
Appendix
Image2Point: 3D Point-Cloud Understanding with

2D Image Pretrained Models

Chenfeng Xu1⋆ , Shijia Yang1⋆ , Tomer Galanti2, Bichen Wu3, Xiangyu Yue1,
Bohan Zhai1, Wei Zhan1, Peter Vajda3, Kurt Keutzer1, and Masayoshi

Tomizuka1

1 University of California, Berkeley
2 Massachusetts Institute of Technology

3 Meta Reality Labs

A Implementation Details

Datasets. Our experiments are conducted on ModelNet 3D Warehouse, S3DIS,
and SemanticKITTI datasets. For the ModelNet 3D Warehouse dataset, we
train all models on the train set and evaluate on the validation set. For the
S3DIS, we train all models on area 1, 2, 3, 4, 6 and evaluate on area 5. For the
SemanticKITTI dataset, we train all models on splits 00-10 except 08 which is
used for evaluation. For each of the datasets, all ResNet series models use the
same training scheme, and all experiments are implemented with PyTorch.

Training on ModelNet 3D Warehouse dataset. In this case, coordinates of point-
clouds are randomly scaled, translated, and jittered. We employ the SGD op-
timizer with momentum 0.9, weight-decay 10−4, and initial learning rate 0.1
with cosine learning rate scheduler. Each mini batch is set to 32, and models are
trained for 300 epochs. For both training and inference phase, we only utilize
x, y, z coordinates without other features and set the voxel size to be 0.05. The
experiments for ModelNet 3D Warehouse are all conducted on a Titan RTX
GPU.

Training on the S3DIS dataset. In this case, we concatenate all subparts of an
indoor scene to train and validate on. Along x, y directions, scenes are applied
horizontal flip randomly. RGB features are randomly jittered, translated, and
auto contrasted. Finally, we normalize and clip point-clouds. We set voxel size to
0.05, use SGD optimizer with momentum 0.9, weight-decay 10−4, and initialize
learning rate to 0.1 with polynomial learning rate scheduler. Each mini batch is
set to 3, and models are trained for 400 epochs on 2 Titan RTX GPUs.

⋆ Equal contribution

https://orcid.org/0000-0002-4941-6985
https://orcid.org/0000-0002-7016-9333

2 C. Xu et al.

Training on the SemanticKITTI dataset. In this case, coordinates of each point-
cloud are randomly scaled and rotated. We use SGD optimizer with momentum
0.9, weight-decay 10−4, and initial learning rate 0.24 with cosine warmup learning
rate scheduler. Each mini batch is set to 2, and models are trained for 15 epochs
on 4 Titan RTX GPUs. For both training and inference phases, we utilize x, y, z
coordinates as well as intensity feature and set voxel size to 0.05.

Most of our pretrained models were taken from open-sources 456789, so we
do not need to take time and computational resources for pretraining. We use
torchsparse10 to produce sparse 3D convolutions.

Details on Section 4.1. In this section, we take the ResNet architecture, inflate
the pretrained models of different image datasets, and add linear input and output
layers as shown in Section B.7. The ResNet50 was pretrained on ImageNet1K
and is taken from the original PyTorch example. We use the same training recipe
provided by PyTorch to train the ResNet50 on Tiny-ImageNet. The pretrained
ResNet50 on ImageNet21K was taken from [20].

Details on Sections 4.2, 4.3 and 4.4. In these sections, the pretrained ResNet
models are taken from the same sources as those in Section 4.1.

For pretraining PointNet++ on ImageNet1K, we utilize the PointNet++ SSG
version [17]. We break the image into pixels and regard the group of pixels as a
point-cloud with coordinates of x, y positions in the original image and appending
z = 1 to all pixels. Then, we set center sampling number to 1024 and 256 for first
and second stage, and the radius is set into 8 and 64, respectively. For each center
point, we query 64 neighbouring points. The training recipe is also provided by
PyTorch.

For ViT models, we directly take the pretrained weights from [4]. To apply it
on ModelNet 3D Warehouse, we sample 256 centers and group 64 nearby points,
regarding these as “point-cloud patches”. Then, we use a linear embedding to
project the point-cloud patches into a sequence, and ViT processes them the same
as image patches. Except for the linear embedding and the final output classifier,
all the models are kept the same as the original version. For the experiments on
S3DIS and SemanticKITTI, the architectural detail of ResNet18 is shown in A.4
listing 1.2.

For SimpleView model, all the experiment settings are the same as [6]. The
only difference is whether to use the pretrained ResNet18. For HRNetV2-W48,
we directly use the ImageNet1K and Cityscape pretrained models from [21].

We conduct three trials on the few-shot experiments. For each trial, we change
the random seed but keep all the other settings the same. To plot the training
4 https://pytorch.org/vision/stable/models.html
5 https://github.com/Alibaba-MIIL/ImageNet21K
6 https://github.com/hirokatsukataoka16/FractalDB-Pretrained-ResNet-PyTorch
7 https://github.com/HRNet/HRNet-Semantic-Segmentation/tree/pytorch-v1.1
8 https://github.com/rgeirhos/Stylized-ImageNet
9 https://github.com/wielandbrendel/bag-of-local-features-models

10 https://github.com/mit-han-lab/torchsparse

Image2Point 3

Table 1. ResNet50 results (evaluated on ModelNet 3D Warehouse) of finetuning the
mean and variance in batch normalization layers (BN) on different image-pretrained-
models. IO (FIP-IO) indicates finetuning input and output layer. IOms indicates
updating input and output layer, BN mean and variance. IOmsWb (FIP-IO+BN)
indicates finetuning input, output layer, and the whole BN.

Layers Tiny-
ImageNet ImageNet1K ImageNet21K FractalDB1K FractalDB10K

IO 67.67 81.20 73.74 83.35 80.11
IOms 83.79 82.94 84.08 72.33 79.66

IOmsWb 89.99 89.87 90.80 89.26 89.34

From Scratch 90.32

Table 2. ResNet18, 50, 152 results (evaluated on ModelNet 3D Warehouse) of finetuing
the mean and variance in batch normalization layers.

Layers ResNet18 ResNet50 ResNet152

IO 71.03 81.20 64.63
IOms 81.89 82.94 82.66

IOmsWb 88.75 89.87 90.44

From Scratch 90.39 90.32 90.28

speed curve, we directly use the training log without any other changes, such as
smoothing.

B Additional Experiments

B.1 Finetuning the mean and variance of batch normalization.

