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Abstract. Image Coding for Machines (ICM) aims to compress images
for AI tasks analysis rather than meeting human perception. Learning
a kind of feature that is both general (for AI tasks) and compact (for
compression) is pivotal for its success. In this paper, we attempt to de-
velop an ICM framework by learning universal features while also con-
sidering compression. We name such features as omnipotent features and
the corresponding framework as Omni-ICM. Considering self-supervised
learning (SSL) improves feature generalization, we integrate it with the
compression task into the Omni-ICM framework to learn omnipotent
features. However, it is non-trivial to coordinate semantics modeling in
SSL and redundancy removing in compression, so we design a novel
information filtering (IF) module between them by co-optimization of
instance distinguishment and entropy minimization to adaptively drop
information that is weakly related to AI tasks (e.g., some texture redun-
dancy). Different from previous task-specific solutions, Omni-ICM could
directly support AI tasks analysis based on the learned omnipotent fea-
tures without joint training or extra transformation. Albeit simple and
intuitive, Omni-ICM significantly outperforms existing traditional and
learned-based codecs on multiple fundamental vision tasks.

Keywords: Image coding for machines, Self-supervised learning, Infor-
mation filtering.

1 Introduction

In the big data era, massive images and videos have become an indispensable
part of people’s production and life. As an important industrial technology, lossy
image compression aims to save storage resources and transmission bandwidth
by preserving the most critical information. In the past decades, the tradi-
tional image and video coding standards such as JPEG [67], JPEG2000 [58],
AVC/H.264 [68], HEVC/H.265 [64], VVC/H.266 [6] have significantly improved
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Fig. 1: Comparison of three branches for image coding for machines (ICM). They
are different from each other w.r.t the object to be compressed and the charac-
teristics of task-specific or not. (a): Codecs in this branch support downstream
tasks by inputting the decompressed images. (b): One-to-one features-based ICM
solution, the decompressed features of corresponding tasks are input to the task
models. (c): With the proposed omnipotent feature f extracted and com-
pressed first, all the downstream tasks could complete the inference based on
the decompressed feature f̂ .

the coding efficiency. Recently, with the fast development of deep neural net-
works, learned-based image compression codecs [3,4,52,20,38,43,42,50,51,14,69]
have achieved a great success. They have potentials to become the next-generation
image compression standards due to the high performance and applicability
compared to traditional hand-craft codecs. Meanwhile, deep neural networks
has demonstrated their potential in various computer vision tasks, e.g., ob-
ject detection [61,59,60,45], instance segmentation [32,47,5], semantic segmenta-
tion [48,1,9,10], pose estimation [32,54]. We can anticipate that more and more
data transmitting on the Internet would be consumed by machines for intelligent
analysis tasks.

However, all the image compression methods mentioned above aim at saving
transmitting costs while improving the reconstruction quality for human percep-
tion. When facing AI tasks analysis, existing image coding methods (even for
the deep learned-based) are still questionable, regarding whether it can encode
images efficiently, especially in application scenarios for big data. To facilitate
the performance and efficiency in terms of high-level machine vision tasks that
act on lossy compressed images, lots of research efforts have been dedicated
to a new problem of image coding for machines (ICM) [26,41], which aims to
compress the source image for supporting the intelligent analysis tasks. The dis-
crepancy between human-perception oriented metric (e.g., mean square error
(MSE), multi-scale structured similarity (MS-SSIM)) and AI task metric (e.g.,
classification accuracy) makes ICM particularly different from the existing com-
pression schemes.

For ICM, there mainly exist solutions of two branches. Fig. 1(a) shows the
first branch that the compressed image is sent into the downstream task model
for intelligent analytics. Codecs in this branch are typically designed based on a
heuristic RoI (Region of Interest) bit allocation strategy [63,21,7,36] or joint op-
timization for image reconstruction with a task-specific constraint in an end-to-
end manner [41]. This branch has two weaknesses that the image reconstruction
brings more computational burden because images have to be reconstructed for
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subsequent intelligent analysis and there exists a new trade-off between texture
fidelity and semantics integrity. The second branch is a one-to-one feature-based
ICM framework [16,17,62,2]. As shown in Fig. 1(b), works of this branch tend to
compress the features extracted from images for transmission efficiency. Depend-
ing on the reconstructed features, the downstream tasks could directly complete
the corresponding intelligent analysis. But, such a scheme that one compressed
feature can only be used to support one specific AI task lacks generalization and
flexibility, thus is difficult to be applied to practical applications.

