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Abstract. In this paper, we present a novel approach to learn texture
mapping for an isometrically deformed 3D surface and apply it for tex-
ture unwrapping of documents or other objects. Recent work on dif-
ferentiable rendering techniques for implicit surfaces has shown high-
quality 3D scene reconstruction and view synthesis results. However,
these methods typically learn the appearance color as a function of the
surface points and lack explicit surface parameterization. Thus they do
not allow texture map extraction or texture editing. We propose an effi-
cient method to learn surface parameterization by learning a continuous
bijective mapping between 3D surface positions and 2D texture-space
coordinates. Our surface parameterization network can be conveniently
plugged into a differentiable rendering pipeline and trained using multi-
view images and rendering loss. Using the learned parameterized implicit
3D surface we demonstrate state-of-the-art document-unwarping via tex-
ture extraction in both synthetic and real scenarios. We also show that
our approach can reconstruct high-frequency textures for arbitrary ob-
jects. We further demonstrate the usefulness of our system by applying
it to document and object texture editing. Code and related assets are
available at: https://github.com/cvlab-stonybrook/Iso-UVField

Keywords: document unwarping, texture unwrapping, neural render-
ing

1 Introduction

Reconstructing 3D shapes from images is a core problem in computer vision and
graphics research. With the progress in differentiable rendering [54,24,44,27,33],
recent learning-based 3D reconstruction approaches have achieved impressive
results using 2D supervision from a single image [11,20,12,39,61] or multi-view
images [55,66]. These methods achieve high quality 3D reconstruction using dif-
ferentiable rendering with various 3D representations such as 3D meshes [61],
volumetric representations [40], or implicit functions [39]. In recent neural ren-
dering methods such as NeRF [40] and IDR [66], continuous representations
such as volume or implicit functions achieve significantly better reconstruction
results than meshes or voxels because they do not discretize the 3D surface a

https://github.com/cvlab-stonybrook/Iso-UVField
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Fig. 1. The proposed forward-backward network can be utilized in unwrapping and
editing a surface texture: the flattened texture can be edited and warped back to
produce a texture edited image. In the top row we edit the unwrapped texture by
overlaying a color grid. In the bottom row we edit the unwrapped texture by swap-
ping the ‘English’ and ‘Japanese’ text. In the bottom row the desired texture mask is
highlighted by a yellow dashed polygon. The warped texture is pasted at the masked
region in different views.

priori. However, these continuous representations usually do not encode explicit
surface parameterization, which would allow 3D shape re-texturing, editing the
existing texture in the 2D texture space, or recovering 2D texture from 3D
surfaces. One of the most direct applications of 2D texture unwrapping in a ge-
ometrically constrained manner, is document unwarping, i.e., the inference of a
document’s flatbed-scanned version from a casual photo of a potentially creased
document. Moreover, 2D texture unwrapping could be equally valuable for other
domains such as garments, common objects or faces. In this paper, we use the
terms texture unwrapping and unwarping interchangeably.

Our novel texture mapping approach learns surface parameterization for iso-
metrically deformed surfaces by learning continuous bijective functions between
3D surface positions and 2D texture-space coordinates. We use a signed dis-
tance function (SDF) [8] to represent the geometry and model the appearance
as a function of the 2D texture coordinates. By utilizing implicit differentiable
rendering (IDR), [66] we can reconstruct the 3D shape and learn the correspond-
ing UV parameterization of the surface simultaneously. This is possible only with
a per-pixel rendering loss and the appropriate geometric regularization.

We utilize two fully connected multi-layer perceptrons (MLPs) to learn a
bijective mapping between 3D shapes and 2D texture space. More specifically,
the forward MLP maps the 3D surface coordinates to 2D texture coordinates
and the backward MLP maps the 2D texture coordinates to corresponding 3D
surface coordinates. Following IDR [66], we obtain the 3D surface coordinates by
sphere-tracing along the ray cast through each pixel. Our appearance rendering
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is formulated as a function of the 3D and the texture coordinates. Therefore, the
forward and backward MLPs can be trained with a 2D pixel-wise loss between
the rendered image and the given ground truth image. To the best of our knowl-
edge, this is the first neural rendering method that can learn a geometrically
constrained UV parameterization for implicit surfaces.

