrated in Fig. 2. Given a batch of labeled samples
X = {(xb, qb)}Bb=1, where B is the batch size, xb ∈ RH×W×3 denotes a sample
in the batch, qb ∈ R1×1×C ∈ is one-hot label, which contains C emotions. We
optimize supervised loss on the labeled samples X as:

Lx =
1

B

B∑
b=1

H (qb, p(y|xw
b )) , (1)
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Fig. 2: Illustration of our proposed method. uw
B , us1

B , us2
B represent the weakly aug-

mented instances and two strongly augmented instances of a batch of unlabeled sam-
ples. The three modules on the right are ambiguity-aware adaptive threshold, label
smoothing based calibration, and continuous contrastive learning, respectively. For
each instance, the network outputs its prediction p and low-dimensional embedding z,
and ewB denotes the generated smoothing labels.

where p denotes the conditional probability of the sample, H is the cross-entropy
between qb and p, xw

b means the weakly augmented instance of xb. Let U =

{ub}µBb=1, where U denotes a batch of unlabeled samples, µB means that the
batch size of U is µ times of X. For each ub ∈ R

H×W×3, we perform a weak
augmentation Augw and two random strong augmentations Augs on it, obtaining
the transformed instances uw

b , u
s1
b , us2

b . The network outputs the prediction pb
and normalized embedding zb ∈ R1×1×D of each instance, where D denotes the
dimension of the embedding. Then, the unlabeled samples are optimized with
losses Lcls

u , Ldis
u , and Lctr

u . The single label classification loss Lcls
u is defined the

same as previous works [18,30,46]:

Lcls
u =

1

µB

µB∑
b=1

1(qwb ≥ τ)H(qwb , p(y|u
s1
b )), (2)

where qwb = argmax(pwb ) denotes the pseudo label from weakly augmented in-
stance. The τ means the threshold to select high-confidence prediction. The
Ldis
u and Lctr

u are elaborated in Sec. 3.2. Let λcls, λdis, λctr denote the weight
of the three losses for unlabeled data respectively, the overall loss function can
be defined as:

L = Lx + λclsLcls
u + λdisLdis

u + λctrLctr
u . (3)

3.2 Reliable Emotion Label Learning

This component consists of two modules. Specifically, we design the label smooth-
ing based calibration module to improve the accuracy of pseudo labels. Due to
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the quality of smoothing labels determined by the extracted embeddings, we
further adopt continuous contrastive learning module to optimize the network.
In the following parts, we first describe the process of label smoothing based
calibration, and then introduce the continuous contrastive learning strategy.

Label smoothing based calibration aims to improve the accuracy of
pseudo labels. Label smoothing is a regularization method that maintains a
reasonable ratio among the logits of the incorrect classes [26]. This regularization
method can implicitly calibrate the over-confidence of the learned models so
that their predictions are more aligned with the accuracies [22]. Here, we utilize
learnable embeddings to dynamically generate emotional smoothing labels.

Each emotion is represented by the maintained prototype Oi ∈ R
1×1×D,

O = {O1,O2, ...OC}. The prototypes O are updated by the momentum moving
average of embeddings from X , with λ = 0.9. To be specific, the prototypes are
initialized as zero-vectors, and during the training stage, the Oi of the i-th class
is calculated as:

Oi =

B∑
b=1

zwb · 1(yb = i)

B∑
b=1

1(yb = i)

, (4)

where yb is the label of the b-th labeled sample. Then, we generate initial smooth-
ing label d̂wb by calculating the similarity between the prototypes O and the
embedding zwb extracted from uw

b . The probability of i-th class in distribution

d̂wb is calculated as:

d̂wbi =
exp(zwb · Oi/t)

C∑
i=1

exp(zwb · Oi/t)

, (5)

where the t is a scalar which denotes the temperature. Here we use softmax

to ensure
C∑
i=1

d̂wbi = 1. In addition, since the distances between emotions are

different [51], we maintain an emotional relation matrix E ∈ RC×C . For instance,
the distance between amusement and contentment is relatively smaller than the
distance between amusement and awe. In detail, the emotional relation matrix
E is initialized with 1

C , and updated by the distance of prototypes O. Here we
exploit L2 distance as the metric, and the value of the i-th row and j-th column
is formally defined as:

Eij =
exp(−

∥∥(Oi −Oj)
∥∥2
2
)

