
Image2Point: 3D Point-Cloud Understanding with
2D Image Pretrained Models

Chenfeng Xu1⋆ , Shijia Yang1⋆ , Tomer Galanti2, Bichen Wu3⋆⋆, Xiangyu
Yue1, Bohan Zhai1, Wei Zhan1, Peter Vajda3, Kurt Keutzer1, and Masayoshi

Tomizuka1

1 University of California, Berkeley
2 Massachusetts Institute of Technology

3 Meta Reality Labs

Abstract. 3D point-clouds and 2D images are different visual repre-
sentations of the physical world. While human vision can understand
both representations, computer vision models designed for 2D image and
3D point-cloud understanding are quite different. Our paper explores
the potential of transferring 2D model architectures and weights to un-
derstand 3D point-clouds, by empirically investigating the feasibility of
the transfer, the benefits of the transfer, and shedding light on why the
transfer works. We discover that we can indeed use the same architecture
and pretrained weights of a neural net model to understand both images
and point-clouds. Specifically, we transfer the image-pretrained model to
a point-cloud model by copying or inflating the weights. We find that
f inetuning the transformed image-pretrained models (FIP) with minimal
efforts — only on input, output, and normalization layers — can achieve
competitive performance on 3D point-cloud classification, beating a wide
range of point-cloud models that adopt task-specific architectures and use
a variety of tricks. When finetuning the whole model, the performance
gets further improved. Meanwhile, FIP improves data efficiency, reaching
up to 10.0 top-1 accuracy percent on few-shot classification. It also speeds
up the training of point-cloud models by up to 11.1x for a target accuracy
(e.g., 90 % accuracy). Lastly, we provide an explanation of the image
to point-cloud transfer from the aspect of neural collapse. The code is
available at: https://github.com/chenfengxu714/image2point.
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1 Introduction

Point-cloud is an important visual representation for 3D computer vision. It is
widely used in a variety of applications, including autonomous driving [3,6,81],
robotics [1,53,76], augmented and virtual reality [61,62,72], etc. However, a point-
cloud represents visual information in a significantly different way from a 2D
⋆ Equal contribution

⋆⋆ Corresponding Author

https://orcid.org/0000-0002-4941-6985
https://orcid.org/0000-0002-7016-9333
https://github.com/chenfengxu714/image2point


2 C. Xu et al.

image. Specifically, a point-cloud consists of a set of unordered points lying on
the object’s surface, with each point encoding its spatial x, y, z coordinates and
potentially other features such as intensity. In contrast, a 2D image organizes
visual features as a dense 2D RGB pixel array.

Due to the representation differences, 2D image and 3D point-cloud under-
standing are treated as two separate problems. 2D image models and point-cloud
models are designed to have different architectures and are trained on different
types of data. No efforts have tried to directly transfer models from images to
point-clouds.

Intuitively, both 3D point-clouds and 2D images are visual representations
of the physical world. Their low-level representations are drastically different,
but they can represent the same underlying visual concept. Furthermore, human
vision has no problem understanding both representations. To connect images
and point-clouds, previous works attempted to generate pseudo point-clouds by
estimating the depth of mono/stereo images [24,67,80]. However, depth estimation
from a single image is a challenging problem in computer vision, which requires
large-scale dense depth labels [58]. Estimating depth from stereo images is easier
but requires strict calibrated and synchronized stereo cameras, which limits the
data scale. Therefore, it is interesting to ask whether we could use large-scale
image models that were pretrained using supervised classification datasets (e.g.,
ImageNet1K/ImageNet21K classification) for point-cloud understanding.

Remarkably, the answer to the question above is positive. As we show in
this work, 2D image models trained on image datasets can be transferred to
understand 3D point-clouds with minimal effort. As illustrated in Figure 1, given
the commonly-used image-pretrained models, such as 2D ConvNets [27] and
vision transformers [17], we can easily convert them into various kinds of point-
cloud models. In particular, a pretrained 2D ConvNet or vision transformer can
be easily extended into a projection-based, voxel-based, or transformer-based
point-cloud model via copying weights or inflating weights [9].

In this paper, we primarily focus on 3D ConvNets inflated from 2D pre-trained
models. With the transformed point-cloud model (e.g., inflated 3D ConvNets),
we add linear input and output layers to the network; and on a target point-cloud
dataset, we only finetune the input and output layers, and batch normalization
layers, while keeping the pretrained model weights untouched. We call such
partially-finetuned-image-pretrained models as FIP-IO+BN (finetuning input,
output, and BN layers). As we show, FIP-IO+BN can achieve competitive
performance up to 90.8% top-1 accuracy on the ModelNet 3D Warehouse dataset,
on top of ResNet50, outperforming previous point-cloud models that adopt
task-specific model architectures and tricks.