Thus, our method is also the first method which utilizes implicit surface
(signed distance function) based neural rendering for document unwarping. It is
a challenging task due to the presence of geometric and photometric distortions
in a document. For this particular problem we introduce a shape-specific texture
mapping prior to initialize the forward MLP (3D to 2D mapping). This prior is
learned from a large dataset of UV mapped document meshes, assuming that
the document texture space maps to a 2D rectangle. This assumption regularizes
the forward MLP to output a high-quality texture space that avoids degenerate
solutions (see Fig. 3). Moreover, we introduce a conformality constraint in the
backward MLP, which is consistent with how a paper folds in the physical world,
i.e., without any stretch or tear. We can directly extend our method to work on
rigidly deforming objects other than paper which follow similar physical prop-
erties such as fabric, soda cans etc. We also show that our method is robust to
small deviations from the assumed conformality constraint, e.g. in the case of
face texture unwrapping.

The main contributions of our paper are the following: 1) We propose an
efficient way to learn a texture parameterization for implicit neural represen-
tations using a differentiable rendering framework. Without 3D supervision, it
only requires multi-view images as ground truth and a texture mapping prior. 2)
We show that our method can be effectively used for document unwarping tasks
by learning a prior for explicit texture mapping on the document shape. We
show that this prior can be learned from a dataset of texture-mapped meshes.
Furthermore, this prior is also suitable for other objects sharing similar geomet-
ric property as papers. 3) We show that our method is effective for document
image unwarping and texture editing (see Fig. 1). We achieve a 25% relative
improvement over a publicly available state-of-the-art [13] in terms of mean lo-
cal distortion across 750 views from fifteen synthetic scenes. Additionally, we
achieve a ∼25% improvement in optical character recognition (OCR) in terms
of character and word error rate. For the texture editing task, we show significant
qualitative improvement over NeuTex [64].

2 Previous Work

Neural Rendering. Neural rendering generates images and videos by inte-
grating conventional computer graphics rendering pipelines into deep neural
networks [56]. It enables explicit or implicit control of scene properties, in-
cluding illumination, geometry, texture, etc. Neural rendering can synthesize
semantic photos [46,3], novel views [23,53], relighting [65,36], facial/body reen-
actment [7,63], estimate scene properties etc. Kato [24] proposed a differen-
tiable neural renderer using an approximate gradient for rasterization. Liu [32]
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proposed SoftRas, which extended differentiable rasterization. Li [27] further
demonstrated the feasibility of integrating ray-tracing in deep neural networks.
More recently, implicit surface or volume rendering has become mainstream in
neural rendering approaches such as IDR [66] and NeRF [40]. These approaches
are based on multi-view surface reconstruction to associate the scene geometry to
the appearance in different views. NeRF is extended to lot of variants including
PixelNeRF [68], MVSNeRF [10], dynamic NeRF [29,48], GRAF [51], etc.

Texture Mapping. Texture mapping is an essential step in the computer graph-
ics rendering pipeline. It defines a correspondence between a vertex on the 3D
mesh and a pixel in the 2D texture image. To find such a mapping, FlexiStick-
ers [58] required users to specify a sparse set of correspondences. Bi [6] proposed
a patch-based texture mapping method using the 3D shape and images from mul-
tiple views. Morreale [43] used networks to represent 3D surfaces/shapes. Apart
from the above general texture mapping methods, some approaches focus on a
specific object categories such as faces [16,9] and human bodies [42,69]. Recently,
AtlasNet [20] represented a 3D mesh as a collection of parametric surfaces show-
ing texture mapping is trivial to obtain from a 2D parametric surface. A similar
idea was adopted by Bednarik [4] where they introduced geometric constraints
when learning the decomposition. More recently, NeuTex [64] aims to recover
the texture of a subject using NeRF [40]. However, NeuTex uses a spherical
UV domain without any geometric constraints. Therefore, the recovered texture
is not smooth which is not suitable for document unwarping. Moreover, since
NeRF [40] doesn’t learn an explicit geometry, NeuTex requires a coarse point-
cloud to initialize the backward MLP. With an SDF based [66] rendering scheme,
our approach does not require such an initialization routine. We can jointly learn
the texture mapping and the geometry from scratch.