For the first group of experiments, ResNet50 FIP either has IO or IO+BN
finetuned. In addition to these two experimental settings, we also investigate
finetuning input, output layers, and mean, variance of normalization layers, while
fixing the convolution layer weights, normalization layer weights, and bias. The
full experiment results with this extra setting are reported in Table 1 and 2.
We can observe that compared with only finetuning input and output layers,
updating mean and variance can also largely improve the performance of point-
cloud recognition. As suggested in Section 2.4, we train batch normalizations to
enhance the adaption between modalities.

B.2 Ablation study of inflating towards different directions.

We conduct experiments of inflating filters along different directions with the
illustration figure shown in Figure 1 and the results shown in Table 3. We find that
the performance is different when using different inflation methods. In particular,
with ResNet50 pretrained on ImageNet1K, inflating along the x axis and the y
axis leads to better performance compared with inflating along z axis for both
FIP-IO and FIP-IO+BN. More importantly, the minimally finetuned FIP-IO+BN
with inflating along the x and y axis even surpasses the training-from-scratch.

4 C. Xu et al.

2D Filter 3D Filter

Z axisY axisX axis

Fig. 1. Visualization of filter inflation along different axis.

Table 3. ModelNet 3D Warehouse results (Top-1 accuracy) of partially finetuning
ResNet50 pretrained on ImageNet1K with inflation along the x, y, z axis.

Method x axis y axis z axis

FIP-IO 82.17 81.73 81.20
FIP-IO+BN 90.44 90.84 89.87

From Scratch 90.32

Table 4. ModelNet 3D Warehouse results (Top-1 accuracy) of finetuning ResNet50
pretrained on ImageNet1K with only subset of stages loaded.

Loaded Stages 1 1 2 1 2 3 1 2 3 4 2 3 4 3 4 4

FIP-ALL 89.91 90.36 90.64 90.92 91.09 90.19 89.99

From Scratch 90.32

Table 5. Stability analysis of semi-supervised distillation experiments on top of
ResNet34 on the ModelNet 3D Warehouse dataset.

Few-shot From scratch PointInfoNCE Hardest
Contrastive

ImageNet1K
pretrain (Ours)

10-shot 72.7±1.2 74.3±1.3 (+1.6) 73.9±1.1 (+1.2) 74.6±1.1 (+1.9)
5-shot 62.2±0.7 64.5±1.4 (+2.3) 65.0±2.1 (+2.8) 65.4±1.4 (+3.2)
1-shot 30.8±2.4 36.5±1.8 (+5.7) 35.9±1.0 (+5.1) 38.3±2.0 (+7.5)

B.3 Ablation study of loading different stages of the image-pretrained
model.

We investigate the effect of loading different subsets of stages. The results are
shown in Table 4. In detail, we load the pretrained weights partially while keeping
the other weights randomly initialized. We observe that excluding the weights of
the first stage achieves the best performance, bringing 0.77 points improvement.

B.4 Stability analysis of the semi-supervised experiment.

For the semi-supervised experiment, we change the random seed and calculated
the mean and standard deviation of three trials for each setting as shown in
Table 5.

Image2Point 5

Table 6. Comparison with PointCLIP on 16-shot classification.

Method 1 view(Acc.%) 4 view(Acc.%)

PointCLIP (ResNet101) 75.53 82.17
FIP-ALL (ResNet101) 80.47 82.46

B.5 Comparison with other knowledge transfer methods.

We compared our method with PointCLIP[23], the most recent SOTA knowledge
transfer approach in point-cloud domain. We show that with simply inflating
ResNet101 pretrained on ImageNet1K, the 16-shot classification of Image2Point
on ModelNet40 is better than PointCLIP, as shown in Table 6. We mimic
PointCLIP to rotate point-cloud into different angles, and ensemble their results.
Note that the FLOPs of Image2Point are less than PointCLIP. The results suggest
that without a variety of tricks, our proposed method with simple inflation
can achieve competitive and even better performance than knowledge-transfer
methods.

B.6 Neural Collapse in the Embedding Layer.

[16] characterized neural collapse as training dynamics of overparameterized
neural networks in which the feature embeddings of samples from the same class
tend to concentrate around their class means. In this section, we briefly define
neural collapse and evaluate it in our current setting. We refer the reader for
additional details in [5,16].

Suppose we have a classification problem, in which we are provided with a
training dataset S = ∪C

c=1Sc = ∪C
c=1{(xci, c)}m0

i=1 split into classes. We would like
to train a neural network h = e◦ q, with q : Rn → Rp and e : Rp → RC is a linear
layer. The neural network is trained by minimizing cross-entropy loss between
the one-hot encodings of its labels of samples in S and its logits. For additional
details, see Section C.1.

Several definitions of neural collapse have been proposed in the literature. In
this paper we work with a relatively simple definition that has been proposed
in [5]. We start by defining the class-distance normalized variance (CDNV),
which is a measure of clusterability of the feature embeddings. For a given feature
map q : Rn → Rp and two distributions Q1, Q2 (of samples from two different
classes) over X , the 11 is defined in the following manner

Vq(Q1, Q2) =
Varq(Q1) + Varq(Q2)

2∥µq(Q1)− µq(Q2)∥2
. (1)

Essentially, this quantity measures to what extent the deviations of the embed-
dings q(x) of samples coming from Q1 and Q2 are smaller than the distance
11 The CDNV can be extended to finite sets S1, S2 ⊂ X by defining Vq(S1, S2) =

Vq(U [S1], U [S2]).

6 C. Xu et al.

between their means. Intuitively, if the deviations are very small in comparison
with the distances, then we expect the embeddings to be clustered with respect
to their class labels. Note, that this quantity is also scale-invariant, i.e., if we
multiply q by α ̸= 0, then, the CDNV would not change for any pair Q1, Q2.

According to the definition in [5], neural collapse is defined in the following
manner

lim
t→∞

Avgi̸=j∈[l][Vqt(Si, Sj)] = 0, (2)

where qt is the embedding function after t epochs of training e ◦ q. Intuitively,
during train time, the feature embeddings of samples of the same class tend to
concentrate around their class-means in comparison with their distance from the
other classes.