To solve the problems mentioned above, and motivated by the urgent re-
quirements for a generalized ICM solution, in this paper, we go beyond previous
pipelines and introduce a unified framework for ICM by exploring the “common
knowledge” of different AI tasks. More precisely, a novel ICM framework, termed
Omni-ICM, is designed based on learning omnipotent features for machines, as
shown in Fig. 1(c). The omnipotent features are expected to be general for dif-
ferent intelligent tasks and compact enough that only contain the semantics
relevant information. They can be regarded as new representations “seen” by
machines. To achieve the omnipotent feature learning, we borrow ideas from the
popular contrastive learning that has been proved could learn general and trans-
ferable visual representations [31,11,8,28,13], and integrate it into the image cod-
ing pipeline. However, directly compressing the features learned by contrastive
objective has no obvious advantages than compressing the original images di-
rectly [15,16,18], that’s because these features typically keep lots of irrelevant
redundant information with no explicit constraint on information entropy.

To tackle this issue, we further design an Information Filtering (IF) module to
smartly discard the redundant information for analytics before compression, so as
to encourage learned representations to be sparse and compact. Basically, the IF
module comprises an encoder, a decoder, and an entropy estimation model, and is
optimized with contrastive loss and entropy minimization constraint. In this way,
IF module learns to preserve semantic-wise information and filter out redundant
ones, acting as a bridge to connect contrastive training and compression. After
that, with a learned-based feature compressor, the learned omnipotent features
are compressed and reconstructed in the feature latent space, enabling it to be
directly input to downstream task models without pixel-level reconstruction.
Moreover, compressing such omnipotent features makes it more applicable to
the codec standardization, which could support for a wide range of downstream
AI tasks, even for the unknown ones. Such generalization ability and flexibility
are the key points of our Omni-ICM framework, which are often neglected by
the existing ICM solutions.

Extensive experiments show that Omni-ICM outperforms the state-of-the-art
image compression methods by significant margins w.r.t the bitstream saving
and task performance, on multiple intelligent tasks, including object detection,
instance/semantic/panoptic segmentation, and pose estimation.
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2 Related Work

2.1 Image Compression

Traditional Codec. Traditional hand-craft image codecs typically consist of
intra prediction, transformation, quantization, and entropy coder. The popular
image coding standards have kept evolving, e.g., JPEG [67], JPEG2000 [58],
AVC [68], HEVC/H.265 [64], VVC/H.266 [6]. However, these codecs cannot be
optimized in an end-to-end manner, thus lack of flexibility and scalability to
support different objectives, such as MS-SSIM and classification accuracy.

learned-based Codec. The success of deep learning techniques significantly
promotes the development of learned-based codecs. Toderici et al. [66] apply a
recurrent neural network (RNN) to end-to-end image compression, achieving a
comparable performance with JPEG. Ballé et al. [3] further propose an end-to-
end framework based on nonlinear transformation, generalized divisive normal-
ization (GDN), noise-relaxed quantization, and their method outperforms JPEG
2000. Then a variational model with hyperprior is introduced to parameterize
latent distribution with a Gaussian distribution in [4]. Some recent works have
improved image compression from the aspects of entropy coding [52,53,20,29,39]
and quantization [30,73]. However, the optimization objectives of these methods
are pixel-level metrics that designed for visual fidelity, e.g., MSE, MS-SSIM. The
discrepancy between pixel-level distortion and semantic-level distortion leads to
the failure of above methods when tackling ICM tasks. But, they provide basic
techniques to develop effective ICM solutions to handle this new problem.

Image Coding for Machine. ICM [26,34] aims to compress and transmit the
source image for machines to support intelligent tasks. Based on the heuristic
prior knowledge of foreground matters more for intelligent analysis, [7,36,44]
merge the ROI (Region of Interest) based bit allocation strategy into the tra-
ditional codec for intelligent analytics. For learned-based codecs, Le et al. [41]
propose an image compression system that jointly optimizes models for object
detection and reconstruction. Codevilla et al. [22] also optimize both the intel-
ligent task and the reconstruction task, and the difference is that the optimiza-
tion of the intelligent task directly takes the latent variable features as input.
However, the trade-off between semantic fidelity and pixel fidelity limits their re-
spective performance. Thus, [35,72] introduce scalable coding to coordinate the
compression for high-level information and pixel-wise texture. Singh et al. [62]
explore to compress features instead of images for intelligent tasks by optimiz-
ing the task objective along with rate loss. Nevertheless, such schemes can only
support a few tasks and are not general enough. The recent work of SSIC [65]
structures the bitstream according to the object category and thus achieves a
task-aware compression for downstream analytics. Differently, in this paper, we
aim to design a unified framework for ICM by learning a kind of general and
compact features and directly support a wide range of intelligent tasks.