C∑
k=1

exp(−∥(Oi −Ok)∥22)
, (6)

The emotional relation matrix E is also updated on the moving average with
the same λ. Next, the emotional distribution is adjusted by the relation matrix
as dwb = d̂wb · E. In order to control the degree of smoothing, we leverage θ as
the weight, and combine the model’s prediction and the generated distribution
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as the smoothing label ewb . It can be formally defined as ewb = (1− θ)pwb + θdwb .
Finally, the smoothing label is leveraged to calculate the Kullback-Leibler (KL)
loss between two distributions ewb and p:

Ldis
u = − 1

µB

µB∑
b=1

1(qwb ≥ τ)KL(ewb , p(y|u
s2
b )). (7)

Continuous contrastive learning aims to learn emotionally discriminative
embeddings, which could improve the quality of emotional smoothing labels.
Recently, many SSL algorithms exploit contrastive learning to learn better rep-
resentations [2,53]. Among them, CoMatch [18] designs a graph-based contrastive
algorithm, which has been proved effective for SSL. However, unlike other clas-
sification tasks, emotions are closely related to each other [37], and the distances
between emotions are different. Therefore, it is suboptimal to simply identify
whether the images are from the same class. Inspired by this, we introduce con-
tinuous contrastive to regularize the emotional embeddings.

Given a batch of unlabeled data U , we utilize the smoothing labels ew to con-
struct emotion graph W e ∈ RB×B , and utilize the embeddings zw to construct
embedding graph W z ∈ R

B×B . Specifically, we use the samples as the vertex,
and adopt the cosine similarity to represent the weight of the edge. In this way,
the W e and W z can be easily obtained in each batch. Then, we adjust the emo-
tion graph based on two priors: (i) Samples should have the same emotion with
themselves, thus we set the value of the diagonal element to 1. (ii) We observe
that there are many pairs with small similarities in a batch, lots of such weak
associations will impact the performance, so we set the values which below T to
0. This process can be defined as:

W e
ij =


1, i = j,

ewi · ewj , i ̸= j, ewi · ewj > T,

0, otherwise.

(8)

We empirically set the T to 0.3. Note that emotion datasets usually contain
few classes, such as 6 or 8. Therefore, the T with 0.3 encourages models to learn
rich emotion relations. Next, both the emotion graph and embedding graph are
normalized by softmax. Finally, the contrastive loss between W e and W z is
calculated by KL loss:

Lctr
u = KL(W e,W z). (9)

3.3 Ambiguity-Aware Adaptive Threshold

Most SSL algorithms leverage the pseudo-labels exceeding the fixed thresh-
old [18, 30]. However, due to the ambiguity, an affective image may contain
not only one emotion [37,41,42]. Although some unlabeled samples already have
correct pseudo labels, the probability of dominant emotion of the images would
be limited by other existing emotions, making it difficult to reach the threshold.
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Throughout the training process, the ambiguity of emotion will result in the
lack of available unlabeled data. To make better use of these data, we propose
a strategy to adaptively adjust the threshold. We adopt β as the lower bound
of the threshold, ω controls the extent of the adjustment, the strategy can be
formally defined as:

τ = β + (1− β)ω. (10)

Specifically, we use information entropy A =
C∑
i=1

−ewbi · lne
w
bi

to measure the

ambiguity of the smoothing label. A large A means a low threshold is needed.
However, it is difficult to distinguish whether the prediction with large A is
caused by the ambiguity of the emotion or the poor performance of the model.
As an extreme example, the A of distribution [0.25, 0.25, 0.25, 0.25] is large, but
it is more like a random prediction caused by insufficient training. Thanks to the
polarity that emotions can be divided into positive and negative, we can select
the ambiguous predictions in accord with the rule of emotion. Based on [41], the
emotional ambiguity often exists between emotions from the same polarity. To
be specific, we add the probabilities having the same polarity with the dominant
emotion, which can be seen as the reliability of A. Therefore, we can adaptively
calculate the extend ω of the i-th sample as:

ω =
1

(A+ a) ·
C∑

j=1

1(P (j) == P (argmaxj(ewbi))e
w
bji

. (11)

The constant a aims to leverage more unlabeled data, here we set a as 1 empiri-
cally. P (j) means the polarity of the j-th emotion. In practice, such an algorithm
is simple and effective.

