
Supplementary Materials: Translating Visual
LEGO Manuals to a Machine-Executable Plan

Ruocheng Wang1, Yunzhi Zhang1, Jiayuan Mao2,
Chin-Yi Cheng3⋆, and Jiajun Wu1

1 Stanford University
2 Massachusetts Institute of Technology

3 Google Research

First, we introduce our data generation pipeline for LEGO synthetic dataset
in Section 1 and 3D-Craft in Section 2. Then we provide more implementation
details and hyperparameters of models in Section 3. Section 4 explains some
details of the 3D Pose Inference stage of MEPNet. Section 5 explains some
details of camera parameter estimation of our datasets. Section 6 presents some
additional ablation studies. Section 7 discusses the limitations of our paper.
Section 8 lists the attribution and license for assets used in this paper. Finally,
we provide some step-by-step building visualization of our model in Section 9.

1 Synthetic Dataset Generation

We generate the synthetic dataset in two stages: the first stage (the “forward”
stage) randomly builds a complete LEGO shape, and the second stage (the
“backward” stage) decomposes the final shape into multiple synthetic manual
assembly steps.

Forward Stage In the forward stage, we first sample the length, width and
maximum height of the bounding box of the final shape. Next, we repeat the
following process iteratively.

At each iteration, we randomly partition the bounding box into smaller boxes,
and apply one of the following operations to each box:

1. Randomly fill the box with as many arbitrary components as possible.
2. Sample edges from the box, “grow” the height of the edges by adding random

components. Afterwards, fill the non-edge area within the region with random
components.

To add components, each time we randomly sample a position first, and then use
one of the three strategies: 1. randomly select a primitive brick and add it at the
sampled position ; 2. build a submodule by randomly stacking multiple bricks
within a small 3D bounding box and add it at the sampled position; 3. randomly
select a primitive brick and stack multiple instances together and add them at
the sampled position. We use rejection sampling to ensure each component will
be connected to at least one of the other components and there is no collision
between components.

⋆ Work done when working at Autodesk AI Lab.



2 Wang et al.

Backward Stage The backward stage constructs the manual iteratively. Starting
from the fully built shape, at each iteration, we identify all the components that
are removable from the current base shape, and compute the percentage of pixels
of the components that are visible from a top-down view and a side view. If
the visibility percentage is larger than a threshold, we mark the component as
visible. We group the components that are removable and visible into multiple
chunks, such that each chunk has at most 10 components instances and at most
5 component types. Each chunk will correspond to a step in the manual. Then
we remove one chunk at a time and render the resulting shape as a manual
image using predefined camera parameters. We perform this operation until all
the components have been removed and obtain a series of manual images that
illustrate the whole assembly process of the given object.

2 3D-Craft Dataset Generation

Different from the data generation pipeline of the synthetic LEGO dataset, where
we randomly select components to be in a step in the backward stage, the houses
in the 3D-Craft dataset already come with a construction order made by humans.
To maintain this order information, we start from an empty world, and add only
one brick at a time according to the human construction sequence. To make sure
that the manual image contains information about the added brick in each step,
we iterate over a predefined set of viewpoints and select the viewpoint where the
brick is visible. If there is no valid viewpoint we just randomly select one from a
predefined set. Next, we render the scene with the selected viewpoint and use
the result as the manual for this step.

3 Implementation Details

3.1 Symmetry-aware rotation prediction.

In the LEGO bricks we considered, every brick may have rotation symmetry of
order n = 1, 2, or 4. That is, the brick remains unchanged when being rotated
for 360

n degrees. For each brick, our model predicts the component’s rotation as
well as the rotation symmetry class it belongs to. This is achieved by a 7-way
classification where the prediction c is interpreted as:

– c = 0: The brick has rotation symmetry of order 4.
– c = 1: The brick has rotation symmetry of order 2 and its rotation is 0◦.
– c = 2: The brick has rotation symmetry of order 2 and its rotation is 90◦.
– c > 2: The brick has no rotation symmetry and its rotation is (c− 3) · 90◦.

Baseline models on LEGO datasets. As baseline models directly predict 3D
translations for each component as a continuous parameter, we implement a post-
processing algorithm to refine the predictions by utilizing connection constraints in
LEGOs. First, we round each entry of the predicted 3D translation to the nearest



Supplementary Materials 3

0.5. Then we search the translation that satisfies connection constraints in a small
neighborhood of the rounded 3D translation. More specifically, the component
must be connected to another component and there is no collision between
components. Suppose the rounded translation is (x, y, z), the neighborhood is
defined as

{(x+ δx, y + δy, z + δz)| δi ∈ {0,−0.5, 0.5,−1, 1}}

We select the valid translation from the neighborhood that is closest to the
original rounded prediction. If none of the translations is valid, we use (x, y, z)
as the final prediction.