2.2 Self-supervised Representation Learning (SSL)

Self-supervised learning [37,74,57,55] is proposed to learn general representations
for downstream tasks by solving various pretext tasks on large-scale unlabeled
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Fig. 2: Three stages in our Omni-ICM framework. (a) Omnipotent feature learn-
ing. We optimize the whole network with the contrastive loss and entropy con-
straint by the IF module. (b) Omnipotent feature compression. A feature com-
pressor is trained for omnipotent feature compression, with all parameters fixed
except the codec. (c) Omnipotent feature deployment. Our Omni-ICM can eas-
ily support different downstream tasks by fine-tuning the backbone tail with
omnipotent features as input.

datasets. Contrastive learning is one of them and its pretext task is minimizing
feature distances from the same group and maximizing feature distances from
different groups with contrastive loss. Recently, the siamese network based con-
trastive learning methods [31,11,8,28,13] have drawn lots of attention. Among
them, MOCO [31] is the first work that outperforms the supervised ImageNet
pre-training on several downstream tasks, which shows its strong ability for gen-
eral representations learning. More specifically, MOCO designs a dynamic queue
to store negative samples features and uses a momentum update mechanism to
optimize the model progressively. Inspired by that, we propose to employ SSL to
learn omnipotent features for compression, so that further support heterogeneous
intelligent tasks for ICM.

3 ICM with Omnipotent Feature Learning

3.1 Overview of Omni-ICM Pipeline

We propose a new concept of omnipotent feature learning for image coding for
machines, and correspondingly design a unified framework (Omni-ICM) based
on it. As shown in Fig. 2, the whole framework of Omni-ICM consists of three
stages: (a) omnipotent feature learning, (b) omnipotent feature compression, and
(c) omnipotent feature deployment.

For the first stage, we employ a contrastive learning pipeline while also giv-
ing consideration to compression efficiency, enabling the learned features to be
both semantically preserved and compact. More specifically, to coordinate the
preserving of the semantics and the discarding of the semantic-irrelevant redun-
dancy, we design an additional Information Filtering (IF) module and optimize
the whole network with an instance-contrastive loss under entropy constraint.
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Fig. 3: Architecture of omnipotent feature learning. We use a pair of query and
key for simpler illustration. By maximizing the similarity of different views of
an image under entropy constraint, the network learns to discard semantic-
redundant information and keep critical ones. After training, f is the omnipotent
feature we need.

After that, the obtained omnipotent features, which are compact and general,
are “seen” by machines as an alternative for original images. To compress and
transmit the omnipotent features, we additionally train a feature codec. Finally,
the downstream tasks supporting are achieved by fine-tuning the backbone tail.
Note that, the backbone head and the proposed IF module are fixed in this stage.
We describe each stage in detail in the following subsections.

3.2 Stage 1: Omnipotent Feature Learning

Basic Network Architecture. Considering that the learned omnipotent fea-
tures will be taken for a wide range of AI tasks analytics, e.g., object detec-
tion [45], semantic segmentation [75], we extract the omnipotent feature f with
a 4× down-sampling factor to promise the integrity of content structure and ob-
ject spatial layout. Specifically, as shown in Fig. 3, a commonly used backbone
(such as ResNet-50) is split into two parts, namely backbone head and backbone
tail, dotted as H and T . In a ResNet-50, the backbone head comprises the stem
layer and layer1, and the backbone tail comprises layer2∼layer4.
Data Augmentation and Feature Extraction in Backbone Head. As
illustrated in Fig. 3, at the omnipotent feature learning stage, two views of an
image xq and xk are first generated by different augmentations. For clarity, we
describe the query generation process for xq at first. xq is fed into the backbone

head H, obtaining an 4× down-sampling feature with a size of
Hq

4 × Wq

4 ×C,
where Hq, Wq are the height and width of xq, C means the channel numbers:

hq = H(xq). (1)

Information Filtering (IF) Module. Importantly, the representation directly
generated by the backbone head is not suitable for ICM, because it still contains
lots of semantic-irrelevant information (see the third column of Fig. 9). Thus,
we design an additional information filtering (IF) module between the backbone
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head and tail, to simultaneously achieve the preservation of semantic information
and the dropout of irrelevant information. The IF module consists of an encoder,
a factorized entropy model, and a decoder denoted as E, F , D. To drive the IF
module to learn to filter out the redundant information, an entropy constraint
is enforced on it.