4 Experiments

4.1 Datasets

We evaluate our proposed S2-VER on seven public emotion datasets, includ-
ing FI [44], SE30K8 [34], FlickrLDL, TwitterLDL [42], Emotion-6 [24], UnBi-
asedEmo [24], and WEBEmo [24]. The images of FI are collected from Flickr and
Instagram by querying Mikel’s eight emotions as search keywords. A total of 225
AMT workers assess the emotions of images resulting in 23,308 images receiving
at least three agreements. SE30K8 contains 33K images, which are annotated
in eight emotions (anger, happiness, surprise, disgust, sadness, fear, neutral,
surprise-positive, and surprise-negative). Following [44], we leave 22,866 images
that receive more than half of the agreements. FlickrLDL and TwitterLDL con-
sist of 11,150 and 10,045 images respectively, which are annotated by Mikel’s
emotion too. Due to the lack of manually annotated large-scale datasets, we
merge these two datasets. Same as SE30K, we leave 15,816 images with high
consistency. In the rest of the paper, we call it LDL dataset.
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Table 1: Accuracy (%) of 5-folds on FI, SE30K8, and LDL datasets. We evaluate
S2-VER against four representative VER methods and ten classic SSL methods.
Note that Pseu-Lab, Mean-Tea, and Remix denote Pseudo-Label, Mean-Teacher,
and ReMixMatch, respectively. To ensure a fair comparison, we adopt ResNet50 as
backbone for all the 15 methods.

Method
FI SE30K8 LDL

80 800 1600 80 400 800 80 800 1600

Yang et al. [41] 19.9±0.36 25.4±0.37 30.1±0.33 19.8±0.41 22.7±0.32 26.0±0.55 21.4±0.26 26.5±0.29 32.3±0.41

RCA [40] 18.4±0.33 25.9±0.39 31.4±0.17 18.6±0.29 21.9±0.33 26.5±0.33 23.8±0.48 29.2±0.19 33.2±0.21

WSCNet [39] 20.2±0.37 27.5±0.41 31.2±0.39 18.4±0.25 23.2±0.28 27.4±0.36 22.3±0.46 29.2±0.31 35.2±0.45

PDANet [50] 21.4±0.26 26.6±0.22 33.2±0.31 20.6±0.18 23.4±0.25 27.7±0.45 23.5±0.29 30.5±0.30 33.5±0.33

π-Model [16] 22.9±0.54 28.3±0.36 31.7±0.21 22.1±1.71 23.7±0.69 26.9±0.31 24.3±0.61 31.8±0.59 34.4±0.27

Pseu-Lab [17] 22.9±0.48 31.3±0.43 33.5±0.31 23.4±1.10 25.9±0.50 27.6±0.16 24.2±0.49 32.3±0.44 35.8±0.13

VAT [21] 23.6±0.78 31.5±0.77 35.1±0.37 24.4±0.69 27.2±0.39 28.9±0.25 26.3±0.58 34.5±0.49 38.9±0.36

Mean-Tea [32] 23.8±0.51 29.3±0.48 33.9±0.33 24.3±0.67 26.7±0.53 28.2±0.22 26.6±0.54 33.8±0.42 38.6±0.20

MixMatch [4] 26.3±1.53 35.1±0.74 38.0±0.32 26.6±0.87 28.3±0.62 29.6±0.40 28.1±0.78 34.2±0.52 38.9±0.23

ReMix [3] 29.7±0.68 35.4±0.53 38.3±0.42 26.4±1.10 29.9±0.98 31.9±0.63 29.1±0.67 35.3±0.54 39.2±0.35

UDA [35] 28.5±0.87 37.7±0.56 40.3±0.38 27.3±0.89 29.6±0.64 32.2±0.37 30.7±0.76 40.9±0.58 43.4±0.47

FixMatch [30] 28.2±0.78 37.4±0.51 42.2±0.29 29.7±0.70 32.2±0.57 32.7±0.46 32.4±0.84 39.4±0.45 43.2±0.24

FlexMatch [46] 29.7±0.90 38.2±0.49 42.9±0.17 28.5±1.03 33.2±0.60 33.9±0.26 33.2±0.93 41.3±0.71 46.7±0.42