Even though incorporating pretrained models is useful for tackling downstream
tasks, point-cloud models are typically trained from scratch. Based on our
discovery, we further investigate fully-finetuned-image-pretrained models (termed
as FIP-ALL). We observe that FIP-ALL brings significant improvement on top of
different kinds of point-cloud models transformed from image-pretrained models.
Besides, we also find that it generalizes to PointNet++ [55] which is pre-trained on
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Fig. 1. We investigate the feasibility of pretrained 2D image models transferring to
3D point-cloud models. For example, with filter inflation and finetuning the input,
output (classifier for classification task and decoder for semantic segmentation task),
and normalization layers, the transformed 2D ConvNets are capable of dealing with
point-cloud classification, indoor, and driving scene segmentation.

images by ourselves. Specifically, FIP-ALL outperforms the training-from-scratch
by a large margin on top of PointNet++, SimpleView, ViT-B-16, and ViT-L-16,
respectively. In addition to the performance gain, FIP-ALL exhibits superior
data efficiency with up to 10.0% accuracy improvement in few-shot classification
on the ModelNet 3D Warehouse dataset. Compared with training-from-scratch,
FIP-ALL also dramatically speeds up the training by using 11.1 times fewer
epochs to reach the same validation accuracy (e.g., 90% accuracy).

Finally, we theoretically explore the relationship between transferring knowl-
edge between tasks of different modalities and neural collapse to shed light on why
the transfer works. The analysis is based on extending the framework proposed
in [19] and is provided in Appendix.

2 Related Work

2.1 Point-Cloud Processing Models

In this section, we list the most prominent approaches for processing point-clouds.
The 3D convolution-based method is one of the mainstream point-cloud

processing approaches which efficiently processes point-clouds based on vox-
elization. In this approach, voxelization is used to rasterize point-clouds into
regular grids (called voxels). Then, we can apply 3D convolutions to the pro-
cessed point-cloud. However, enamors empty voxels make lots of unnecessary
computations. Sparse convolution is proposed to apply on the non-empty vox-
els [13,18,64,66,78,85], largely improving the efficiency of 3D convolutions.

The projection-based method attempts to project a 3D point-cloud to
a 2D plane and uses 2D convolution to extract features [5,38,63,69,70,71,75].
Specifically, bird-eye-view projection [37,79] and spherical projection [50,70,71,75]
have made great progress in outdoor point-cloud tasks.

Another approach is the point-based method, which directly processes the
point-cloud data. The most classic methods, PointNet [54] and PointNet++ [55],
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consume points by sampling the center points, group the nearby points, and
aggregate the local features. Many works further develop advanced local-feature
aggregation operators that mimic the 3D convolution operation to structured
data [32,36,40,41,42,44,66,76].

2.2 Pretraining in 2D and 3D Computer Vision

Pretraining in 2D computer vision is an effective approach using super-
vised [17,21], self-supervised [23,33], and contrastive learning [2,8,10,12,26,29].
After pretraining on a large amount of data, a 2D model requires less com-
putational and data resources for finetuning in order to obtain competitive
performance on downstream tasks [7,11,28,34].

Pretraining in 3D computer vision has been studied similarly as pre-
training in 2D vision: both self-supervised and contrastive pretraining [31,65,73]
show promising results. 3D point-clouds are difficult to annotate, and there is no
large-scale annotated dataset available. To address this, previous works have tried
to use model pretraining to improve data efficiency [77]. Recent works [30,83]
explored using contrastive learning on point-clouds. Our work does not rely on
long-time pretraining. Instead, we can directly take large amounts of open-sourced
image-pretrained models for a variety of point-cloud tasks.

2.3 Cross-Modal Transfer Learning

Cross-modal transfer learning takes advantage of data from various modali-
ties [15,45,47,52,74]. For example, [43] proposed pixel-to-point knowledge transfer
(PPKT) from 2D to 3D which uses aligned RGB and RGB-D images during pre-
training. Our work does not rely on joint image-point-cloud pretraining. Instead,
we directly transfer an image-pretrained model to a point-cloud model with the
simplest pretraining-finetuning scheme.

Some of the previous works for video and medical images [9,60] have adopted
the method of simply extending a pretrained 2D convolutional filter along time or
depth direction for transferring to 3D models. However, the domain gaps between
point-clouds and images are much more than that of videos/medical images and
images. Between language and image modalities, transfer learning with minimal
finetuning also shows a competitive performance [46,57].