Document Unwarping. Document unwarping is a special application of tex-
ture mapping: the 3D object is usually a rectangular piecewise-developable sur-
face and the texture is well structured, containing straight text lines, (usually)
rectangular text blocks and figures etc. Previous work usually adopted a two-
step methodology: 1) 3D surface estimation and 2) deformed surface flattening.
The 3D surface of a deformed document can be estimated from shading [60],
multi-view images [59], text lines [57], local character orientations [38], document
boundaries [26], and learning-based strategies [47]. Flattening the obtained 3D
surface always involves an expensive optimization process under certain geom-
etry constraints such as conformality [67] or isometries [2]. Flattening could be
easier if the obtained 3D shape had a low dimensional parameterization like Gen-
eralized Cylindrical Surface (GCS) [25]. Some studies [14,30,37] proposed to un-
warp each patch on the surface individually and then stitch the unwarped patches
together. In recent years, data-driven methods [34,13,28,35,15,17] have addressed
document unwarping by leveraging large-scale synthetic datasets. These datasets
contain deformed document images and their corresponding ground truth UV
coordinates. Methods trained on synthetic images often suffer from generaliza-
tion performance due to the domain gap between synthetic and real data. In
this paper, we utilize neural rendering techniques to learn a surface parameter-
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Fig. 2. Proposed surface parameterization learning using the forward (Fuv) and back-
ward MLP (Fz): given camera pose τ , and a pixel p, we jointly learn the geometry
represented by a SDF Zθ, the Fuv, and the Fz. ẑp is the ray-surface intersection point
in 3D domain and tp is the corresponding texture coordinate in UV domain. The yel-
low arrows denote the input and output of the IDR [66], and Cp is the predicted RGB
color. Triangles denote the losses defined in Eq. 10.

ization of a deformed document. We simultaneously estimate both 3D shapes
and UV coordinates with a cycle consistency loss and geometric constraints.
By leveraging the information from multi-view images, the proposed method
demonstrates better document unwarping performance compared to a previous
state-of-the-art [13]. Furthermore, our method only needs multi-view images and
corresponding foreground masks for training, eliminating the need of large-scale
document image datasets with paired warping field ground truth.

3 Method

In Sec. 3.1 we first describe some preliminaries about surface parameterization
and IDR. Then we describe the proposed approach that utilize a recent differ-
entiable rendering method, IDR [66] for surface reconstruction and jointly learn
the texture mapping of the learned implicit surface using two MLPs.

3.1 Preliminaries

Surface Parameterization. The problem of surface parameterization focuses
on finding a bijective mapping F between a surface Z ∈ R3 and a polygonal
domain Ω ∈ Rn. For a parametric or discrete surface representation, we can
explicitly compute this mapping [58] using constrained optimization. In contrast,
implicit surfaces are represented as continuous functions and cannot be readily
parameterized. In this paper, we propose to learn such bijective mapping between
a learned implicit surface and a 2D planar domain Ω ∈ R2 using our proposed
forward and backward MLPs. Ω is the texture space or UV space, parameterized
using 2D UV coordinates t = (u, v). We can use any continuous parameterization
function as the UV space. Since this work particularly focuses on document
unwarping, we choose the UV space to be a regular 2D grid.
Implicit Differentiable Rendering. Implicit Differentiable Rendering [66]
reconstructs the geometry of an object from multi-view images as the zero level
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set, Zθ of an MLP S,