Evaluating neural collapse. In this experiment we measure the clusterability of
the feature embeddings of the penultimate layer of the pretrained model into
classes, on both the source/pretraining task (i.e., ImageNet1K) and the target
task (e.g., ModelNet40). In this experiment, we train a classifier of the form
h̃ = ẽ ◦ q = ẽ ◦ f ◦ g̃ on ImageNet1K. We used ResNet50 as the architecture of h,
where g̃ is the first convolutional layer of the model and ẽ is the top linear layer of
the model. As a second step, we replace ẽ and g̃ with neural networks e (a linear
layer) and g (a linear layer) and train them, along with retraining the batch
normalization parameters of f on ModelNet40, resulting in a function e ◦ f ′ ◦ g.
We denote by S̃tr = ∪k

c=1S̃
tr
c the source training dataset and by Str = ∪l

c=1S
tr
c

the target training dataset. Here, S̃tr
c and Str

c are the samples associated with
the cth class. We also denote by S̃val = ∪k

c=1S̃
val
c and Sval = ∪k

c=1S
val
c the

corresponding validation datasets.
To measure the degree of clusterability of the feature embeddings, we con-

sider multiple applications of the averaged CDNV. For measuring the clus-
terability of the features on the source task, we consider the CDNV of f ◦
g̃ on the source train and validation datasets: Avgi ̸=j∈[k][Vf◦g̃(S̃

tr
i , S̃tr

j)] and
Avgi ̸=j∈[k][Vf◦g̃(S̃

val
i , S̃val

j)]. These results are reported in Table 7. Similarly, we
also measure the CDNV of f ′ ◦ g on the source train and validation datasets:
Avgi ̸=j∈[k][Vf ′◦g(S̃

tr
i , S̃tr

j)] and Avgi̸=j∈[k][Vf ′◦g(S̃
val
i , S̃val

j)]. In the main text, we
report the CDNV on the validation set for e ◦ f ′ ◦ g which reflects the property
of the embedding’s clusterability in a low-dimensional space.

As can be seen in Table 7, across all of the experiments, the values of the CDNV
are lower than 1, meaning that the standard deviations of the embeddings per
class are smaller in comparison with the distances between class means. Therefore,
we encounter a scenario where the embeddings of samples are fairly separated
into classes. In addition, we observe that the degree of collapse generalizes well
to new samples, as the CDNV on the train and validation data are relatively
similar.

B.7 Details of used architectures.

Image2Point 7

Table 7. CDNV of the pretrained models on ImageNet1K Training/validation set,
and CDNV of training from scratch and FIP-IO+BN on ModelNet 3D Warehouse
training/validation set

Models ImageNet1K From scratch FIP-IO+BN
ImageNet1K

FIP-IO+BN
ImageNet21K

Training CDNV 0.63 0.37 0.71 0.47
Validation CDNV 0.66 0.43 0.68 0.60

1 Class 3DRes_cls(nn.Module):
2 def __init__(self , res_block):
3 # res_block means the residual block as same as the

conventional ResNet.
4 super().__init__ ()
5

6 self.input_layer = nn.Sequential(
7 sparse_conv3d(input_dim , layer1_Idim , k=3, s=1),
8 sparse_bn(layer1_Idim))
9

10 self.layer1 = inflated_resnet_layer1(
11 res_block , layer1_Idim , layer1_Odim)
12 self.layer2 = inflated_resnet_layer2(
13 res_block , layer2_Idim , layer2_Odim)
14 self.layer3 = inflated_resnet_layer3(
15 res_block , layer3_Idim , layer3_Odim)
16 self.layer4 = inflated_resnet_layer4(
17 res_block , layer4_Idim , layer4_Odim)
18

19 self.output_layer = nn.Sequential(
20 global_average_pooling ,
21 nn.Linear(layer4_Odim , class_num),
22 nn.bn(class_num))
23

24 def forward(self , x):
25 x = self.input_layer(x)
26 x = self.layer1(x)
27 x = self.layer2(x)
28 x = self.layer3(x)
29 x = self.layer4(x)
30 return self.output_layer(x)

Listing 1.1. Pseudo code of inflated ResNet with linear input and output layers for
classification.

1 Class 3DRes_seg(nn.Module):
2 def __init__(self , res_block):
3 # res_block means the residual block as same as the

conventional ResNet.
4 super().__init__ ()
5

8 C. Xu et al.

6 self.input_layer = nn.Sequential(
7 sparse_conv3d(
8 input_dim , layer1_Idim , k=3, s=1),
9 sparse_bn(layer1_Idim),

10 sparse_ReLU(True),
11 sparse_conv3d(
12 layer1_Idim , layer1_Idim , k=3, s=1),
13 sparse_bn(layer1_Idim),
14 sparse_ReLU(True),
15 sparse_conv3d(
16 layer1_Idim , layer1_Idim , k=3, s=2),
17 sparse_bn(layer1_Idim),
18 sparse_ReLU(True))
19

20 self.layer1 = inflated_resnet_layer1(
21 res_block , layer1_Idim , layer1_Odim)
22 self.layer2 = inflated_resnet_layer2(
23 res_block , layer2_Idim , layer2_Odim)
24 self.layer3 = inflated_resnet_layer3(
25 res_block , layer3_Idim , layer3_Odim)
26 self.layer4 = inflated_resnet_layer4(
27 res_block , layer4_Idim , layer4_Odim)
28

29 self.up1 = sparse_deconv(
30 layer4_Odim , layer4_Odim , k=2, s=2)
31 self.decode1 = self.Sequential(
32 res_block(layer4_Odim+layer3_Odim , layer3_Odim),
33 res_block(layer3_Odim , layer3_Odim))
34

35 self.up2 = sparse_deconv(
36 layer3_Odim , layer3_Odim , k=2, s=2)
37 self.decode2 = self.Sequential(
38 res_block(layer3_Odim+layer2_Odim , layer2_Odim),
39 res_block(layer2_Odim , layer2_Odim))
40

41 self.up3 = sparse_deconv(
42 layer2_Odim , layer2_Odim , k=2, s=2)
43 self.decode3 = self.Sequential(
44 res_block(layer2_Odim+layer1_Odim , layer1_Odim),
45 res_block(layer1_Odim , layer1_Odim))
46

47 self.up4 = sparse_deconv(
48 layer1_Odim , layer1_Odim , k=2, s=2)
49 self.decode4 = self.Sequential(
50 res_block(layer1_Odim+layer1_Odim , layer1_Odim),
51 res_block(layer1_Odim , layer1_Odim))
52

53 self.output_layer = nn.Sequential(
54 nn.Linear(layer1_Odim , class_num))
55

Image2Point 9

56 def forward(self , x):
57 x_i = self.input_layer(x)
58 x1 = self.layer1(x_i)
59 x2 = self.layer2(x1)
60 x3 = self.layer3(x2)
61 x4 = self.layer4(x3)
62

63 x3_ = self.decoder1(cat(x3, self.up1(x4)))
64 x2_ = self.decoder2(cat(x2, self.up2(x3_)))
65 x1_ = self.decoder3(cat(x1, self.up3(x2_)))
66 xi_ = self.decoder4(cat(x_i , self.up4(x1_)))
67 return self.output_layer(xi_)

Listing 1.2. Pseudo code of inflated ResNet for segmentation.