CoMatch [18] 36.7±0.87 43.5±0.39 47.9±0.26 29.9±0.65 32.5±0.47 35.3±0.26 38.1±0.5342.1±0.31 45.3±0.27

S2-VER 39.1±0.6646.9±0.4651.8±0.2130.1±0.7333.3±0.6236.2±0.4937.9±0.80 43.6±0.4747.4±0.43

We also evaluate S2-VER on two small-scale datasets and one large-scale
dataset. Emotion-6 consists of 8,350 images, which initially collected 150K im-
ages from Google and labeled by five people. UnBiasedEmo contains 3,045 af-
fective images from a collection of about 60,000 images. Both Emotion-6 and
UnBiasedEmo are annotated by Ekman’s emotion taxonomy. The WEBEmo is
a large-scale web dataset searched by Parrott’s hierarchical emotion model [25].
After removing duplicate images, about 268,000 stock samples are reserved.

4.2 Evaluation Settings

We first compare S2-VER against representative VER and SSL methods on
FI, SE30K8, and LDL. We report the results of four VER methods: Yang [41],
RCA [40], WSCNet [39], and PDANet [50]. In particular, we make a simple trans-
form to PDANet according to [52], making it suitable for classification. For SSL,
we compare with ten representative methods, π-Model [16], Pseudo-Label [17],
VAT [21], Mean-Teacher [32], MixMatch [4], ReMixMatch [3], UDA [35], Fix-
Match [30], CoMatch [18], and FlexMatch [46]. Furthermore, we conduct exper-
iments on UnBiasedEmo, Emotion-6, and WEBEmo. These experiments aim to
validate the effectiveness of S2-VER on small-scale emotion datasets with the
help of large-scale unlabeled web dataset. Specifically, we compare S2-VER with
three most powerful methods FixMatch, FlexMatch, and CoMatch.
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4.3 Implementation Details

To ensure fairness, we adopt ResNet-50 [9] as the backbone for all experiments.
The images are resized to 256 × 256 followed by a center 224 × 224 cropping.
The batch size of unlabeled data is 64, which is 4 times that of labeled data.
Our network is optimized by stochastic gradient descent. The momentum and
weight decay are set to 0.9 and 0.0005 respectively. The total number of epochs
is 512, each epoch contains 1024 iterations. Following [30,46], the learning rate is
initialized as 0.03 with a cosine learning rate decay schedule [19]. The weak aug-
mentation is adopted as standard crop-and-flip, and the strong augmentation is
implemented by the RandAugment [7] the same as [30,46]. For the experiments
whose results are shown in Table 1, following [18, 46], we randomly sample
labeled data in a class-balanced way. Due to the lack of surprise-positive sam-
ples in SE30K8, we conduct experiments with 80, 400, and 800 labeled samples
respectively. In addition, the neural is considered as a polarity different from
positive and negative for ambiguity-aware adaptive threshold strategy. Same as
FI, SE30K8 and LDL are randomly split into 80% training, 5% validation, and
15% testing sets. Emotion-6 and UnBiasedEmo are split into 90% training and
10% testing sets. Following previous SSL algorithms, we present the accuracy of
the Exponential Moving Average (EMA) model [46].

4.4 Comparison with the State-of-the-art Methods

We conduct extensive experiments to compare S2-VER with the state-of-the-
art methods on VER datasets. The methods include VER models and SSL al-
gorithms. The VER models are trained using labeled samples. This compari-
son aims to demonstrate the effectiveness of SSL algorithms with limited la-
beled data. We also adopt SSL algorithms to improve the performance on small
datasets. To be specific, we utilize two annotated small datasets as labeled data,
large-scale WEBEmo as unlabeled data.

The comparison results are shown in Table 1. SSL algorithms are divided
according to whether they use strong augmented anchors. Overall, the SSL algo-
rithms outperform the emotion recognition models. This suggests that leveraging
SSL algorithms and adopting a large amount of unlabeled data is beneficial for
emotion recognition. In general, the SSL algorithms enforce the consistency be-
tween weakly augmented anchors and strongly augmented instances achieving
better performance. In addition, we compare S2-VER with the competitive ap-
proaches. S2-VER improve about 3% on FI with different settings. On SE30K8
and LDL, S2-VER also performs favorably against the representative methods.