2.4 Neural Collapse

Neural collapse (NC) [25,51] is a recently discovered phenomenon in deep learn-
ing. It has been observed that during the training of deep overparameterized
neural networks for standard classification tasks, the penultimate layer’s features
associated with training samples belonging to the same class concentrate around
their class means. Essentially, [51] observed that the ratio of the within-class
variances and the distances between the class means converge to zero. In addition
to that, it has also been observed that asymptotically the class means (centered at
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their global mean) are not only linearly separable, but are also maximally distant
and located on a sphere centered at the origin up to scaling, and furthermore,
that the behavior of the last-layer classifier (operating on the features) converges
to that of the nearest-class-mean decision rule.

Recently, [19] studied the relationship between neural collapse and transfer
learning. They studied a transfer learning setting, where we intend to solve a
target (classification) task, where only a limited amount of samples is available,
so a model is pretrained and transferred from a source (classification) task. They
showed that neural collapse extends beyond training and generalizes also to unseen
test samples and new classes. In addition, it was shown that in the presence of
neural collapse in the new classes, training a linear classifier on top of the learned
penultimate layer requires only a few samples to generalize well. However, their
empirical and theoretical analysis assumes that the source and target classes are
i.i.d. samples (e.g., a random split of the classes in ImageNet). This implies that
the two tasks share the same modality. Therefore, we suggest training an adaptor
(e.g., a linear layer) along with retraining the normalization parameters as part of
the transfer process. Intuitively, the adaptor takes samples of the second modality
and translates them to representations that are interpretable by the pretrained
model, such that it produces feature embeddings that are clustered into classes.
In Appendix B, we extend the framework in [19] to the case where the source
and target tasks are of different modalities and theoretically analyze it.

3 Converting a 2D Image Model to a 3D Point-Cloud
Model

In this paper, we primarily focus on the 3D sparse-convolution-based method
to process point-clouds, since it can be extended to a wide range of point-cloud
tasks. The other point-cloud models we use in this paper are byproducts of
copying the weights of 2D image models, for example, 2D ConvNets [27] or vision
transformers [17]. In this section, we provide an in-depth introduction to how we
transform the 2D ConvNets into 3D sparse ConvNets by inflation [9].

Inflating a 2D ConvNet into a 3D sparse ConvNet. As discussed in Section 2.1,
we consider a set of points, where each point is represented by its 3D coordinates
and additional features such as its intensity and RGB. We then voxelize/quantize
these points into voxels according to their 3D space coordinates, following [13]. A
voxel’s feature is inherited from the point that lies within the voxel. If there are
multiple points associated with the same voxel, we average all points’ features
and assign the mean to the voxel. If there is no point in the voxel, then we simply
set the voxel’s feature to 0. With sparse convolution, the computation on empty
voxels can be skipped.

Given a pretrained 2D ConvNet, we convert it to a 3D ConvNet that takes 3D
voxels as input. The key element of this procedure is to convert 2D convolution
filters to 3D, i.e., constructing 3D filters with the weights directly inherited from
2D filters. A 2D convolutional filter can be represented with a 4D tensor of shape
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[M,N,K,K], representing output dimension, input dimension, and two spatial
kernel sizes, respectively. A 3D convolutional filter has an extra dimension, and
its shape is [M,N,K,K,K]. To better illustrate, we ignore the output and input
dimensions and only consider a spatial slice of the 2D filter with shape [K,K].
The simplest way to convert this 2D filter to 3D is to repeat the 2D filter K times
along a third dimension. This operation is the same as the inflation technique
used by [9] to initialize a video model with a pretrained 2D ConvNet.

Besides convolution, other operations such as downsampling, BN, and non-
linear activation can be easily migrated to 3D. Our 3D model inherits the
architecture of the original 2D ConvNet, but we also add a linear layer as the
input layer and an output layer depending on the target task. For classification,
we use a global average pooling layer followed by one fully connected layer to get
the final prediction. For semantic segmentation, the output layer is a U-Net style
decoder [59]. The architecture of the input/output layers is described in more
detail in Appendix B.7.

A note on image-to-video transfer. It is noteworthy to mention that although
inflation is commonly used in video domains, image-to-point-cloud transfer is
fundamentally different. Even though videos and point-clouds are both 3D data,
they are represented with completely different visual modalities with different
distributions. Intrinsically, 3D point-clouds are represented as a sparse set of
points lying on object surfaces and parameterized by xyz-coordinates, while
videos are dense RGB arrays, where the two spatial arrays represent RGB images
and the temporal array reflects how images evolve through time. Point-clouds are
translation and rotation invariant or equi-variant, while for videos, the spatial
and temporal dimensions are not interchangeable. In this paper, we surprisingly
find that with simple operations such as inflation, the image-pretrained models
can be directly used for point-cloud understanding under the situation that image
and point-cloud are drastically different. The detailed experiments showing the
feasibility and utility, and the discussion of why it works from the aspect of
neural collapse are illustrated in Section 4 and Section 5, respectively.