3D-Craft dataset. In the 3D-Craft dataset, a brick can either be put on the
ground or attached to a neighboring brick. Therefore, given the base shape of the
house, we can compute all 3D valid positions for the new brick. We project them
onto the image plane, and perform a matching with the detected keypoint of the
new brick. The keypoint of a brick is set to be its center/origin. The predicted
3D translation is set to be the valid position whose 2D projection is closest to
the detected keypoint. For baseline models, we use a similar post-processing
algorithm as the algorithm for LEGO datasets based on a local search.

Hyperparameters The size of the voxel grid for the base shape is set to be
130× 130× 130, and the size of the voxel grid for each component is set to be
65× 65× 65. For the training losses:

L = α · Lkeypoint + β · Lmask + γ · Lrotation.

We set α and β to 1 and γ to 0.1. For Direct3D, Lkeypoint and Lmask are replaced
with Ltrans whose weight is also set to 1. All models except VoxelCNN are trained
with the AdamW [3] optimizer. VoxelCNN is trained with SGD, following the
implementation of the original paper. Other hyperparameters can be found in
Table 1.

Dataset Learning Rate Batch Size Epochs

LEGO
MEPNet 0.00025 16 15
Direct3D 0.00025 16 15

PartAssembly 0.001 8 15

3D-Craft
MEPNet 0.00025 8 10
Direct3D 0.00025 8 10
VoxelCNN 0.01 8 10

Table 1: Hyperparameters of models.



4 Wang et al.

4 Details of 3D Pose Inference.

Inferring 2D locations of anti-studs of the new component. Here, we
show that under scaled orthographic projection, the 2D offset on the image plane
between a component’s keypoint and its anti-studs can be computed without
knowing the actual “depth” (which is unknown) of the component. This enable
us to compute the 2D positions of anti-studs on the manual image only based on
2D keypoint information.

Recall that in scaled orthographic projection, the 2D projection of a point v
can be computed by

v′ = AKintKextv =

(
1 0 0
0 1 0

)s 0 0
0 s 0
0 0 1

(
R T

)
v

where s ∈ R is the scale factor and R ∈ R3×3, T ∈ R3 correspond to the
extrinsic parameters of the camera (rotation and translation, respectively). Denote
P = AKintKext. For any two points v0, v1 ∈ R4 in the world homogeneous
coordinates, their offset on 2D image plane coordinate system can be computed
as Pv0 − Pv1 = P (v0 − v1).

Therefore, if we consider two points on a component (e.g., the detected
keypoint and an anti-stud of the brick), their relative position on the 2D image
plane can be computed independent of the placement of this component. Thus,
given a detected keypoint on the 2D image plane, we can directly computes the
position of all anti-studs of the component (on 2D), and match them with the
studs on the base shape.

Empty base shape At the beginning of assembly, rather than connecting to
another component, a component can also be put directly on ground. For this
special case, given the 2D keypoint and rotation of a detected component, we
will directly search over all possible translations (x, 0, y) and select the one whose
keypoint position is closest to the detected keypoint.

Handling submodules with multiple topmost primitive bricks. To predict
the 3D translation of a submodule, the pose estimation module is expected to
detect its 2D keypoint, which is the 2D keypoint of the topmost primitive brick in
this submodule. However, the identity of the topmost primitive can be ambiguous
when there are multiple components at the same “top” layer. To handle this,
we extend the rotation inference by synthesis algorithm. For each submodule,
we perform a joint search of the 3D rotation and the topmost brick that our
model detects. Assuming there are n topmost bricks for the target submodule,
this results in at most 4n unique candidate 3D poses. Next, following the basic
rotation inference by synthesis algorithm, we use a camera projection subroutine
to compute the mask of the component with each candidate pose, and select the
pose that has the highest IoU with the predicted mask.



Supplementary Materials 5

Pose Acc ↑ (%) CD ↓

MEPNet 88.69 72.79
ResNet+DeConv[5] 78.28 96.43

Table 2: Comparison with an abla-
tion model where we replaced the
Hourglass network with a encoder-
decoder network using ResNet and
deconvolutional layers [5]. Chamfer
distance metrics are multiplied by a
factor of 105.

Pose Acc ↑ (%) CD ↓

MEPNet (GT Trans.) 96.38 32.92
MEPNet (GT Rot.) 90.58 67.29

Table 3: An ablation study where
we use ground-truth translation or
rotation to replace MEPNet’s predic-
tions. It’s harder for MEPNet to pre-
dict translation than rotation. Cham-
fer distance metrics are multiplied by
a factor of 105.