Zθ = {z ∈ R3 | S(z; θ) = 0} (1)

where θ are the learnable parameters. To render the surface Zθ, IDR uses another
MLP to model the radiance (RGB color) as a function of the surface point (zp),
corresponding surface normal (np), view direction (vp) and a global geometry
feature vector (gp):

Cp = A(zp,np,vp,gp) (2)

Here, Cp denotes the predicted color at pixel p and A denotes the appearance
MLP. The surface point is obtained by a sphere-tracing method [22] along the
ray rp(τ) through pixel p. τ ∈ Rk denotes camera parameters of the scene.
Additionally, IDR also presents a differentiable way to obtain a ray and geometry
intersection point (ẑp) as a function of the camera ray. Although,the IDR can
disentangle geometry and appearance, it only allows to re-render a new geometry
with a learned appearance MLP, A. Editing a texture or extracting a surface
texture map is not possible in a vanilla IDR framework.

3.2 Learning Surface Parameterization

To learn a meaningful parameterization of the implicit surface Zθ, we represent
the radiance at pixel p as a function of the UV space. To this end, we modify
the IDR model (Eq. 2):

Cp = Auv(tp, zp,np,vp,gp) (3)

The texture parameterized appearance MLP is modeled as a function of the
texture coordinate tp at surface point zp, corresponding to a pixel p. We can
jointly train the surface MLP (S) and texture parameterized appearance MLP
(Auv) using a pixel-wise rendering loss between the predicted radiance (Cp) and
ground truth radiance (Cgt

p ) at pixel p. A schematic diagram of the proposed
approach is shown in Fig. 2.

Forward and backward texture parameterization. We represent the map-
ping between the 3D surface and 2D texture space using the forward function
Fuv: z → t. The Fuv is modeled as an MLP. It is trained by mapping a ray-
surface intersection point ẑp to its corresponding texture coordinate tp. p denotes
the pixel location. Now to establish the bijective mapping (discussed in Sec. 3.1)
between the surface and texture space we utilize a backward function Fz: t → z.
Fz is an MLP that learns an inverse mapping between the texture and the 3D
space. It is trained by mapping a texture coordinate tp to its corresponding
ray-surface intersection point ẑp.

Shape specific prior for Fuv. Jointly training the forward, backward and
rendering network leads to the wrong UV mapping with local minima (see
Fig. 3) where multiple ẑp map to a single texture coordinate. To avoid such
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With UV prior Without UV prior

Fig. 3. Without a prior the
forward network, Fuv leads to
degenerate cases: multiple 3D
points ẑp are mapped to the
same texture coordinate tp.

degenerate cases, we initialize Fuv with a texture
mapping prior, learned from a large dataset of
UV mapped meshes. We assume the input shape
to be a isometrically deformed quadrilateral and
the corresponding UV space to be a regular grid
(∈ [0.0, 1.0]). The top leftmost and the bottom
rightmost 3D coordinate of the shape maps to
(u, v) = (0, 0) and (u, v) = (1, 1) respectively. To
learn F̂uv we utilize a collection of UV mapped
meshes from the Doc3D [13] dataset and train an
MLP with the same parameters as Fuv. For each
scene, we use F̂uv to initialize the weights of Fuv

and train jointly with S and Auv. Although this learned prior (F̂uv) is designed
to learn a suitable texture mapping for document unwarping, we experimentally
show this prior can be readily used for other domains as well.

Deformation constraints for Fz. Conformal map [21] allows a 3D domain
to be mapped to a texture domain with low distortion satisfying the bijective
property between domains. We use a conformality constraint for Fz to ensure the
deformation properties mentioned above. We define the conformality constraint
in terms of the metric tensor, J⊤J of the Fz, where J is the Jacobian of Fz (Eq. 4):

J =

[
δFz

δu

δFz

δv

]
= [Du Dv] J⊤J =

[
D⊤

u Du D⊤
u Dv

D⊤
u Dv D⊤

v Dv

]
=

[
E F

F G

]
(4)

The conformality constraint is defined as J⊤J = βI. Here β is a unknown
local scaling function and I is the identity matrix. For developable surfaces which
can be physically flattened without any stretch e.g. papers, β doesn’t vary across
the parameterization space. Therefore, we consider a fixed global scale ([βu, βv])
for the conformality constraint.