For emotion analysis, many methods can be used to automatically acquire
large-scale web data which has not been annotated by humans [5,24,34]. There-
fore, we have an intrinsic assumption that SSL algorithms can be effective on
small-scale datasets with help of the large-scale web data. Inspired by this, we
conduct experiments on Emotion-6, UnBiasedEmo, and WEBEmo. Specifically,
we leverage WEBEmo as unlabeled data, training FixMatch, FlexMatch, Co-
Match, and S2-VER on the labeled datasets. In order to verify our assump-
tion, we first train ResNet-50 on two small-scale datasets, the accuracy is 43.6%
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Table 2: Accuracy (%) on Emotion-6 and UnBiasedEmo. For both
datasets, we leverage WEBEmo as unlabeled data. We compare S2-
VER with current-best SSL methods, i.e.,FixMatch, FlexMatch, and
CoMatch.

Method
Emotion-6 UnBiasedEmo

20% 50% 100% 20% 50% 100%

FixMatch [30] 46.6 48.3 49.0 65.6 69.2 71.5
FlexMatch [46] 48.1 50.1 51.2 67.2 71.1 73.4
CoMatch [18] 50.2 51.2 52.4 68.5 70.8 73.8

S2-VER 51.7 53.5 54.0 70.8 76.7 78.7

and 61.3% respectively. We conduct experiments with 20%, 50%, 100% data of
WEBEmo, the results of SSL algorithms are reported in Table 2. As we can
see, these models perform much better than the model trained only with small-
scale datasets. Even though there exists bias between datasets, SSL algorithms
can still improve the performance with the help of unlabeled data. Moreover,
our method achieves competitive performance compared with the representative
SSL algorithms.

4.5 Ablation Study

In order to prob the effectiveness of different components in S2-VER, we display
ablation results here. Note that all the experiments are conducted on FI with
1,600 labeled samples. First, we show the effect of each component in Table 3,
and draw the following conclusions: 1) Since the quality of smoothing labels par-
ticularly depends on the embeddings, combining both Ldis

u and Lctr
u surpasses

only using Ldis a large margin. 2) Although leveraging Ldis
u and Lctr

u achieves
high accuracy, the performance can be further improved by optimizing Lcls

u si-
multaneously. 3) The model achieves the best test accuracy by utilizing all the
components, which shows the complementarity of our proposed S2-VER.

Furthermore, we conduct detailed experiments to illustrate the contribution
of the proposed reliable emotion label learning and adaptive threshold strat-
egy, respectively. We compare the Macc for FixMatch, FlexMatch, CoMatch,
the base model with standard label smoothing [31], and proposed label smooth-
ing for emotion. The base model with Lcls

u downgrads to FixMatch. Since the
warmup training strategy used in FlexMatch brings a large number of unreliable
samples [46], we also report the results of FlexMatch without warmup. As can
be seen in Table 4, label smoothing can significantly improve the Macc, and our
proposed label smoothing performs better for VER.

To evaluate the effect of the proposed adaptive threshold, we show the pro-
portion of high-confidence unlabeled samples reaching the threshold. As shown
in Fig. 3, our method using the adaptive threshold can utilize more unlabeled
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Table 3: Ablation study to prob
the Lcls

u , Ldis
u , Lctr

u , and AT
used in our S2-VER. The Lsmo

u

here denotes the combination
of Ldis

u and Lctr
u . Note that

✓denotes only Ldis
u is used,

✓∗ denotes both Ldis
u and Lctr

u

are leveraged. AT denotes the
adaptive threshold strategy.

Lcls
u Lsmo

u AT Acc

✓ 42.3
✓ 41.5
✓∗ 49.4

✓ ✓∗ 50.3
✓ ✓ 45.1

✓∗ ✓ 50.7
✓ ✓∗ ✓ 51.8

Table 4: Evaluating the effect of the
smoothing label. Macc means the accu-
racy of pseudo labels reaching thresh-
old. W denotes training FlexMatch with
warmup strategy. S and L represent the
standard label smoothing strategy [31]
and our proposed label smoothing for
VER, respectively. We report the Macc

every 150 epoch and their average.

Macc 150 300 450 Avg

FixMatch 44.9 59.7 61.8 55.5

FlexMatch 36.6 44.2 47.4 42.7

FlexMatch(W) 31.4 37.4 40.6 36.5

CoMatch 48.1 67.4 66.9 60.8

Base + S 59.8 70.7 67.8 66.1

Base + L 58.9 72.3 69.3 66.8

Fig. 3: Evaluating the effect of
the proposed AT in detail.
We show the proportion of
high-confidence unlabeled sam-
ples during training.