5 Camera Parameters

Camera parameters of the LEGO datasets. The camera parameters in
training and test sets are chosen from real LEGO manuals. Specifically, we
have selected a small set of LEGO manuals, together with their corresponding
target 3D shapes. Next, we use SoftRasterizer [1] to find the camera parameters
that maximize the IoU between the projected 3D shapes and the shape masks
segmented from the real LEGO manuals. We select a common set of camera
parameters to render the Classics and Architecture datasets. For the synthetic
dataset, the camera parameters have scales sampled from [1, 5], translations
sampled from [−1, 1] in the NDC space, and rotations sampled from (0, 225◦ ±
10◦, 30◦ ± 10◦). This covers the camera parameter distribution of the real LEGO
manuals we consider.

Camera parameter estimation. Our model can be integrated with external
camera parameter estimation algorithms. Specifically, we use the model from
Xiao et al. [6] that receives a 3D shape and target image as inputs and predicts
their camera parameters. Since the original model only predicts orientation of
the camera given a target image and 3D object, we add scale and translation
prediction modules using multi-layer perceptrons. The model is supervised by a
mean squared error loss. We train the model using camera parameters from the
synthetic datasets. Using the predicted camera parameters, MEPNet can achieve
the same pose accuracy and Chamfer distance metrics as using the groundtruth
camera parameters acorss all three LEGO datasets.

6 Additional Results

Ablation of the Hourglass architecture. To validate the effectiveness of
the Hourglass architecture, we use another encoder-decoder model built from
ResNet and deconvolutional layers [5] to build an ablation model. We replace the
Hourglass architecture in MEPNet with this ablation model and evaluate it on the
Classics dataset in terms of component-wise pose accuracy and Chamfer Distance.



6 Wang et al.

Results are summarized in Table 2, which show that Hourglass architecture
outperforms the ResNet-based architecture.

Pose accuracy with groundtruth translations or rotations. To better
understand how translation and rotation predictions contribute to the prediction
error, we evaluate the component-wise pose accuracy of MEPNet on the Classics
dataset by replacing translation or rotation prediction with ground truth. Results
are shown in Table 3. In general, it is harder for MEPNet to infer component
translations than rotations.

7 Discussions and Limitations

A limitation of our work is that our proposed method relies on the specific
connection constraints in the LEGO domain. Still, we bring this information into
our pipeline motivated by the fact that connection constraints are ubiquitous
in assembly domains, such as those of furniture and electrical devices. Accurate
estimation of 3D poses from 2D images is generally hard. Thus, building models
that leverage connection constraints are preferred. Intuitively, these constraints
reduce the number of possible relative poses. Furthermore, our analysis-by-
synthesis approach for leveraging constraints to post-process 3D poses is generic,
although the exact detail for handling different types of connection constraints
(e.g., peg-and-hole, mortise-and-tenon) may vary across domains. How to encode
and leverage a richer sets of connection constraints in 3D [2, 4], is a potential
future work. Second, current settings only consider discrete domains. It remains
to be explored how to extend our model to domains with continuous action space
such as furniture assembly. Finally, in our current formulation, the prediction
error will accumulate after each step. Leveraging multi-step information for joint
prediction is also an important future direction.

8 Attribution and License for Assets

The 3D data files of LEGO bricks are obtained using ImportLDraw † which
extracts brick information from LDraw ‡. Some of the step information of real-
world LEGO sets are obtained from LDraw Model Repository§. Manuals images
are rendered using LPub3D ¶ and Bricklink Studio ∥. All data and software used
in our project has been ethically collected from online resources with Creative
Commons or other open licensing terms.

† https://github.com/TobyLobster/ImportLDraw
‡ https://ldraw.org/parts/latest-parts.html
§ https://omr.ldraw.org/
¶ https://trevorsandy.github.io/lpub3d/
∥ https://www.bricklink.com/v3/studio/download.page



Supplementary Materials 7

9 Step-by-Step Building Visualization

We visualize some sets that our model achieves 100% accuracy in Fig. 1.

References

1. et al, L.: Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In:
ICCV (2019)

2. Jones, B., Hildreth, D., Chen, D., Baran, I., Kim, V.G., Schulz, A.: Automate: A
dataset and learning approach for automatic mating of cad assemblies. In: SIG-
GRAPH Asia (2021)

3. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)
4. Willis, K.D., Jayaraman, P.K., Chu, H., Tian, Y., Li, Y., Grandi, D., Sanghi, A.,

Tran, L., Lambourne, J.G., Solar-Lezama, A., et al.: Joinable: Learning bottom-up
assembly of parametric cad joints. In: CVPR (2022)

5. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: ECCV (2018)

6. Xiao, Y., Qiu, X., Langlois, P.A., Aubry, M., Marlet, R.: Pose from shape: Deep
pose estimation for arbitrary 3d objects. In: BMVC (2019)



8 Wang et al.

Fig. 1: Visualization of the full assembly process by MEPNet. Assembly of
submodules are shown at the beginning of each set.