Formally, hq is first fed into the encoder E of IF module with 8× down-

sampling, obtaining a latent variable yq with the size of
Hq

32 × Wq

32 ×Cy, Cy rep-
resents the channel numbers of yq:

yq = E(hq). (2)

Then, a factorized entropy model F estimates the entropy of yq through
adding an additive uniform noise[3] on it to get the derivative ỹq, formulated as:

pỹq|ϕo
(ỹq|ϕo) =

∏
i

(pyq|ϕo
(ϕo) ∗ U(−

1

2
,
1

2
))(ỹq), (3)

where ϕo represents the parameters in H and E. And, the entropy loss is:

Le = E[− log2(pỹq|ϕo(ỹq|ϕo))]. (4)

Finally, ỹq is fed into the decoder D of IF module, obtaining the feature fq
with the same size as the input of IF module, i.e.

Hq

4 × Wq

4 ×C.
Backbone Tail and Projection Layer. With the feature fq generated by the
IF module, the backbone tail and a projection layer are employed to map the
feature to the space where contrastive loss is applied. Specifically, the projection
layer is an MLP with one hidden layer. This procedure can be formulated as:

q = W (2)σ(W (1)(T (D(ỹq)))), (5)

where σ is a ReLU non-linearity transformation, W (1) and W (2) are fully con-
nected layers, q ∈ Rd.
Generation of Keys. xk is obtained by the other augmentation from the same
image. The key xk and the query xq together construct a positive pair. For
simplicity, we use the same notation in Section 3.2 here. This procedure can be
formulated as:

yk = E(H(xk)), (6)

k+ = W (2)σ(W (1)(T (D(ỹk)))), (7)

where ỹk comes from yk by adding the additive uniform noise, and k+ ∈ Rd,
denotes the positive sample. The negative samples come from different im-
ages, denoted as{k−}, are provided by the queue coming from the previous
iterations [31]. Following the setting in MOCO [31], the branch of keys is the
momentum-updated one of the branch of queries.
Total Optimization Objectives. For the contrastive loss, InfoNCE [56] is
employed to pull q close to k+ while pushing it away from other negative keys:

Lq = − log
exp(q·k+/τ)

exp(q·k+/τ) +
∑

k−
exp(q·k−/τ)

, (8)
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where τ denotes a temperature hyper-parameter as in [71]. The overall optimiza-
tion function is written as:

L = Lq + αLe, (9)

where a Lagrange multiplier α is a fixed value that determines the trade-off
between entropy and semantic integrity. Note that, the added additive noise is
only a transitional component for entropy estimation in the omnipotent feature
learning stage, and is discarded in the next two steps, i.e. omnipotent feature
compression and deployment.

3.3 Stage 2: Learned-based Feature Compression

Similar to lossy image compression, the goal of lossy feature compression is
simultaneously minimizing the size of bitstream and the distortion between f
and f̂ . Such objectives can be formulated as minimizing R+ λDC (here we use
DC to distinguish the D in IF module), where the Lagrange multiplier λ controls
the trade-off between the rate R and the distortionDC in feature level. R denotes
the rate of compressed feature and DC represents the distortion between f and
f̂ . Since quantization is non-differentiable, the additive uniform noise [3] is added
to the latent variables during training for approximately rate estimation, which
alters quantization to be differentiable. And, after quantization, the entropy
coding is performed on latent variables y to encode it into bitstream losslessly.
Entropy coding here can be Huffman coding or arithmetic coding. Finally, for the
omnipotent feature reconstruction, the decoder tend to reconstruct omnipotent
features from ŷ. The R-D (rate-distortion) loss function can be written as:

Lrd = E[− log2(pŷ|ψ(ŷ|ψ))] + λ
1

WH

W∑
x=1

H∑
y=1

(fx,y − f̂x,y)
2, (10)

where W and H denotes the width and height of features.
Moreover, since the features are compressed to handle downstream tasks

better, we further protect its semantic fidelity in a deeper feature level. Partic-
ularly, the omnipotent feature f and its reconstructed one f̂ are passed through
the backbone tail in the omnipotent feature learning stage, i.e. layer2∼layer4 in
a normal ResNet. And then, the Euclidean distance is calculated between those
two deeper feature representations of f and f̂ to construct this loss:

Lf =

4∑
i=2

λi
1

WiHi

Wi∑
x=1

Hi∑
y=1

(ϕifx,y − ϕif̂x,y)
2, (11)

where Wi and Hi are widths and heights of feature maps, ϕi means a differ-
entiable function, hyperparameter λi controls the importances of distortions in
different depths. The overall loss function of feature compression is given by:

Lcom = Lrd + Lf . (12)

Practically, we design the neural network for omnipotent feature compression,
which is derived from the Mean & Scale (M&S) Hyperprior model [52], and
discretized Gaussian Mixture Likelihoods (GMM) entropy model [20].
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Last but not least, there are two autoencoders in our pipeline, however, with
different architectures, implementations, and functions. The first autoencoder
in IF module is optimized with both contrastive loss and entropy constraint,
without hard quantization operation in practice, acting as an information filter.
The other autoencoder is used for feature compression, with hard quantization
in practice. Detailed architectures are reported in Supplementary.

3.4 Stage 3: Feature Deployment and Task Supporting

After the omnipotent feature learning, the source data for machines has changed
from images to omnipotent features. Therefore, the task models are trained with
the learned omnipotent features f and are evaluated with the reconstructed om-
nipotent features f̂ , to finally support the AI tasks. Formally, only the backbone
tail is fine-tuned for downstream tasks supporting, and the weights obtained in
the omnipotent feature learning stage are used for a better initialization.

4 Experiments

4.1 Datasets

The training for both omnipotent feature learning and feature compression is
conducted on the training set of the ImageNet [25] dataset, which contains∼ 1.28
million images of 1000 classes. After the training of feature extraction and com-
pression, we evaluate the transferability of the learned omnipotent features to
downstream tasks on PASCAL VOC [27], MS COCO [46] and Cityscapes [24].
PASCAL VOC and MS COCO are the widely-used datasets for dense predic-
tion tasks, e.g., object detection, instance segmentation. Compared with PAS-
CAL VOC, MS COCO is larger and more challenging (more complicated scenes,
more objects per image, and more categories to be predicted). Cityscapes is a
fundamental and challenging dataset for semantic segmentation, which contains
5000 high-quality images with the pixel-level annotations (2975, 500, and 1525
for the training, validation, and test sets respectively).

4.2 Implementation Details

Omnipotent feature learning. With ResNet-50 [33] as the basic architecture,
the IF module takes the output of backbone head as input to obtain the omnipo-
tent feature. In the omnipotent feature learning stage, the momentum update
from one encoder to another is set to 0.999 and the dictionary size is set to 65536.
Temperature in Eq. (8) is set to 0.2. The data augmentation operations and the
use of MLP projection head are same as the previous contrastive learning related
works [12,28,11,13,31]. Besides, we load the weights that pre-training 800 epochs
with MOCO-v2 [31] to initialize the backbone head and backbone tail, and then
keep all parameters fixed except the IF module for a stable training at the first
10 epochs. After that, all the parameters are optimized together for another 200
epochs. We adopt SGD as the optimizer with weight decay and momentum set
as 10−4 and 0.9. The batch size is 256 and the learning rate is 10−3. α in Eq.
(9) is experimentally set to 0.1.
Omnipotent Feature Compression. We train the omnipotent feature com-
pressor model for 400, 000 iterations with batch size of 32. We employ the
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Adam [49] optimizer, where the learning rate is set to be 5×10−5. Data augmen-
tation is 256× 256 random cropping. λ in Eq. (10) is set to 2048, and λ2, λ3, λ4

in Eq. (11) are set to 512, 256, 128 respectively. Feature codecs with different
rates are obtained by multiplying λ, λ2, λ3, and λ4 by a same coefficient.