C Theoretical Analysis

To motivate our approach, in this section we provide some theoretical support
for the transfer of image domain to point-cloud domain described in the main
text. Instead of specifying image and point-cloud in the analysis, we begin
by introducing a formal framework for analyzing transfer learning between
different modalities and classes. Note that the modalities should have grounded
“relationships”, or as illustrated below, have meaningful task similarity. For
example, image and point-cloud are both visual representations of the real world
that share mutual characteristics, such as content and shape that could be
captured using neural networks encoders.

We begin by introducing a formal framework for analyzing transfer learning
between different modalities and classes. Then, we analyze a simple toy example,
in which it is possible to perfectly translate one modality to the other using a
linear mapping. Finally, we consider a more realistic case, in which we assume
that the two domains share a ‘mutual semantic space’ that encodes the content
within samples from the two domains.

C.1 Problem Setup

We extend the transfer learning setting in [5]. We consider the problem of training
a generic feature representation on a source classification task and transferring it
to a target task. The two classification problems correspond to different modalities
(i.e., two different kinds of data representations) and consist of different sets of
classes.

To model this problem, we assume that the target task is a k-class classification
problem and the source task where the feature representation is learned on an
l-class classification problem. Formally, the target task T = (P, y) is defined by a
distribution P over samples x ∈ X , where X ⊂ Rd1 is the instance space, along
with a function y : X → Yk, where Yk is a label space with cardinality k. To
simplify the presentation, we use one-hot encoding for the label space, that is,

10 C. Xu et al.

the labels are represented by the unit vectors in Rk, and Yk = {ec : c = 1, . . . , k}
where ec ∈ Rk is the cth standard unit vector in Rk; with a slight abuse of notation,
sometimes we will also write y(x) = c instead of y(x) = ec. For a sample x with
distribution P , we denote by Pc(·) = P[x ∈ · | y(x) = c] the class distribution of
x given y(x) = c. We consider balanced classes, i.e., P[y(x) = c] = 1/k.

The target task. A classifier h ∈ H is a mapping h : X → Rk that assigns a soft
label to an input point x ∈ X , and its performance on the target task is measured
by the risk

LP (h, y) = Ex∼P [ℓ(h(x), y(x))], (3)

where ℓ : Rk × Yk → [0,∞) is a loss function, defined as follows ℓ(u, v) =
I[argmax(u) = v].

Our goal is to learn a classifier h from some training data S = ∪k
c=1Sc =

∪k
c=1{(xci, c)}ni=1 of n independent and identically distributed (i.i.d.) samples

drawn from each class Pc of P . However, when encountering a complicated
classification problem and n is small, this is likely to be a hard task. To facilitate
finding a good solution, we aim to find a classifier of the form h = e ◦ f ◦ g, where
f : Rp1 → Rp2 is a feature map from a family of functions F ⊂ {f ′ : Rp1 → Rp2},
e ∈ E ⊂ {e′ : Rp2 → Rk} is an affine function and g is a function from a family
G1 ⊂ {g′ : Rd1 → Rp1}. Namely, the feature map f is trained on a source problem,
potentially of a different modality, where much more data is available, and then g
and e are trained on S while freezing f . Intuitively, g and e are relatively ‘simple’
functions (e.g., linear layers) that are task-specific. Concretely, e (the classifier)
is responsible for translating f into a classifier between the classes in P and g
(the adaptor) adapts f to the specific modality of P .

The source task. We assume that the source task helping to find f is an l-class
classification problem over a different sample space X ′ ⊂ Rd2 . For example, X
could be a set of 3D point-clouds, while X ′ is a set of 2D natural images. The
source task B = (P̃ , ỹ) is defined by a distribution P̃ and function ỹ : X ′ → Yl,
and here we are interested in finding a classifier h̃ : X ′ → Rl of the form
h̃ = ẽ ◦ f ◦ g̃, where ẽ ∈ Ẽ ⊂ {e′ : Rp → Rl} is an affine function over the feature
space f(g̃(X)) = {f(g̃(x)) : x ∈ X} and g̃ ∈ G2 ⊂ {g′ : Rd2 → Rp1} is an adaptor.
Given a training dataset S̃ = ∪l

c=1S̃c = ∪l
c=1{(x̃ci, c)}mi=1, all components of the

classifier, denoted by g̃, f and ẽ are trained on S̃, with the goal of minimizing
the cross-entropy loss in the source task. Following [5] we assume that S̃c are
drawn i.i.d. from P̃c and that P[ỹ(x) = c] = 1/l.

Tasks similarity. In general, transferring between the source and target tasks is
meaningless if the two tasks are extremely unrelated to each other. For instance,
we should not expect to have any guarantee to transfer knowledge from very
different tasks, such as voice separation and image segmentation.

Intuitively, we think of the classes of the target (source) task as being of
‘similar character’. To formalize this intuition, we simply assume that the target
(source) classes are i.i.d. samples of a distribution D1 over C1 (D2 over C2).

Image2Point 11

In [5] they assumed that the source and target classes differ, but share the same
underlying distribution, i.e., D1 = D2. Since in this work we intend to study
transfer between different modalities, D1 need not be the same as D2. To formally
define notions of similarity between domains, we first assume the existence of
an invertible mapping F : C1 → C2, such that, P̂c := F (Pc) ∼ D2 for Pc ∼ D1.
In a sense, D1 and D2 share the same set of categories, encoded with different
kinds of modalities. The mapping F takes a certain class Pc ∈ C1 and maps it
to its analogous class P̂c ∈ C2 in the second domain. For a given target task
T = (P, y) with distribution P , classes {Pc}kc=1 and function y : X → Rk, we
denote A = (P̂ , ŷ) the corresponding analogous task within the second domain,
where P̂c = F (Pc) (not to be confused with the source task B = (P̃ , ỹ)). In
general, F could be an arbitrary mapping between the classes. Therefore, to
concretely relate between D1 and D2 we will have to make additional assumptions
about the relationship between P and P̂ . The specific relationship between Pc

and P̂c will be explicitly defined near the presentation of each result.