4 Empirical Evaluation

To explore the image to point-cloud transfer, we study three settings: , (1)
finetuning input, output, and batch normalization layers (FIP-IO+BN), (2)
finetuning the whole pretrained network (FIP-ALL), and optionally (3) partially-
finetuned-image-pretrained model, only finetuning input and output layers (FIP-
IO). Under the three settings, we extensively explore the feasibility of transferring
the image-pretrained model for point-cloud understanding and its benefits. The
entire empirical evaluation is organized as four questions: (1) Can we transfer
pretrained-image models to recognize point-clouds? (Section 4.1) (2) Can image-
pretraining benefit the performance of point-cloud recognition? (Section 4.2)
(3) Can image-pretrained models improve the data efficiency on point-cloud
recognition? (Section 4.3) (4) Can image-pretrained models accelerate training
point-cloud models? (Section 4.4)
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Datasets. We evaluate the transferred models on ModelNet 3D Warehouse
classification [72], S3DIS indoor segmentation [1], and SemanticKITTI outdoor
segmentation [3] tasks. ModelNet 3D Warehouse is a CAD model classification
dataset that consists of point-clouds with 40 categories, and CAD models come
from 3D Warehouse [62]. In this benchmark, we only utilize x, y, z coordinates as
features. S3DIS is a dataset collected from real-world indoor scenes and includes
3D scans of Matterport Scanners from 6 areas. It provides point-wise annotations
for indoor objects like chair, table, and bookshelf, etc. SemanticKITTI dataset
from KITTI Vision Odometry [20] is a driving scene dataset. It provides dense
point-wise annotations for the complete 360 degrees field-of-view of the deployed
automotive lidar, which is currently one of the most challenging datasets.

ResNet [27] series is used mostly throughout our experiments. Depending
on the experiments, ResNets are pretrained on Tiny-ImageNet, ImageNet-1K,
ImageNet-21K [16], and Fractal database (FractalDB) [34]. Our pretrained models
are directly downloaded from various sources, with detailed links provided in the
Appendix. To study the benefits of using pretrained image models, we also utilize
PointNet++ [55], ViT [17], and SimpleView [22] as our baselines.

4.1 Can we transfer pretrained-image models to recognize
point-clouds?

To evaluate the feasibility of transferring pretrained 2D image models to 3D
point-cloud tasks, we conduct experiments on top of the ResNet series since there
are abundant open-source pretrained ResNet available. In particular, we convert
2D ConvNets into 3D ConvNets using the procedure described in Section 3. We
hypothesize that, if a pretrained 2D image model is capable of understanding
point-clouds directly, we can see a non-trivial performance by only finetuning
input and output layers of the transferred model. Further, as we gradually relax
the frozen parameters, finetuning BN parameters as well, the transferred model
can achieve better performance, even surpassing training-from-scratch.

We conduct two groups of experiments with FIP-IO and FIP-IO+BN, with the
results shown in Figure 2. The first is to evaluate the performance as the trainable
parameters gradually increase. As shown in Figure 2 (a), training no more than
0.3 % (345.5x fewer) of the whole parameters, the image pretraining even beats
the training-from-scratch (100 % trainable parameters). Specifically, ResNet152
FIP-IO+BN with ImageNet1K pretraining improves training-from-scratch by 0.16
points, and ResNet50 FIP-IO+BN with ImageNet21K pretraining improves 0.48
points. Meanwhile, FIP-IO reaches a non-trivial performance. ResNet50 FIP-IO
pretrained on ImageNet1K achieves 81.20 % top-1 accuracy, only 9.12 points
worse than training-from-scratch with approximately 0.1 % trainable parameters.

Furthermore, to investigate the effect of different datasets, as shown in the
right figure of Figure 2, we inflate ResNet50 pretrained from different image
datasets, including Tiny-ImageNet, ImageNet1K, ImageNet21K, FractalDB1K,
and FractalDB10K, then evaluate on the ModelNet 3D Warehouse.

We discover that, even if we only finetune the input and output layers
while keeping the image-pretrained weights frozen, the FIP-IO pretrained from
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Fig. 2. a) the left figure shows the trainable parameters ratio w.r.t top-1 accuracy on
ModelNet 3D Warehouse dataset. b) the right figure shows the performance of FIP-IO
and FIP-IO+BN on top of ResNet50 pretrained on different datasets.