4.3 Effectiveness and Superiority of Omni-ICM

Evaluation Protocol. We evaluate the generalization of omnipotent features
on different fundamental intelligent tasks by fine-tuning the backbone tail. Chal-
lenging and popular datasets are adapted for different tasks, i.e. VOC object
detection, COCO object detection, COCO instance segmentation, COCO pose
estimation, Cityscapes semantic segmentation, and Cityscapes panoptic segmen-
tation. Experiments for Cityscapes semantic segmentation are implemented in
[23] and others are implemented in [70]. To evaluate the rate-distortion perfor-
mance, the rate is measured by the bits per pixel (bpp), which is calculated by
dividing the size of the feature bitstream by the number of pixels in the original
image, and the distortion here represents metrics of different AI tasks.

Comparison Approaches. We mainly compare our Omni-ICM with the most
advanced traditional codecs (HEVC [64], VVC [6]) and a learned-based compres-
sion method[20]. To ensure the fairness of comparison, we use the pre-trained
model that has trained for 800 epochs on ImageNet [12] as the initial weights and
fine-tunes it on each task to get the well-trained networks for comparison, which
is consistent with the operations taken by the current SOTA representation
learning method, MOCO [31]. Then during evaluation of compared approaches,
reconstructed images are input into these networks to obtain the final results.
Our method and the compared methods follow the same training schedule for
fine-tuning downstream tasks. Besides, in order to better understand the results,
we provide results with uncompressed images or features performing intelligent
tasks, which can be seen as baselines. We also report down-stream task perfor-
mances with supervised pre-training in Supplementary.

Object Detection on PASCAL VOC. When evaluating on VOC object
detection, we follow the common protocol that fine-tuning a Faster R-CNN de-
tector (C4-backbone) on the VOC trainval07+12 set and testing on the VOC
test2007 set. The image scale is in [640, 800] pixels during training and is 800
at inference as default. Note that the image resolution has changed before in-
putting into the task model. For the fairness of comparison, we don’t perform
any resizing operations on the features, and we regard the original image as the
source data to be compressed so that we calculate the rate by dividing the size of
the bitstream file of feature by the number of pixels of the original image. Other
tasks that need resizing during preprocessing all obey this setting, i.e. instance
segmentation, pose estimation. Fig. 4 (left) shows the results of detection. Our
method achieves the best performance (lower rate, higher precision).

Semantic Segmentation on Cityscapes. For semantic segmentation, an FCN-
based structure is used. We train task networks on the train fine set which
consist of 2975 images for 80k iterations, and evaluate on the val set. Results
are shown in Fig. 4 (right). Similarly, our method is also the best scheme.
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Fig. 4: Object detection mAP on PASCAL VOC (left) and semantic
segmentation mIoU on Cityscapes (right) under different bitrates. We
compare our method with two traditional codecs HEVC-intra [64], VVC-intra [6],
and one learned-based codec [20].

Fig. 5: Object detecion and instance segmentation on MS COCO. The

metrics here include mean bounding box AP (APbb) and mask AP (APmk).

Object Detection and Instance Segmentation on MS COCO. Following
the setting in [31], we evaluate object detection and instance segmentation by
fine-tuning a Mask R-CNN detector (C4-backbone) on COCO train2017 split
with the standard 1× schedule and evaluating on COCO val2017 split, with
BN tuned and synchronized across GPUs. The image scale is in [640, 800] pixels
during training and is 800 at inference as default, same as that for PASCAL
VOC. The comparison is shown in Fig. 5. Our method also achieves the best
performance, and significantly outperforms the other codecs.

More Downstream Tasks. Fig. 6, 7 show results on more downstream tasks:

COCO pose estimation: Mask R-CNN (with R50-FPN) is fine-tuned on
COCO train2017 and evaluated on val2017. The schedule is 1×. Results are
illustrated in Fig. 6. Although Omni-ICM is better than other methods, how-
ever, there exists an obvious gap (more than 2 points in both person detection
and keypoint detection) between the best performance at high bitrate. This also
indicates the superiority of our method at lower bitrates.

Cityscapes panoptic segmentation [40,19]: Panoptic-deeplab [19] is used for
this task. We train task networks on the train fine set for 90k iterations, and
evaluate on the val set. Results of PQ, mIoU, and AP are reported for panoptic
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Fig. 6: Pose estimation on MS COCO. Results of person detection (APbb)

and keypoint detection (APkp) are illustrated.