Evaluation process. As a next step, we would like to evaluate the performance
of the pretrained feature map f on the target task. To do so, we evaluate its
expected performance over the distribution of binary classification target tasks

Lk
D1

(f) = EP1 ̸=... ̸=Pk∼D1ES1,...,Sk
[LP (eS ◦ f ◦ gS , y)], (4)

where Sc ∼ Pn
c and eS , gS are the outputs of a learning algorithm that trains

e ∈ E and g ∈ G1 to fit e ◦ f ◦ g to the dataset S while freezing f . For simplicity,
in this work we focus on k = 2 and denote LD1

(f) = L2
D1

(f), even though
the analysis could be readily extended to k > 2. Note that several implemen-
tations of mappings S 7→ eS , gS are possible. For simplicity, in this work, we
choose argmax ◦eS to be the ‘nearest empirical mean classifier’ and gS to be
an empirical risk minimizer. Formally, for a given embedding function h, we
consider the linear function eSh(z) = (⟨z, 2µh(Sc)⟩ − ∥µh(Sc)∥2)c=1,2. In this case,
argmax ◦eSh(z) = minc=1,2 ∥z − µh(Sc)∥ forms a nearest empirical mean classifi-
cation rule that classifies a vector z as 1 if it is closer to the empirical embeddings
mean µh(S1) = Avgx∼S1

[h(x)] than to µh(S2) = Avgx∼S2
[h(x)]. In addition,

gS = argming∈G LX(eSf◦g ◦ f ◦ g, y), where X = ∪k
c=1{xci}ni=1 and eS = ef◦gS is

the corresponding nearest empirical mean classifier. Notice that while the feature
map f is evaluated on the distribution of target tasks determined by classes taken
from D1, the training of f , as described above, is fully agnostic of this target.

To summarize, in the proposed setting we train a feature map f as part of a
classification model ẽ ◦ f to fit some source data corresponding to a set of source
classes P̃1, . . . , P̃l using dataset S̃ = ∪l

c=1S̃c. At the second stage, f ’s performance
is evaluated against a randomly selected set of target classes P1, . . . , Pk the differ
by content (i.e., different categories) and modality (e.g., 2D and 3D point clouds)
by training an adaptor g and a linear classifier e based on the available data
S = ∪k

c=1Sc. Therefore, in this work we deal with two modes of transfer. First, we
would like to train f to be a generic feature map that can be used to distinguish
between many different categories. The second deals with the ability to adapt f

12 C. Xu et al.

from one modality to another using minimal efforts. Intuitively, if the pretrained
feature map f enjoys both qualities, we expect LD1

(f) to be small. This is what
we show in Theorem 1.

Notation. Throughout the analysis, we use the following notations. For an integer
k ≥ 1, [k] = {1, . . . , k}. For any real vector z, ∥z∥ denotes its Euclidean norm.
For a given set A = {a1, . . . , an} ⊂ B and a function u ∈ U ⊂ {u′ : B → R},
we define u(A) = {u(a1), . . . , u(an)} and U(A) = {u(A) : u ∈ U}. Let Q be a
distribution over X ⊂ Rd and u : X → Rp. We denote by µu(Q) = Ex∼Q[u(x)]
and by Varu(Q) = Ex∼Q[∥u(x) − µu(Q)∥2] the mean and variance of u(x) for
x ∼ Q. For A above, we denote by Avgni=1[ai] = AvgA = 1

n

∑n
i=1 ai the average

of A. For a finite set A, we denote by U [A] the uniform distribution over A.
We denote by I : {True,False} → {0, 1} the indicator function. For a given
distribution P over X and a measurable function f : X → X ′, we denote the
distribution of f(x) by f ◦ P . For two classes of functions G = {g′ : Rd1 → Rd2}
and F = {f ′ : Rd2 → Rd3}, we denote F ◦ G = {f ◦ g | f ∈ F , g ∈ G}.

D Theoretical Results

D.1 Case 1

As a toy example, we first consider the case where the first domain (target) can
be translated into the second domain (source), using some simple function g∗.
For this purpose, we assume that G1 is decomposed into G1 = G′′

1 ◦ G′
1, where

G′
1 ⊂ {g′ : Rd1 → Rd2} and G′′

1 ⊂ {g′ : Rd2 → Rp1}. Intuitively, the functions
g ∈ G1 are decomposed into sub-architectures g′1 : Rd1 → Rd2 and g′′1 : Rd2 → Rp1 .
In addition, we assume there exists a function g∗ ∈ G′

1, such that g∗ ◦ P ∼ D2

for P ∼ D1 (where g ◦ P is the distribution of g(x) for x ∼ P). In addition, we
assume that G2 ⊂ G′′

1 . Hence, for each candidate function g̃ ∈ G2 that could have
been selected when training the classifier h = ẽ ◦ f ◦ g̃, there exists a function
g = g̃ ◦ g∗ ∈ G1 that maps Pc into g ◦ Pc = g̃ ◦ P̃c. Intuitively, any representation
g̃ ◦ P̃ of the distribution P̃ could be implemented as g ◦ P for some g ∈ G1.
While g∗ is unknown to the learning algorithm, as we will see in Theorem 1,
this simplifying assumption makes it possible to easily transfer between the two
domains.

The following theorem provides an upper bound on the expected error of
a pretrained feature map f in terms of the expected CDNV between pairs of
classes P̃i and P̃j from D2 and the empirical Rademacher complexity of the
class Hf = {argmax ◦e ◦ f ◦ g | (e, g) ∈ E × G1}. The Rademacher complexity
is a measure of generalization that quantifies the ability of a class of functions
to fit noise. Formally, for a given set X = {xi}ni=1 ⊂ Rd and set of functions
H ⊂ {h′ | h′ : Rd → R}, the empirical Rademacher complexity (see [14]) of H is
defined as follows

RadX(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σi · f(xi)

]
, (5)

Image2Point 13

where σ = (σ1, . . . , σn) are i.i.d. uniformly distributed over {±1}. The empirical
Rademacher complexity can lead to tighter bounds than those based on other
measures of complexity such as the VC-dimension [8]. It also has the added
advantage that it is data-dependent and can be measured from finite samples.

Theorem 1. In the setting above. For any tuple (f, g̃) ∈ F × G, we have:

LD1
(f) ≤ 16EP̃1 ̸=P̃2∼D2

[
Vf◦g̃(P̃1, P̃2)

s(f ◦ g̃, P̃1, P̃2)

]
+ 6

√
log(4n)

2n
+

2

n

+ 2EPc∼D1EXc∼Pn
c
[RadXc(Hf)] ,

where s(f, P1, P2) = p2 if f ◦ P1 and f ◦ P2 are spherically symmetric and
s(f, P1, P2) = 1 otherwise.

The theorem above provides an upper bound on the expected error LD1(f)
of a pretrained feature map f against classification tasks generated using classes
from D1. The bound holds uniformly for any pair (f, g̃) ∈ F × G. Hence, we
think of f and g̃ as the pretrained functions that were obtained by training the
classifier ẽ ◦ f ◦ g̃ to fit the source data S̃ = ∪l

c=1S̃c. The bound is decomposed
into several parts. The first term is (approximately) proportional to the CDNV
between pairs of randomly selected classes from D2. Namely, it measures the
extent of neural collapse we encounter between randomly selected pairs of source
classes P̃1 ̸= P̃2 ∼ D2.