Table 1. ModelNet 3D Warehouse classification results (top-1 accuracy %) of fully-
finetuned-image-pretrained models (FIP-ALL) based on different pretrained models.
We include 2021 SOTAs, such as RSMix [39], Point Transformer (Point-Trans) [84],
DRNet [56], and PointCutMix [82], for comparison.

Method ResNet18 ResNet50 ResNet152 ResNet101×2

From Scratch 90.39 90.32 90.28 90.03
FIP-ALL on ImageNet1K 90.52 (+0.13) 90.92 (+0.60) 91.09 (+0.81) 90.52 (+0.49)
FIP-ALL on ImageNet21K - 91.05 (+0.73) - -

Method PointNet++(SSG)ViT-B-16 ViT-L-16 SimpleView

From Scratch 90.34 84.27 83.48 93.3
FIP-ALL on ImageNet1K 91.22 (+0.88) - - 93.8 (+0.50)
FIP-ALL on ImageNet21K - 87.77 (+3.50) 87.66 (+4.18) -

Method RSMix Point-Trans DRNet PointCutMix

From Scratch 93.5 93.7 93.1 93.4

ImageNet1K, FractalDB1K, and FractalDB10K achieves competitive performance.
Specifically, ResNet50 FIP-IO with ImageNet1K pretraining outperforms 3D
ShapeNet [72] and DeepPano [61], which were the state-of-the-arts in 2015, by
4.2 and 3.6 points respectively in top-1 accuracy on ModelNet 3D Warehouse.
More importantly, with ImageNet21K pretrained model, ResNet50 FIP-IO+BN
surpasses training-from-scratch by 0.48 points, even beating a variety of well-
known methods including PointNet [54], MVCNN [63], etc.

Notably, we find out the answer to "Can we transfer pretrained-image models
to recognize point-clouds?": Yes. The pretrained 2D image models can be directly
used for recognizing point-clouds. Surprisingly, the pretraining dataset is not
restricted to natural but also synthetic images like those in FractalDB1K/10K.
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Table 2. Indoor scene and outdoor scene segmentation results (mIoU %) of fully-
finetuned-image-pretrained Model (FIP-ALL). In this table, all image-pretrained models
are pretrained on ImageNet1K.

Method S3DIS (mIoU %) SemanticKITTI (mIoU %)

PointNet++(SSG) ResNet18 HRNetV2-W48 ResNet18

From Scratch 52.45 55.09 44.12 64.75
FIP-ALL on ImageNet1K 55.01 (+2.56) 56.62 (+1.53) 47.53 (+3.41) 65.57 (+0.82)

Table 3. Comparison with PointContrast [73] on the ModelNet 3D Warehouse. Point-
Contrast provides two different pretrained models with using PointInfoNCE loss and
Hardest Contrastive loss, respectively.

From scratch PointInfoNCE Hardest Contrastive ImageNet1K pretrain (Ours)

89.95 90.24 (+0.29) 90.15 (+0.20) 90.88 (+0.93)

4.2 Can image-pretraining benefit point-cloud recognition?

From the previous subsection, we find unexpectedly that the image-pretrained
model can be directly used for point-cloud understanding. In this subsection, we
investigate whether the image-pretrained model is helpful to improve the perfor-
mance of point-cloud tasks. We use different baselines, including voxelization-
based method (simply ResNet), point-based method (PointNet++ [55]), projection-
based method (SimpleView [22]), and current popular transformer-based method
(ViT-B-16 and ViT-L-16 [17]), and fully finetune them on three point-cloud
datasets: classification on ModelNet 3D Warehouse, scene segmentation on S3DIS
and SemanticKITTI, as shown in Table 1 and Table 2.

For PointNet++, we use ImageNet1K to pretrain: we break each image
into pixels and regard it as a point-cloud. For ViT, we directly use the open-
source pretrained model and finetune it on ModelNet 3D Warehouse. All the
implementation details are illustrated in Appendix A.

Table 1 presents performance on ModelNet 3D Warehouse dataset. We observe
that FIP-ALL improves all baselines steadily and significantly. Besides, pretraining
brings more improvements to deeper models. For example, ResNet18 can only
be improved by 0.13% top-1 accuracy, but pretraining on ImageNet1K leads
to 0.81 points top-1 accuracy improvement on top of ResNet152. Moreover,
larger pretrained datasets also lead to better performance. Specifically, ResNet50
FIP-ALL from ImageNet21K can reach 91.05% top-1 acc, with 0.73 points
improvement over training-from-scratch. Such FIP-ALL significantly outperforms
a series of well-known methods such as [35,40,54,55,63,68].