Unwarping by sampling Fz. To unwarp the texture, we determine a fore-
ground pixel at p = (x, y) in the input image that should be projected to (u, v)
in the unwarped image. Here the unwarped image refers to the texture space.
Foreground pixel refers to a pixel within the pre-defined object mask. The co-
ordinates (u, v) and p are associated by Fz and τ : for a (u, v) coordinate, its
corresponding point in 3D is obtained by ẑ′p = Fz(u, v). Given the camera pa-
rameter τ , ẑ′p is projected to p in the input image. Thus for each pixel in the
unwarped texture, we can find its corresponding pixel in the input image which
is all we need for unwarping (More details in supplemantary).

3.3 Loss Functions

We use the rendering losses on the predicted color, Cp, and predicted document
mask Mp at pixel p to train the geometry S. Here Mp ∈ {0, 1} refers to whether
the pixel p is occupied (Mp = 1) by the shape or not (Mp = 0). We assume masks
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are provided as input. Additionally, we employ appropriate regularization losses
to jointly train S, Auv, Fuv and Fz.
Loss for S. Following IDR [66], for each p we apply a sphere-tracing [22] al-
gorithm followed by implicit differentiation to find the intersection point of the
ray rp(τ) and the surface Zθ. Given the ground truth RGB color Cgt

p and the
predicted RGB color Cp, the RGB loss is defined as:

Lrgb =
1

|P |
∑

p∈Pin

∥∥Cgt
p − Cp

∥∥
1

(5)

Where P is the set of pixels in the minibatch. The pixels Pin ⊂ P for which
ray-surface intersection has been found and Mp = 1. The mask loss is defined
as:

Lmask =
1

α|P |
∑

p∈Pout

CE(Mgt
p ,Mp) (6)

Here Pout = P \ Pin, α is a tunable parameter and CE(.) is the cross-entropy
loss. The value of Mp = Mp,α(θ, τ) is a differentiable function of the learned
Zθ [66]. Additionally, to force Zθ to be a approximate signed distance function
we use Eikonal Regularization [19]:

Lek = Ez(∥∇zS(z; θ)∥ − 1)2 (7)

where z denotes uniformly sampled points within a bounding box of the 3D
domain.
Loss for Fuv. Although we initialize Fuv with learned prior parameters, we
constrain the predicted 2D texture coordinates during training in order to avoid
non-uniform mapping of the 3D and the UV domain which can squeeze or stretch
the warped texture (example in supplementary). We employ a Chamfer distance
between the tp and uniformly sampled 2D points T ∈ [0, 1] to ensure Fuv ap-
proximately outputs U ∼ [0, 1]. This regularization term is defined as:

Luv = CDp∈Pin
(T , tp) (8)

here CD(.) denotes the Chamfer distance and tp the predicted texture coordi-
nates corresponding to ray-surface intersection points ẑp.
Loss for Fz. ẑ

′
p is the output of Fz. Fz is trained with weighted regression loss

between ẑp and ẑ′p:

Lz =
1

|Pin|
∑

p∈Pin

wp(ẑp − ẑ′p)
2 (9)

wp is a pre-calculated per-pixel weight based on the document mask (M) which
assigns higher value to the pixels at the boundary of the document. (More weight
calculation details in supplementary).
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Additionally, to constrain Fz to be a fixed scale conformal mapping [4]. On the
elements of the metric tensor, E, F and G defined in Eq. 4, we employ the
following constraints:

LE =
1

|Pin|
∑

p∈Pin

(Ep − Ẽ)2 LG =
1

|Pin|
∑

p∈Pin

(Gp − G̃)2 LF =
1

|Pin|
∑

p∈Pin

(Fp)
2

Here Ẽ and G̃ is the mean of E and G. Our combined loss function is defined
as:

L = (Lrgb + γ1Lmask + γ2Lek)︸ ︷︷ ︸
LS

+ρLuv + (δ1Lz + δ2LE + δ3LG + δ4LF )︸ ︷︷ ︸
LT

(10)

Here γ, ρ and δ denote the hyperparameters associated with the losses.

