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1 Supplementary materials

Due to the page limitation of the main paper, we show visualization effects of
the proposed method, and state-of-the-art methods Adabins [1], Midas [6], Bts
[5] in supplementary materials. Besides, we present that if only the relationship
representations are used, the proposed model also estimate a coarse depth map,
which further proves the relationship representations embed with spatial priors.

1.1 Comparison

In this section, we present the visualized results of the enhanced baseline model
and state-of-the-art models against original baseline model and state-of-the-art
models. The test datasets include KITTI [2], NYU Depth v2 [7] and ICL_NUIM
[3].

1.2 Tested on visual-genome [4]

In this section, we test the model performance on visual-genome dataset [4]. In
this dataset, the relationship recognition model performs better, so the depth
estimation is more accurate. The used model is enhanced Adabins [1].

1.3 User Study

User study for respective contributions quantification Due to the lack
of ground-truth annotations of the respective contributions, a user study is de-
signed and performed to evaluate the quantified respective contributions from
our framework. Specifically, we involve 107 users and involve each user in 100
multi-round tests. As shown in Figure. 5, for the first round of each multi-round
test we first locate a target object in the scene, table in this case, and then erase
one of its identified effective relationships Figure. 5(b-d), finally, we show the
original scene image and its erased ones to the user. At the end of this round,
the user is asked to choose the most important relationship for estimating the
target object. Then in the next round, the erased image from the previous round
that erases the relationship with the highest respective contribution is used as the
ground-truth image. Afterward, we further erase one of the remaining effective
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Fig.1: Visual examples on KITTI [2] test data. The first row: input images; The
second row: relationships-enhanced depth maps; The third row: depth maps without
relationships information; The last row: ground-truth depth maps.

relationships, Figure. 5(e-g), and ask the user to choose the highest contributed
relationship in this situation. Finally, we evaluate the accuracy of our respective
contributions according to the rank of the users. As can be seen from Table 1,
for target objects, our top-5 accuracy is around 91.25%, which shows that our
learned respective contribution is highly aligned with the human recognition.

Metrics|Top 1 Acc|Top 2 Acc|Top 3 Acc|Top 4 Acc|Top 5 Acc
(%) 86.78 87.23 89.20 90.44 91.25

Table 1: Quantification of relationship effectiveness.
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Fig. 2: Visual examples on NYU Depth v2 [7] test data. The first row: input images; The
second row: relationships-enhanced depth maps; The third row: depth maps without
relationships information; The last row: ground-truth depth maps.
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Fig. 3: Visual examples on ICL_NUIM ([3] test data. The first row: input images; The
second row: relationships-enhanced depth maps; The third row: depth maps without
relationships information; The last row: ground-truth depth maps.
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Fig. 4: Visual examples on visual genome [4].
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Fig. 5: Quantification of relationships effectiveness. (a): ground truth image; (b)-(d):
In the first round, erase each object and select the most important relationship; (e)-(g):
In the second round, use image with the selected object erased as ground truth and
select the next most important object.
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