We also explore FIP-ALL on different architectures, as shown in the second
group of Table 1. In particular, FIP-ALL on top of PointNet++, ViT-B-16,
ViT-L-16, and SimpleView with image dataset pretraining improve the training-
from-scratch by 0.88, 3.50, 4.18, 0.50 points, respectively. Especially for the
current superior baseline in image recognition, ViT-B-16 and ViT-L-16, the
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Table 4. Few-shot experiments on top of different ResNets on the ModelNet 3D
Warehouse dataset. We conduct 3 trials for each setting and results are as mean ± std.

Few-shot ResNet18 ResNet50 ResNet152
(from scratch/FIP-ALL)

10-shot 72.2±0.8/73.2±0.6 (+1.0) 71.7±0.7/74.1±0.8 (+2.4) 69.8±1.1/73.9±0.4 (+4.1)
5-shot 63.7±1.6/66.6±0.8 (+2.9) 62.4±1.1/66.0±2.2 (+3.6) 59.4±0.8/66.5±0.9 (+7.1)
1-shot 26.8±4.4/36.8±0.6 (+10.0) 28.1±0.4/34.1±0.2 (+6.0) 23.3±4.3/33.2±1.3 (+9.9)

improved performance is quite significant, revealing the huge potential of using
image-pretrained models for point cloud recognition.

For the challenging indoor and outdoor scene segmentation, using ImageNet1K
pretrained models (FIP-ALL on ImageNet1K) also improve the training-from-
scratch consistently, as shown in Table 2. PointNet++ (resp. ResNet18) pretrained
on ImageNet1K outperforms the training-from-scratch by 2.56 points (resp. 1.53
points) mIoU on S3DIS dataset. For SemanticKITTI, we utilize the commonly
used projection-based method with 2D ConvNet HRNet. With ImageNet1K
pretraining, we observe 3.41 points mIoU improvement, a large margin in such a
challenging task. Since HRNetV2-W48 has rich pretrained models, we finetune
Cityscapes pretrained HRNetV2-W48 and observe this enhances more (5.25%
mIoU improvement over training from scratch). Even for the ResNet18 with a
high from-scratch performance of 64.75% mIoU, the ImageNet1K pretraining can
also bring 0.82 points mIoU improvement.

Finally, we compare the performance gain with the well-known point-cloud
self-supervised method PointContrast [73], as presented in Table 3. We use the
same model architecture and finetuning recipe, and the only difference is the
pretraining weights. Note that the model architecture used in PointContrast does
not have corresponding open-sourced image-pretrained weights, so we pretrain
it by ourselves on ImageNet1K, with the standard ImageNet training recipe
provided by Pytorch. We can observe that image-pretraining on ImageNet1K
significantly boosts the training-from-scratch by 0.93 points, surpassing the
PointContrast by at least 0.64 points.

Therefore, the answer to "Can image-pretraining benefit point-cloud recog-
nition" is: Yes. Image-pretraining can indeed improve point-cloud recognition,
generalize to a wide range of backbones, and benefit multiple challenging tasks.

4.3 Can image-pretrained models improve the data efficiency on
point-cloud recognition?

Data efficiency is essential in point-cloud understanding due to the huge labor
of collecting and annotating point-cloud data. In this subsection, we investigate
whether the image-pretrained model can help to improve the data efficiency by
conducting few-shot setting experiments, including 1-shot, 5-shot, and 10-shot.

In detail, for each class (ModelNet 3D Warehouse involves 40 classes), we
randomly choose a few point-clouds as training data and still evaluate on the whole
test set. We compare the results between training-from-scratch and FIP-ALL
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Table 5. Semi-supervised distillation experiments on top of ResNet34 on the ModelNet
3D Warehouse dataset.

Few-
shot From scratch PointInfoNCE Hardest

Contrastive
ImageNet1K

pretrain (Ours)

10-shot 72.2 74.6 (+2.4) 74.6 (+2.4) 74.9 (+2.7)
5-shot 61.9 65.1 (+3.2) 65.9 (+4.0) 66.0 (+4.1)
1-shot 29.2 39.0 (+9.8) 37.2 (+8.0) 41.1 (+11.9)

pretrained on the ImageNet1K dataset. The experimental results are shown in
Table 4. We observe that FIP-ALL dramatically surpasses training-from-scratch
on the low data regime (1-shot): pretraining on ImageNet1K brings 10.0, 6.0, and
9.9 points top-1 accuracy improvement for ResNet18, ResNet50, and ResNet152,
respectively. For 5-shot and 10-shot settings, using ImageNet1K pretraining can
still consistently improve the performance.