As mentioned in Section B.6 in the regime of neural collapse, we expect
Avgi ̸=j∈[l]

[
Vf◦g̃(S̃i, S̃j)

]
to be small. In addition, by Propositions 1 in [5], under

certain circumstances if the number of samples per source class m is large enough,
we also expect Avgi̸=j∈[l]

[
Vf◦g̃(P̃i, P̃j)

]
to be small. Finally, by Propositions 2

in [5], if the number of source classes l is also large, we should also expect
EP̃i ̸=P̃j∼D2

[Vf◦g̃(P̃i, P̃j)] to be small. As a side note, a smaller bound is obtained
when f ◦ g̃ projects the classes P̃c ∼ D2 to spherically symmetric distributions as
s(f ◦ g̃, P̃1, P̃2) = p2 if f ◦ g̃ ◦ P̃c are spherically symmetric. For estimations of
Avgi ̸=j∈[l]

[
Vf◦g̃(S̃i, S̃j)

]
and Avgi ̸=j∈[l]

[
Vf◦g̃(P̃i, P̃j)

]
, see Section B.6, in which

S̃c is denoted by S̃tr
c and the class distributions P̃c are approximated with

validation sets S̃val
c .

The second group of terms includes the (expected) Rademacher complexity of
the class Hf and additional terms that scale as O

(√
log(n)/n

)
. The Rademacher

complexity RadS(H) of a class H of neural network classifiers h : Rd → {0, 1}
typically scales as O

(√
N/n

)
, where N polynomially depends on the number

of trainable parameters and n is the number of samples. Therefore, in standard
settings, we expect RadS(Hf) to scale as O

(√
N/n

)
, where N polynomially

depends on the number of parameters in e and g. On the other hand, a standard
Rademacher complexity generalization bound would yield a dependence on the
number of parameters existing in the full network e ◦ f ◦ g (including the ones

14 C. Xu et al.

in f). Since typically f contains most of the trainable parameters in the neural
network, this allows us to significantly reduce the sample complexity of the target
task.

Proof. To prove this theorem, we fix a target task T = (P, y) with a pair of
classes P1, P2 and a pretrained feature map f ◦ g̃. By (cf. [14], Theorem 3.5), for
any c = 1, 2, with probability at least 1− 1

4n over the selection of Sc, for any pair
(e, g) ∈ E × G1, we have

|LPc(e ◦ f ◦ g, y)− LXc(e ◦ f ◦ g, y)| ≤ 2RadXc(Hf) + 3

√
log(4n)

2n
, (6)

where Xc consists of the samples in Sc excluding their labels and X = X1 ∪X2.
By union bound over c = 1, 2, with probability at least 1− 1

2n over the selection
of S, the following inequality holds uniformly for all (e, g) ∈ E × G1,

|LP (e ◦ f ◦ g, y)− LX(e ◦ f ◦ g, y)| ≤
∑
c=1,2

RadXc
(Hf) + 3

√
log(4n)

2n
. (7)

Hence, with probability at least 1− 1
2n over the selection of S,

LP (eS ◦ f ◦ gS , y) ≤ LX(eS ◦ f ◦ gS , y)

+
∑
c=1,2

RadXc
(Hf) + 3

√
log(4n)

2n
.

(8)

Let E ′ =
{
e(z) = (−∥z − µc∥2)c=1,2 = (⟨z, 2µc⟩ − ∥µc∥2)c=1,2 | µ1, µ2 ∈ Rp2

}
⊂

E . In addition, we let eP (z) = (−∥z−µf◦g̃◦g∗(Pc)∥2)c=1,2. Since g̃◦g∗ ∈ G2 ◦G′
1 ∈

G′′
1 ◦ G′

1 = G1, we have

LX(eS ◦ f ◦ gS , y) = inf
g∈G1

inf
e∈E′

LX(e ◦ f ◦ g, y)

≤ inf
e∈E′

LX(e ◦ f ◦ g̃ ◦ g∗, y)

≤ LX(eP ◦ f ◦ g̃ ◦ g∗, y).

(9)

In particular, since the loss function is bounded in [0, 1] and the above event
holds with probability at least 1− 1

2n , by taking expectation over S, we obtain
the following inequality

ES [LP (eS ◦ f ◦ gS , y)]

≤ ES [LS(eP ◦ f ◦ g̃ ◦ g∗, y)] + 3

√
log(4n)

2n
+

1

2n
+

∑
c=1,2

RadXc
(Hf)

= ES [LS(eP ◦ f ◦ g̃ ◦ g∗, y)] + 3

√
log(4n)

2n
+

1

2n
+

∑
c=1,2

RadXc
(Hf).

(10)

Image2Point 15

Finally, we can take expectation over the selection of P1, P2 on both sides of the
inequality to obtain that

LD1
(f) = EP1 ̸=P2∼D1

ES [LP (eS ◦ f ◦ gS , y)]
≤ EP1 ̸=P2

[LP (eP ◦ f ◦ g̃ ◦ g∗, y)]

+ 2EP1 ̸=P2∼D1
EXc

[RadXc
(Hf)] + 3

√
log(4n)

2n
+

1

2n
.

(11)

Finally, since for any given distribution P , we have g∗ ◦ P ∼ D1 for P ∼ D2, by
Proposition 5 in [5], we obtain that

EP1 ̸=P2
[LP (eP ◦ f ◦ g̃ ◦ g∗, y)] = EP̂1 ̸=P̂2

[
LP̂ (eP ◦ f ◦ g̃, ŷ)

]
≤ 16Vf◦g̃(P̂1, P̂2)

s(f ◦ g̃, P̂1, P̂2)
.

(12)

D.2 Case 2

In the previous section, we assumed existence of a mapping g∗ ∈ G′
1, such that

g∗ ◦ Pc ∼ D2 for Pc ∼ D1. However, this assumption is typically violated in
practice [9,19,22]. Therefore, following the Unsupervised Domain Adaptation
literature [1,12], we use a relaxed assumption that there is a ‘shared represen-
tation space’ for both domains. Informally, the two domains can be mapped
to a shared space, in which classification into classes is possible. Variations of
this assumption are algorithmically and theoretically used in multiple areas of
computer vision [2,7,10,11,18,24].

Formally, we assume the existence of two mappings g∗ ∈ G1 and g̃∗ ∈
G2 that satisfy g∗ ◦ Pc ≈ g̃∗ ◦ P̂c in expectation over Pc ∼ D1. To formalize
this assumption, we make use of the notion of discrepancy [1,3]. Namely, for
a given set V of functions v : X → R, we define the discrepancy between
two distributions P1 and P2 over X , as discV(P1, P2) = suph∈V |Ex∼P1

[h(x)] −
Ex∼P2

[h(x)]|. The discrepancy, or Integral Probability Metric (IPM) [15], is
a pseudo-metric between distributions. Namely, we (implicitly) assume that
EPc∼D1

[
discV(g∗ ◦ Pc, g̃

∗ ◦ P̂c)
]

is small, where V is some class of binary functions
(to be defined in the proof).