3.4 Training Details

The surface MLP S(z, θ) consists of 8 layers with a hidden layer dimension of
128, with a skip connection to the middle layer [45]. The rendering network
Auv has 4 layers with hidden layer dimension of 512 and uses a sine activation
function [52] at each layer. Fuv and Fz share identical architecture with 8 layers
with 512 dimensional hidden units and sine activation [52]. Following NeRF [40],
we use a k dimensional Fourier mapping (χk : R → R2k) to learn high frequency
details in the shape, RGB and the UV space. For S, Auv we follow the setting
of [66], and set k = 6 and k = 4 respectively. For Fuv and Fz we empirically
set number of Fourier bands k = 10. We start with an initial learning rate of
10−5 and train for 80K iterations by halving the learning rate twice at 16K
and 24K iterations. Initially, α is set to 50 and doubled during the training
at 4K, 6K and 8K iterations. We set γ1 = 100.0, γ2 = 0.1 and ρ = 0.001. δ1
is set to 0.001 for the initial 25K iterations. Afterward, δ1 is multiplied by a
factor 3 at every 10K iterations for a maximum of 7 times. δ2, δ3 and δ4, are
set to zero for the initial 50K iterations. Only Lz is sufficient to achieve a good
texture to 3D mapping during the shape optimization phase. Afterwards we set
δ2 = δ3 = 0.001 and δ4 = 0.01. The metric tensor calculation is implemented
using auto-differentiation.

Initializing S and Fz. We can start optimizing S from the standard IDR
initialization (SDF of a sphere). However, we notice that a better initialization
can significantly improve the training time as well as the quality of the shape
reconstruction. For object specific application like document unwarping we found
that initializing S with a similar object can significantly reduce the training time
and converges in a half number of iterations. Furthermore, we also found that
initializing Fz to produce a planar point-cloud can further reduce our training
convergence time. To this end, we pre-train the Fz to produce a plane. More
details are discussed in supplementary.
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4 Experimental Results

First, we quantitatively compare the proposed method with a state-of-the-art
document unwarping method DewarpNet [13]. Our quantitative and qualitative
experiments are performed on 15 synthetic and 10 real documents. Second, we
apply our method to texture editing for documents and other objects such as
soda can, t-shirt, and human face. Last, we conduct ablation studies to demon-
strate the effectiveness of our proposed loss functions (reported in supplementary
due to space constraints).

4.1 Evaluation Dataset and Metrics

For document unwarping, the synthetic evaluation data consists of 15 scenes ren-
dered using Blender [1] following a rendering pipeline similar to Doc3D. Each
scene consists of 50 random views sampled from a 45o solid angle in the up-
per hemisphere. The real-world evaluation data consists of five scenes from the
dataset of [67] and nine scenes captured by us. All the synthetic data and some
of the real data include the document scan as the unwarping ground truth which
are used for quantitative evaluation. Apart from documents we use 4 real ob-
jects for qualitative comparison. Each scene consists of 5-20 images per scene.
We manually annotate the masks for each scene. To obtain camera poses for the
real-world data, we use COLMAP [50]. We should note that for objects such as
soda can, t-shirts, and faces, we assume a consistent foreground mask is available
for all the views, designating the part of the texture to be unwrapped. For these
objects, we also use the same Fuv learned for the document unwarping task.
The learned prior from Doc3D dataset is usable as long as the surface somewhat
follows the rectangular shape assumption.

We use image-based evaluation metrics for quantitative evaluation, including
Local Distortion (LD) and Multi-Scale Structural Similarity (MS-SSIM). These
are standard metrics used for document unwarping evaluation [13,34]. LD is
based on dense SIFT flow [31] between the unwarped and scanned images. Image
similarity metric MS-SSIM [62] is based on local image statistics (mean and
variance) of the unwarped and scanned (ground truth) images calculated over
multiple Gaussian pyramid scales. We use the same settings as [13,34] for fair
comparison.