Furthermore, inspired by previous work [11] which proposed big self-supervised
models are strong semi-supervised learners in 2D image recognition, we borrow
the idea and propose an image-pretrained model is also a strong semi-supervised
learner in point-cloud recognition. We also compared the image-pretrained model
with the self-supervised pretrained model in this experiment. Specifically, we
first take pretrained models from the previous self-supervised pretraining method
PointContrast [73]. PointContrast provides two ScanNet [14] pretrained models
of architecture ResNet34 trained with hardest-contrastive loss and PointInfoNCE
loss. Then, we finetune PointContrast on 1/5/10 shot of the labeled ModelNet
3D Warehouse dataset and regard it as a teacher model. Finally, we distill the
teacher model to a randomly initialized student model. In detail, we pass in the
rest of unlabeled ModelNet 3D Warehouse dataset and 1/5/10 shot of the labeled
dataset into the teacher model to generate pseudo labels. We use softmax MSE
loss as consistency loss between student model outputs and pseudo labels. When
the data instance is labeled, we add an additional cross entropy loss as a class
criterion between student output and the label.

To show the effectiveness of the image-pretrained model, we repeat the above
experiment, only replacing self-supervised pretrained models with ResNet34
ImageNet1K pretrained models. Results are reported in Table 5. We observe that
image-pretrained ResNet34 consistently outperforms PointContrast, and improves
the baseline by a large margin with 11.9, 4.1, and 2.7 points on 1-shot, 5-shot,
and 10-shot, respectively. The results in Table 5 show that an image-pretrained
model is indeed a strong semi-supervised learner in point-cloud recognition.

However, in both Table 4 and Table 5, we observe that as the amount of
training data increases, the performance increases. Therefore, our answer to "Can
image-pretrained models improve the data efficiency on point-cloud recognition?"
is: Yes. Image-pretrained models can improve the data efficiency on point-cloud
recognition, especially on low data regime. Although when the training data
increases, performance gain becomes marginal.
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Fig. 3. The curves of validation accuracy w.r.t training epoch. We compare the results
between training-from-scratch and FIP-ALL on the ImageNet1K, on top of ResNet18,
ResNet50, and ResNet152, respectively.

From scratch
Top-1 Acc: 90.32  

Training CDNV: 0.37
Validation CDNV: 0.43

FIP-IO+BN on ImageNet1K
Top-1 Acc: 89.90 

Training CDNV: 0.71
Validation CDNV: 0.68

FIP-IO+BN on ImageNet21K
Top-1 Acc: 90.80 

Training CDNV: 0.47
Validation CDNV: 0.60

Fig. 4. tSNE visualization and class-distance normalized variance of fine-tuned models
on train and validation split of ModelNet 3D Wharehouse dataset. FIP-IO+BN on
ImageNet1K/21K are the same models in Figure 2.

4.4 Can image-pretrained models accelerate point-cloud training?

We also investigate whether the image-pretrained model can accelerate training
on the point-clouds. The results are shown in Figure 3.

We discover that, after training only one epoch on ModelNet 3D Warehouse
dataset, FIP-ALL pretrained on ImageNet1K achieves very impressive perfor-
mance, yet the performance of training-from-scratch is still low. For instance,
after the first epoch, ResNet50 (resp. ResNet152) with training from scratch
achieves 28.48% (resp. 13.94%) top-1 accuracy while ResNet50 (resp. ResNet152)
with ImageNet1K pretraining reaches 80.11% (resp. 79.34%) top-1 accuracy.
Moreover, to reach 90% top-1 accuracy, a non-trivial performance, FIP-ALL
significantly accelerates the training by 2.14x (28 vs. 60 epoch), 11.1x (11 vs. 122
epoch), 2.95x (19 vs. 56 epoch) over training-from-scratch, on top of ResNet18,
ResNet50, and ResNet152, respectively.

Therefore, our answer to “Can image-pretrained models accelerate point-
cloud training?” is still positive. The image-pretrained models can significantly
accelerate the training speed of point-cloud tasks.
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5 Neural Collapse in Cross-Modal Transfer

In this section, we provide an explanation of why the image to point-cloud
transfer works based on the recently observed phenomenon called neural collapse
[25,51]. [19] in depth studied the relationship between neural collapse and transfer
learning between two classification tasks of the same modality (image domain).
Similar to this work, we focus on transferring pretrained models between domains
of different modalities, i.e., from images to point-clouds.