To capture the intuition that one can classify the samples into classes from
the representation space g∗(X) ≈ g̃∗(X ′), we assume that the following term

EP1 ̸=P2

[
inf

(e,f)∈E×F
LP (e ◦ f ◦ g∗, y) + LP̂ (e ◦ f ◦ g̃∗, ŷ)

]
(13)

is small. In words, in expectation over the selection of P and P̂ , the correct labels
y(x) and ŷ(x) can be simultaneously recovered using classifiers e ◦ f ◦ g∗ and
e ◦ f ◦ g̃∗, for some e ◦ f ∈ E ◦ F .

Finally, as a technicality, we assume that the pretrained adaptor g̃ can be
represented as g̃ = u ◦ g̃∗, for some function u ∈ U , where U ⊂ {u′ : Rp1 → Rp1},

16 C. Xu et al.

such that, U ◦ G1 ⊂ G1. For example, if G1 is a class of neural networks, ending
with a linear layer and U is the set of linear mappings u : Rd1 → Rd1 , then indeed
we have U ◦ G1 ⊂ G1.

Theorem 2. In the setting above. For any pair (f, g̃) ∈ F × G, such that g̃ =
u ◦ g̃∗, we have:

LD1(f) ≤ 16EP̃1 ̸=P̃2∼D2

[
Vf◦g̃(P̃i, P̃j)

s(f ◦ g̃, P̃1, P̃2)

]
+ 2EPcEXc∼Pn

c
[RadXc(Hf)]

+ EPc [discV(g∗ ◦ Pc, g̃
∗ ◦ P̂c)] + 3

√
log(4n)

2n
+

1

2m

+ EP1 ̸=P2

[
inf

(e,f)∈E×F
LP (e ◦ f ◦ g∗, y) + LP̂ (e ◦ f ◦ g̃∗, ŷ)

]
,

where s(f, P1, P2) = p2 if f ◦ P1 and f ◦ P2 are spherically symmetric and
s(f, P1, P2) = 1 otherwise.

The above theorem provides an upper bound on the expected error of the
pretrained feature map f against binary classification target tasks T = (P, y). In
this theorem, we assume that f has been trained along with an adaptor g̃ that
can be represented as u ◦ g̃∗, where u is a linear mapping.

The upper bound is decomposed into multiple parts. Similar to the previ-
ous bound it sums the expected CDNV between pairs of classes P̃1, P̃2, the
Rademacher complexity of Hf and additional terms scaling as O(

√
log(n)/n).

As discussed in Section D.1, we expect these terms to be small. In addition, the
bound also includes the expected discrepancy between g∗ ◦ Pc and g̃∗ ◦ P̂c that
measures to what extent the two adaptors g∗ and g̃∗ can map the distributions
Pc and P̂c to the same space. Finally, the last term measures to what extent we
can actually recover the class label from representations taken from the shared
space g∗ ◦ Pc ≈ g̃∗ ◦ P̂c. As mentioned above, we explicitly assume that these
terms are small. Intuitively, these terms are small when the two domains share a
mutual semantic space g∗ ◦Pc ≈ g̃∗ ◦ P̂c that encodes the content within samples
from the two domains.

The proof of this theorem is based on the analysis of [5], the theory of
Unsupervised Domain Adaptation [1,12,13] and Rademacher complexities [14].

Proof. Let (ê, f̂) ∈ E × F be any pair of functions. Let u be a linear mapping,
such that, g̃ = u ◦ g̃∗. To prove this theorem, we start by considering a pair of
target classes P1, P2. Since the loss function is bounded in [0, 1], for any c = 1, 2,
by (cf. [14], Theorem 3.3) with probability at least 1− 1

4m over the selection of
Sc, for any pair (e, g) ∈ E × G, we have

LPc
(e ◦ f ◦ g, y) ≤ LXc

(e ◦ f ◦ g, y) + 3

√
log(4m)

2m
+ 2RadXc

(Hf). (14)

Image2Point 17

By union bound over c = 1, 2, with probability at least 1− 1
2m over the selection

of S = S1 ∪ S2, for any pair (e, g) ∈ E × G, we have

LP (e ◦ f ◦ g, y) ≤ LS(e ◦ f ◦ g, y) + 3

√
log(4m)

2m
+

∑
c=1,2

RadSc
(Hf). (15)

Hence, with probability at least 1− 1
2m over the selection of S,

LP (eS ◦ f ◦ gS , y) ≤ LS(eS ◦ f ◦ gS , y) + 3

√
log(4m)

2m

+
∑
c=1,2

RadSc(Hf).
(16)

Let E ′ =
{
e(z) = (−∥z − µc∥2)c=1,2 = (⟨z, 2µc⟩ − ∥µc∥2)c=1,2 | µ1, µ2 ∈ Rp2

}
⊂

E . In addition, we let eP̂ (z) = (−∥z − µf◦g̃(P̂c)∥2)c=1,2. We notice that

LS(eS ◦ f ◦ gS , y) = inf
g∈G1

inf
e∈E′

LS(e ◦ f ◦ g, y)

≤ inf
e∈E′

LS(e ◦ f ◦ u ◦ g∗, y)

≤ LS(eP̂ ◦ f ◦ u ◦ g∗, y).

(17)

Since the loss function is bounded in [0, 1] and the above event holds with
probability at least 1− 1

2m , by taking expectation over S, we have the following

ES [LP (eS ◦ f ◦ gS , y)] ≤ LP (eP̂ ◦ f ◦ u ◦ g∗, y) + 3

√
log(4m)

2m
+

1

2m

+
∑
c=1,2

ESc [RadSc(Hf)]
(18)

In addition,

LP (eP̂ ◦ f ◦ u ◦ g∗, y) ≤ LP (eP̂ ◦ f ◦ u ◦ g∗, ê ◦ f̂ ◦ g∗)

+ LP (ê ◦ f̂ ◦ g∗, y)

≤ LP̂ (eP̂ ◦ f ◦ u ◦ g̃∗, ê ◦ f̂ ◦ g̃∗)

+ LP (ê ◦ f̂ ◦ g∗, y)
+ discV(g∗ ◦ P, g̃∗ ◦ P̂)

≤ LP̂ (eP̂ ◦ f ◦ u ◦ g̃∗, ŷ)

+ LP̂ (ê ◦ f̂ ◦ g̃∗, ŷ) + LP (ê ◦ f̂ ◦ g∗, y)
+ discV(g∗ ◦ P, g̃∗ ◦ P̂),

(19)