Fig. 7: Panoptic segmentation on Cityscapes. PQ, mIoU, and AP are re-
ported. PQ is the metric of panoptic segmentation which measures the perfor-
mance for both stuff and things in a uniform manner, mIoU is the metric of
semantic segmentation, and AP is the metric of instance segmentation.

segmentation in Fig. 7. The performance of mIoU is similar to Fig. 4 (right). We
can observe that our method achieves the better R-D performance, which means
it can use less bits to achieve higher task performance.

Discussion. For the case of image coding for machines (ICM), Omni-ICM out-
performs the most advanced hand-craft traditional codecs and a learned-based
codec by remarkable margins on 6 fundamental intelligent tasks. Besides, we also
observe some hidden limitations. Results in Fig. 6 and Fig. 7 show the potential
performance gaps at the highest bitrate. We speculate that this is caused by
two reasons. The first one is the discrepancy between datasets, the ImageNet is
mainly composed of images with a single conspicuous target in natural scenes,
while the number of targets in MS COCO and Cityscapes is diversified, and the
scales of targets are also various. The second reason is that training by instance
discrimination [31,11,56] forces the model to focus more on the conspicuous part
of the image, which is not conducive to the preservation of local semantic infor-
mation that occurs frequently in the above two datasets. In addition, we also
compare our method with SOTA ICM-related methods and report the results in
supplementary.
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Fig. 8: Ablation studies on IF module (left) and feature level distortion loss
(right), respectively.

4.4 Ablation Study

We implement ablation studies by pre-training on ImageNet and fine-tuning on
VOC0712 object detection, as introduced in 4.3.

Study on IF module. The first graph in Fig. 8 illustrates the result that
validate the contribution of IF module. For the case without IF module, the
features output by layer1 of the ResNet-50 network pre-trained by contrastive
learning are employed for task supporting and compression. Thus, we fix param-
eters in stem layer and layer1, and then fine-tunes the task model on PASCAL
VOC detection. A feature codec with the same architecture and training sched-
ule as that in Section 3.3 is trained for feature compression. As we can see, in
the absence of IF module, compressing features directly can achieve satisfying
performance with low coding efficiency. However, our Omni-ICM can achieve
comparable performance with much lower bitrate.

Feature level distortion loss. The second graph in Fig. 8 presents the ablation
study about feature-level distortion in Eq. (11). It indicates that the loss of
feature level distortion helps protect semantic information.

4.5 Vision Analysis and Insights

Reconstruction Results. To better understand the functionability of the IF
module, we additionally train two decoders with MSE loss to visualize the recon-
struction results of features before and after IF module, i.e. h and f . As shown in
Fig. 9, images reconstructed from h contain slight color difference, and textures
are relatively complete. But images reconstructed from f suffer obvious color
difference and texture loss. It indicates that IF module drops out some color
information and texture information that has a slight influence on intelligent
analytics. Details of reconstruction decoders are reported in Supplementary.

Bit allocation Map. As is illustrated in Fig. 10, we also visualize the bit
allocation maps in IF module and that in the learned-based codec [20] optimized
with MSE loss. Learned-based codec tends to focus on areas with large, irregular,
and complex textures, e.g., walls, water surfaces, rocks, and eaves. But our IF
module pays less attention to the texture details in the image and more attention
to the objects, which is crucial for the understanding of images.
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GT
Reconstruction from ℎ

34.41 / 0.9869

Reconstruction from 𝑓
26.04 / 0.9079

Fig. 9: Reconstruction of features before and after IF module. Numbers
on the top of the crop images indicate PSNR (dB) / MS-SSIM of an entire image.

Fig. 10: Bit allocation maps in learned-based codec [20] (second line)
and our IF module (third line), respectively. The first line is ground truth.

5 Conclusion

We presented a novel framework for image coding for machines (Omni-ICM)
based on extracting and compressing a general and compact feature, dubbed
omnipotent feature. The omnipotent feature is learned by elegantly combining
the contrastive learning and entropy constraint through a new IF module, which
coordinates semantics modeling and redundancy removing in our framework by
adaptively filtering information that weakly related to AI tasks. Extensive exper-
iments show an outstanding performance of our proposed Omni-ICM framework
compared to the SOTA traditional and learned-based approaches.
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2. Bajić, I.V., Lin, W., Tian, Y.: Collaborative intelligence: Challenges and opportu-
nities. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 8493–8497. IEEE (2021)
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