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A Implicit reduction of negative flips through weight
sharing

We hypothesize that weight sharing leads to lower negative flips. Fig. 1 presents
empirical results to support this hypothesis.
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Fig. 1: We present the Top-1 accuracy (in orange), pair-wise negative flip rate
(in green) and flops (in black) for a family of neural networks obtained via
four model design algorithms. The algorithms in (a) and (b) re-train each
model independently and lead to much higher NFR compared to One-Shot
NAS algorithms in (c) and (d) that jointly train all sub-networks in a super-
network.

Fig. 1 plots the negative flip rate and Top-1 accuracies from four popular
model families—RegNet [2], EfficientNet [3], Onceforall [1] and AttentiveNAS [4].
Among these the first two ie. RegNet and EfficientNet independently train the
models of different sizes while the latter two i.e. Onceforall and AttentiveNAS
sample networks from a common super-network and benefit from weight sharing.
From the figure, we can clearly see that the for similar gaps in accuracies, the
latter two methods which benefit from weight-sharing (i.e. Fig. 1c,d) lead to
much lower negative flip rate than the former two (i.e. Fig. 1a,b).

⋆ Currently at Georgia Tech. Work conducted during an internship with AWS AI.
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B Exploring the Top-1 accuracy v.s. NFR tradeoff

λ2
λ1

Mflops Top-1 Accuracy NFR
↑(%) ↓(%)

0.05 297 76.91 2.67
0.1 295 77.09 2.70
0.2 298 77.03 2.63
0.5 299 76.94 2.27
1 295 76.86 2.27
2 294 76.94 2.24
5 290 76.74 2.15
10 295 76.78 2.19
20 270 76.15 2.08

Table 1: We measure the impact of varying the weighting factors λ1 and
λ2 on the Top-1 accuracy and NFR of the searched models. Given a fixed
150 Mflop reference model from the MobileNet-V3 search space of OFA, we
search a 300 Mflops target model while varying λ1 and λ2. Observe that large
values of λ1 prioritize Top-1 accuracy leading to high Top-1, at the cost of
high NFR. Large values of λ2 prioritizes NFR leading to low NFRs at the loss
of low accuracy. Overall, setting λ1 = λ2 = 1 leads to reasonable trade-off for
both the Top-1 accuracy and NFR.

The search reward of Eq. 4 equally weighs the NFR and Top-1 accuracy by
setting λ1 = λ2 = 1. In Table 1, we explore the NFR v.s. Top-1 trade-off by
setting different values of the λ multipliers i.e. λ2

λ1
∈ [0.05, 20]. The results follow

the expected trend wherein for λ2

λ1
∈ [0.05, 1) the Top-1 accuracy is prioritized

over NFR which becomes as high as 2.70. At the other end, for λ2

λ1
∈ (1, 20] the

NFR is prioritized over Top-1 accuracy so that NFR becomes as low as 2.08.
Overall, equally weighing the two metrics, i.e. λ2

λ1
= 1 leads to a resonably high

Top-1 accuracy with a reasonably low NFR. Thus we use λ1 = λ2 = 1 for
REG-NAS.

C How significant are the results of REG-NAS?

We strive to find models that achieve a high Top-1 accuracy and low negative flip
rate (NFR). To demonstrate the significance of our results, we extend Table 1 of
the main paper by calculating the relative change of Top-1 accuracy and NFR
which is defined as below:

C(ϕ1, ϕ2) =
M(ϕ1)−M(ϕ2)

M(ϕ2)
, (1)

where M ∈ {Top-1,NFR} and ϕ1, ϕ2 are two models.
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Model Top-1↑(%) NFR↓ (%)
Abs. C Abs. C

ref MB-R0-150 [1] 73.70 -

baseline EffNet 77.08 -0.30 4.25 -49.1
PCT EffNet+FD [5] 76.25+0.76 3.25 -33.5
wt. shareMB-R0-300 [1] 77.11 -0.37 2.51 -13.9
proposed MB-(R2+CAS)-30076.83 0 2.16 0

(a) MobileNet-V3 search space of OFA

Model Top-1↑(%)NFR↓ (%)
Abs. C Abs. C

ref RN-R0-2000 [1] 78.25 -

baseline RN101 79.21 -0.51 4.83 -67.4
PCT RN101+FD [5] 79.90 -1.37 3.06 -48.6
wt. shareRN-R0-3000 [1] 78.78 -0.02 2.04 -23.0
proposed RN-(R2+CAS)-300078.80 0 1.57 0

(b) ResNet search space of OFA

Table 2: Extending Table 1 from the main paper. In addition to the absolute
values (abs.), we present the relative change (C) of Top-1 accuracy and NFR.
EffNet and RN101 represents EfficientNet-B0 and ResNet-101 trained with
cross entropy loss while EffNet+FD and RN101+FD are trained with state-
of-the-art focal distillation loss [5]. Results of weight sharing and our proposed
method are averaged from three runs with different random seeds. Observe
that REG-NAS leads to a large relative change in NFR at a marginal expense
of the Top-1 accuracy.

Table 2 presents the relative change of Top-1 accuracy and NFR between the
model searched via REG-NAS (considered as ϕ1) and other models (considered
as ϕ2). The results show thatREG-NAS leads to large relative reduction of NFR
e.g. upto 50% and 33.5% w.r.t. baseline and state-of-the-art on MobileNet-V3
super-network and upto 67.4% and 48.6% w.r.t. baseline and state-of-the-art on
the ResNet-50 super-network of OFA[1]. This reduction in NFR is despite very
little (e.g. less than 1%) relative change of Top-1 accuracy. These results clearly
demonstrate that REG-NAS can significantly reduce NFR at minimal expense
of Top-1 accuracy.

D Extending the search to 4 architectures

Method Results

OFA [1]
A1(78.2%)

2.04% 1.53%

1.45%
1.88%

1.34%
1.90%

(78.8%)A2 A3 A4(79.2%) (79.4%)

REG-
NAS

A1(78.2%)
1.57% 0.83%

1.18%
1.76%

0.91%
1.74%

(78.8%)A2 A3 A4(79.0%) (79.4%)

Table 3: Testing generalization of REG-NAS for searching 4 models with
diverse compute budgets from the ResNet search space of OFA [1]. Model size
increases from A1 to A4. NFR is indicated in green and Top-1 accuracy in
orange. REG-NAS successfully reduces NFR in all scenarios.
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Table. 4 of the main paper presents the NFR and Top-1 accuracy for three
models i.e. A1 (2000 Mflops), A2 (3000 Mflops), A3 (4000 Mflops) from the
ResNet search space of OFA [1]. However, one could also extend the search to a
larger family of models. Table 3 extends the search to a larger model A4 (5000
Mflops) from the ResNet search space of OFA [1]. Observe that the four models
A1-A4 searched via REG-NAS achieve significantly smaller pairwise NFR in
all cases, with minimal loss of Top-1 accuracy. This demonstrates that REG-
NAS generalizes to searching for regression-free models across multiple flops
budgets. Note that for this experiment, we only consider the ResNet space of
OFA since the MobileNet-V3 space cannot search sub-networks larger than A3
(600 Mflops).
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