18 C. Xu et al.

where V = {I[e1 ◦ f1 ◦ u1 ̸= e2 ◦ f2] | e1, e2 ∈ E , f1, f2 ∈ F , u1 ∈ U}. In particular,
we can take infimum over (ê, f̂) ∈ E × F to obtain

LP (eP̂ ◦ f ◦ u ◦ g∗, y) ≤ LP̂ (eP̂ ◦ f ◦ u ◦ g̃∗, ŷ)
+ inf

e,f

[
LP̂ (e ◦ f ◦ g̃∗, ŷ) + LP (e ◦ f ◦ g∗, y)

]
+ discV(g∗ ◦ P, g̃∗ ◦ P̂)

= LP̂ (eP̂ ◦ f ◦ g̃, ŷ)
+ inf

e,f

[
LP̂ (e ◦ f ◦ g̃∗, ŷ) + LP (e ◦ f ◦ g∗, y)

]
+ discV(g∗ ◦ P, g̃∗ ◦ P̂).

(20)

Next, we can take expectation over the selection of P on both sides of the
inequality to obtain that

EP1 ̸=P2

[
LP (eP̂ ◦ f ◦ u ◦ g∗, y)

]
≤ EP1 ̸=P2

[
LP̂ (eP̂ ◦ f ◦ g̃, ŷ)

]
+ EP1 ̸=P2

[
inf
e,f

[
LP̂ (e ◦ f ◦ g̃∗, ŷ) + LP (e ◦ f ◦ g∗, y)

]]
+ EP1 ̸=P2

[
discV(g∗ ◦ P, g̃∗ ◦ P̂)

]
= EP̂1 ̸=P̂2

[
LP̂ (eP̂ ◦ f ◦ g̃, ŷ)

]
+ EP1 ̸=P2

[
inf
e,f

[
LP̂ (e ◦ f ◦ g̃∗, ŷ) + LP (e ◦ f ◦ g∗, y)

]]
+ EP1 ̸=P2

[
discV(g∗ ◦ P, g̃∗ ◦ P̂)

]

(21)

We note that

discV(g∗ ◦ P, g̃∗ ◦ P̂)

= sup
v∈V

∣∣∣Ez∼g∗◦P [v(z)]− Ez∼g̃∗◦P̂ [v(z)]
∣∣∣

= sup
v∈V

∣∣∣∣∣12 ∑
c=1,2

Ez∼g∗◦Pc [v(z)]−
1

2

∑
c=1,2

Ez∼g̃∗◦P̂c
[v(z)]

∣∣∣∣∣
≤ 1

2

∑
c=1,2

sup
v∈V

∣∣∣Ez∼g∗◦Pc
[v(z)]− Ez∼g̃∗◦P̂c

[v(z)]
∣∣∣

≤ 1

2

∑
c=1,2

discV(g∗ ◦ Pc, g̃
∗ ◦ P̂c).

(22)

Hence,

EP1 ̸=P2

[
discV(g∗ ◦ P, g̃∗ ◦ P̂)

]
≤ EPc∼D1

[
discV(g∗ ◦ Pc, g̃

∗ ◦ P̂c)
]
. (23)

Image2Point 19

Finally, by Proposition 5 in [5] we obtain that

LP̂ (eP̂ ◦ f ◦ g̃, ŷ) ≤ 16Vf◦g̃(P̂1, P̂2)

s(f ◦ g̃, P̂1, P̂2)
. (24)

20 C. Xu et al.

References

1. Ben-david, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for
domain adaptation. In: Advances in Neural Information Processing Systems 19, pp.
137–144. Curran Associates, Inc. (2006)

2. Benaim, S., Khaitov, M., Galanti, T., Wolf, L.: Domain intersection and domain
difference. In: ICCV (2019)

3. Chazelle, B.: The discrepancy method - randomness and complexity. Cambridge
University Press (2000)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020)

5. Galanti, T., György, A., Hutter, M.: On the role of neural collapse in transfer
learning. In: International Conference on Learning Representations (2022), https:
//openreview.net/forum?id=SwIp410B6aQ

6. Goyal, A., Law, H., Liu, B., Newell, A., Deng, J.: Revisiting point cloud shape
classification with a simple and effective baseline. arXiv preprint arXiv:2106.05304
(2021)

7. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: ECCV (2018)

8. Koltchinskii, V., Panchenko, D.: Rademacher processes and bounding the risk of
function learning (2004)

9. Lasinger, K., Ranftl, R., Schindler, K., Koltun, V.: Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset transfer. CoRR
abs/1907.01341 (2019), http://arxiv.org/abs/1907.01341

10. Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before
fuse: Vision and language representation learning with momentum distillation. In:
NeurIPS (2021)

11. Liu, Y., Fan, Q., Zhang, S., Dong, H., Funkhouser, T.A., Yi, L.: Contrastive
multimodal fusion with tupleinfonce. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV) pp. 734–743 (2021)

12. Mansour, Y.: Learning and domain adaptation. In: Algorithmic Learning Theory,
20th International Conference, ALT. pp. 4–6 (2009)

13. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds
and algorithms. In: COLT - The 22nd Conference on Learning Theory (2009)

14. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
MIT Press, Cambridge, MA, 2 edn. (2018)

15. Müller, A.: Integral probability metrics and their generating classes of functions
advances in applied probability. In: Advances in Applied Probability. pp. 429––443
(1997)

16. Papyan, V., Han, X.Y., Donoho, D.L.: Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of
Sciences 117(40), 24652–24663 (2020)

17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

18. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning.
pp. 8748–8763. PMLR (2021)

https://openreview.net/forum?id=SwIp410B6aQ
https://openreview.net/forum?id=SwIp410B6aQ
http://arxiv.org/abs/1907.01341

Image2Point 21

19. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative
adversarial text to image synthesis. In: Balcan, M.F., Weinberger, K.Q. (eds.)
Proceedings of The 33rd International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 48, pp. 1060–1069. PMLR, New York, New
York, USA (20–22 Jun 2016)

20. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining
for the masses (2021)

21. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR (2019)

22. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio,
Y.: Show, attend and tell: Neural image caption generation with visual attention.
In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp.
2048–2057. PMLR, Lille, France (07–09 Jul 2015)

23. Zhang, R., Guo, Z., Zhang, W., Li, K., Miao, X., Cui, B., Qiao, Y., Gao, P., Li,
H.: Pointclip: Point cloud understanding by clip. arXiv preprint arXiv:2112.02413
(2021)

24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. 2017 IEEE International Conference
on Computer Vision (ICCV) pp. 2242–2251 (2017)

	Appendix Image2Point: 3D Point-Cloud Understanding with 2D Image Pretrained Models