As illustrated in Section 4, we can transfer image-pretrained models to the
point-cloud domain. This motivates us to question whether the phenomenon of
neural collapse generalization [19] (see Section 2.4) is also evident in our case.
Following [19], we explore the relationships between neural collapse and image-
to-point transfer by calculating the class-distance normalized variance (CDNV).
Informally, the CDNV measures the ratio between the within-class variances of
the embeddings and the squared distance of their means (see Appendix B.6 for
details). We measure the CDNV of the fine-tuned model on both train and test
data of the point-cloud domain. Since neural collapse is essentially a clustering
property of features learned by neural networks, we further examine the neural
collapse using tSNE visualizations. The results are summarized in Figure 4.

We observe that with finetuning much fewer (345.5x fewer) parameters in
ResNet50 pretrained on ImageNet1K, both class-distance-normalized-variance
and the clustering of tSNE are worse than training-from scratch, but still show
relatively obvious clustering phenomenon. However, when we use the ResNet50
pretrained on ImageNet21K, the top-1 accuracy, and CDNV are significantly
improved. More importantly, CDNV of ImageNet1K pretrained ResNet50 and
ImageNet21K pretrained ResNet50 is lower than 1. This observation indicates
although the image domain and point-cloud domain are quite different, the
phenomenon of neural collapse generalization [19] still exists in their transfer.
More results and analysis are illustrated in Appendix B.6.

Moreover, the interesting discovery pushes us to think about the reason of
cross-modal transfer having neural collapse. Inspired by [19], we briefly explain
below. More detailed theoretical proof is presented in Appendix C.

Theoretical idea. In this work, we focused on the problem of transferring knowl-
edge between two tasks (source and target) consisting of two different modalities
with different classes. Therefore, in the theoretical analysis, we have two separate
modes of generalization: between classes and between modalities. In order to
model this problem, we assume that the target and source tasks are decomposed
of i.i.d. classes that are samples of two different distributions D1 and D2 (each
stands for a different domain/modality). Each class is defined by a distribution
over samples (e.g., samples of dog images). Given a target task (consisting of
a set of randomly selected classes P1, . . . , Pk ∼ D1), the pretrained model is
evaluated after training an adaptor and a linear classifier on top of it. Its overall
performance is measured in expectation over the selection of target tasks.

To capture the similarity between the two domains, we assume there exists
an invertible mapping F between the classes that preserves the density of the
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two distributions, namely, P̂c = F (Pc) ∼ D2 for Pc ∼ D1. To characterize the
similarity between the classes coming from D1 and D2, we further assume that
the classes Pc and P̂c share a ‘mutual representation space’ from which the class
label can be recovered. The shared space is given by two simple functions g∗ and
g̃∗ for which the distance between g∗ ◦ Pc and g̃∗ ◦ P̂c is small (in expectation
over Pc ∼ D1). By utilizing tools from the theory of Unsupervised Domain
Adaptation [4,48,49], we translate the performance of a pretrained model on
randomly selected target tasks into its expected error on randomly selected tasks
with classes from D2. Then, in order to bound this error, we use Proposition 5
in [19] that relates the error and the degree of neural collapse of the pretrained
model on randomly selected classes from D2. Finally, according to Propositions 1
and 2 in [19], this quantity can be upper bounded by the degree of neural collapse
of the pretrained model on the source train data.

6 Conclusions

In this work, we use finetuned-image-pretrained models (FIP) to explore the
feasibility of transferring image-pretrained models for point-cloud understanding
and the benefits of using image-pretrained models on point-cloud tasks. We
surprisingly discover that, with simply transforming a 2D pretrained ConvNet
and minimal finetuning — input, output, and batch normalization layer (FIP-IO
or FIP-IO+BN), FIP can achieve very competitive performance on 3D point-
cloud classification, beating a wide range of point-cloud models that adopt a
variety of tricks. Moreover, we find that when finetuning all the parameters of the
pretrained models (FIP-ALL), the performance can be significantly improved on
point-cloud classification, indoor and outdoor scene segmentation. Fully finetuned
models generalize to most of the popular point-cloud methods. We also find that
FIP-ALL can improve the data efficiency on few-shot learning and accelerate
the training speed by a large margin. Additionally, we explore the relationships
between neural collapse and cross modal transferring for our case, and shed
light on why it works based on neural collapse. Compared with previous works
that seek improvements from designing architectures and pretraining only on
point-cloud modality, our work is not limited by the architecture design and the
small-scale point-cloud dataset. We believe that image pretraining is one of the
solutions to the bottleneck of point-cloud understanding and hope this direction
can inspire the research community.
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