4.2 Document Unwarping

The quantitative comparison with the state-of-the-art model [13] is shown in
Table 1 for the synthetic and real scenes. In terms of average performance of all
the views (all views col. in Table 1) we improve the LD by ∼ 45% compared to
[13]. Since we use multi-view images for training, our results are more consistent
across all the views compared to DewarpNet, which is also a key reason for the
significant improvement.

We also report in a more practical evaluation scenario (frontal view column
of Table 1) where we compare our results with DewarpNet for a frontal view
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Methods
Synthetic Real

All views Frontal view All views Frontal view

MSSIM↑ LD↓ MSSIM ↑ LD ↓ MSSIM ↑ LD ↓ MSSIM ↑ LD ↓

DewarpNet 0.5382 7.81 0.5965 5.37 0.4601 10.25 0.4724 7.85
Proposed 0.6302 4.31 0.6405 4.02 0.4951 7.16 0.494 6.28

Table 1. Quantitative comparison of DewarpNet [13] and proposed method on syn-
thetic and real images. All views report the mean result of all the views across all scenes
and Frontal view denotes the mean result of one frontal view from each scene. Frontal
view can be considered as the easiest or most probable view among all the views.

unwarping of the document. This setting also shows 25% relative improvement
of LD compared to DewarpNet due to the stability of the method across different
views. Since DewarpNet is trained on a synthetic dataset, it’s generalizability
limitation is reflected through this experiment.The choice of the best unwarped
result is often subjective. We conjecture that since [13] is a single image un-
warping method, it should perform well on simpler deformations and frontal
view images. However, it is not always the case. Qualitative comparisons on real
images in Fig. 4 show DewarpNet often generates artifacts even for reasonably
frontal views and simple deformations. Comparatively, our results are qualita-
tively superior. Similar trend is observed in synthetic scenes. We qualitatively
compare the frontal view results of DewarpNet with our results across 6 scenes
in Fig. 5. In Fig. 5 our results are clearly better than the DewarpNet in all cases,
with straighter lines and better rectified structure. More qualitative comparisons
are available in supplementary material.

The quantitative comparison for real scenes are reported in Table 1 (right).
We achieve significantly better LD than DewarpNet on both the frontal view
evaluation and when averaged across all views. However, we notice that the
improvement in terms of MS-SSIM is not that prominent due to its sensitivity
to subtle perceptually unimportant global transformations such as translation
by few pixels. We also note that quantitative scores are comparatively worse
for the real scenes than synthetic scenes due to the fewer available views (10-15
compared to 50). Moreover, in absence of sufficient texture and views our method
may result in unsatisfactory unwarping results. Such data are a failure case of
IDR since there is insufficient information to reconstruct the 3D shape. As a
result of the poor 3D shape, our texture parameterization network produces an
inferior unwarping result (More details are available in supplementary). We also
report qualitative comparisons with [67] and [13] on additional real documents
in supplementary.

OCR Evaluation. We evaluated the OCR performance on 5 real scenes
across 77 images in Table 2. We use Edit Distance (ED) [41], Character Error
Rate (CER) and Word Error Rate (WER) as our evaluation metrics. ED is
defined as the total number of substitutions (s), insertions (i) and deletions (d)
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(a) (b) (c) (a) (b) (c)

(a) Input (b) DewarpNet (c) Proposed (d) GT scan (e) Zoomed

Fig. 4. Qualitative comparison with DewarpNet [13] on real images: (a) Input image,
(b) DewarpNet unwarping, (c) Proposed unwarping, (d) GT scanned image, (e) en-
larged regions: DewarpNet (top), and proposed (bottom). We use reasonable frontal
view of the document for a fair comparison.

required to obtain the reference text, given the recognized text. The reference
text is obtained by running the OCR algorithm on the scanned ground truth