Fig. 4: The final emotional rela-
tion matrix in our model. We can
find the relation between emotions
from the same polarity is closer.

samples compared with other methods. Besides, we also provide the learned fi-
nal emotional relation matrix in Fig. 4. The matrix is not completely symmetric.
This is because we perform softmax in rows when updating the matrix at each
iteration. As we can see, the values on the diagonal are large, and the emotions
from the same polarity have relatively closer relations.

4.6 Hyperparameter Analysis

In this section, we present experimental results to demonstrate the effect of hy-
perparameters. All the experiments are conducted on the FI with 1600 labeled
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(a) λdis (b) λctr (c) θ (d) β

Fig. 5: Variation of accuracy with different hyperparameters. The accuracy of
best settings achieves 51.8%. (a) shows the effect of λdis. (b) shows the effect of
λctr. (c) shows the effect of θ. (d) shows the effect of β.

samples. First, we explore the effect of λdis and λctr, which denote the weights
of Ldis

u and Lctr
u . With the increasing of λdis, S2-VER will first perform better.

The small λdis limits the importance of the smoothing label based calibration,
so the performance drops significantly. The algorithm achieves the best perfor-
mance when λdis = 3. As for Lctr

u , we find S2-VER achieves highest accuracy
when λctr = 3 as well. Since the Lctr

u is adopted to obtain more discriminative
embeddings for Ldis

u , it may be better to keep the λctr consistent with the λdis.
We also present the results of θ, which denotes the weight of generated emo-

tional smoothing label ewb . The larger θ would make the label more smoothing.
As shown in Fig. 5(c), with the increasing of θ, the accuracy becomes higher,
which demonstrates the effectiveness of smoothing label. However, the propor-
tion of available unlabeled samples is decreasing. Our method achieves the best
performance when θ = 0.3. At this time, the trade off between the quality of
pseudo labels and the amount of leveraged unlabeled data reaches the best bal-
ance. The results with different β are shown in Fig. 5(d). β controls the range
of τ , which influences the trade off between pseudo labels and utilized unla-
beled data as well. In particularly, we find that only about 55% of the samples
can reach the threshold when β=0.8, which leads to a relatively large drop in
performance.

4.7 Visualization

We further present some visualization of predictions on FI. As shown in Fig. 6
(a), we show some examples that both our method and CoMatch perform well.
We can find that emotions with the same polarity may have a relatively high
probability, such as amusement and contentment. In (b), we show some ex-
amples that our method outperforms CoMatch. Take the middle image as an
example, focusing on the emotion of the person, the model predicts it as anger.
However, we can easily find the image shows an exciting competition. Train-
ing with smoothing labels can effectively alleviate over-confidence problems like
these examples. In (c), we present some examples showing thresholds, which are
adopted to select high-confidence pseudo labels. With the ambiguity-aware adap-
tive threshold strategy, our method can exploit more reliable unlabeled samples.
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Fig. 6: Visualization of S2-VER and CoMatch. (a) shows examples that both S2-
VER and CoMatch perform well. (b) shows examples that S2-VER has correct
predictions, while CoMatch has incorrect predictions. (c) shows examples that
the predictions of S2-VER reach the adaptive threshold, while CoMatch is below
the fixed threshold. The blue and yellow line represent the threshold for S2-VER
and CoMatch, respectively. (d) shows some failure cases of our method.

In addition, we also present some failure cases in (d). Looking at the left im-
age, focusing on the delicate cup may bring positive emotions, but the red toy
additionally shows negative emotions. Due to the complexity of emotions, cases
like (d) are inevitable. Therefore, we think that it is necessary to combine more
psychological knowledge to alleviate this problem in the future.

5 Conclusion

In this paper, we propose S2-VER, which is the first work exploring visual emo-
tion in semi-supervised setting. We design a label smoothing method in the light
of the characteristic of the emotion, improving the accuracy of high-confidence
pseudo labels. Then, we propose an adaptive threshold strategy. With the help
of polarity, this strategy is able to leverage more unlabeled samples effectively.
Extensive experiments and comparisons indicate that S2-VER has advantages
compared with the state-of-the-art methods for VER.
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