Methods ED↓ CER (std)↓ WER (std)↓
DewarpNet 798.30 0.2827 (0.12) 0.4646 (0.17)
Proposed 600.78 0.2122 (0.10) 0.3568 (0.11)

Table 2. Comparison of OCR metrics: We improve the
OCR performance of [13] by ∼25% in terms of Edit Dis-
tance (ED), Character (CER), and Word Error Rate
(WER).

image of each document.
CER is defined as: (s +
i + d)/N where N is the
number of characters in
the reference text. We
use Tesseract 4.1.1 based
LSTM OCR engine for
this experiment. Our un-
warped results reduce the
ED, CER and WER by ∼25%. This improvement proves our unwarped results
are more suitable for downstream applications like OCR.

4.3 Texture Editing

In addition to document unwarping, our proposed forward and backward MLP
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(a) (b) (c) (d) (e) (f)

Fig. 5. Frontal view unwarping comparison of DewarpNet (a,c,e) and the proposed
method (b,d,f) on synthetic images. Proposed results are clearly better with straighter
lines. Follow the blue dashed boxes for discrimitative regions.

(a) Input view (b) NeuTex texture (c) Our texture

Fig. 6. Comparison with NeuTex [64]: a prior work that
aims to recover texture in a NeRF based setting, fails to
recover high frequency details of the texture. Compar-
atively, our method clearly does a better job since we
directly sample the texture from the input image.

can also be used for high
quality texture editing.
We show texture edit-
ing examples in Fig. 1
and Fig. 7. We use the
backward MLP to un-
warp the texture from the
input image, then edit
the texture and warp it
back to image space using
the learned forward MLP
(More details in supple-
mentary). The proposed
method can unwarp any isometrically deformed surface such as fabric or metal.
It also works quite well when deformation is not exactly isometric, e.g., human
faces [49]. In Fig. 6, we compare our texture editing results with NeuTex [64], a
NeRF based texture unwrapping method. Compared to NeuTex [64], our results
contain better details due to the forward prior and the geometric constraints.

5 Limitations and Future Work

Our proposed method for a scene can be trained in approximately 6 hours for
448× 448 resolution images using a single Titan Xp GPU. The current training
time per scene is high compared to DewarpNet’s inference time which makes
it unsuitable for real-time applications. However, we would like to note that in
the current implementation sphere-tracing takes almost 50-60% of the running
time. With a faster version of the sphere-tracing we can readily achieve a faster
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(a) Input and mask (b) Edited texture (c) Different views of the edited texture

Fig. 7. Examples of texture editing non-document surfaces. This demonstrates our
method is flexible beyond document unwarping and can be seamlessly used for other
domains [49] as long as the isometric assumption is not strongly violated. The fore-
ground mask is shown using a yellow dashed polygon.

framework. Moreover, neural rendering is an active research field and there are
multiple other works that are focusing on improving the speed and generalization
abilities [18,5]. Therefore, a faster training can be achieved following any newer
or faster alternatives of IDR.

In this paper, we successfully applied our method on some toy objects other
than documents. However, application of our method is limited by the isomet-
ric deformation assumption. For more complex UV spaces (e.g., texture atlas),
learning the prior may require decomposing the shape to multiple simple UV
maps where each UV map follow the isometric assumption. The proper way to
do this is beyond the scope of this paper, however we believe it’s an exciting
future work. Another strong assumption of our method is the learned F̂uv prior
assumes the texture to be a continuous mapping bounded in a quadrilateral.
This constraint suit the rectangular paper shape and improve empirical results
in a specific task. More general objects will require different constraints e.g.,
spherical UV domain, local scaling of the conformal map etc.

6 Conclusions

We have introduced a neural rendering based architecture that can learn texture
parameterized 3D shapes from multi-view images. This is the first work to learn
surface parameterization of an implicit neural representation, to the best of our
knowledge. We have demonstrated the applicability of our approach on multiple
synthetic and real scenes for the task of document unwarping and object texture
editing. We achieve state-of-the-art texture unwrapping and editing results.
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