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Abstract. We study the problem of translating an image-based, step-
by-step assembly manual created by human designers into machine-
interpretable instructions. We formulate this problem as a sequential
prediction task: at each step, our model reads the manual, locates the
components to be added to the current shape, and infers their 3D poses.
This task poses the challenge of establishing a 2D-3D correspondence
between the manual image and the real 3D object, and 3D pose estimation
for unseen 3D objects, since a new component to be added in a step can
be an object built from previous steps. To address these two challenges,
we present a novel learning-based framework, the Manual-to-Executable-
Plan Network (MEPNet), which reconstructs the assembly steps from
a sequence of manual images. The key idea is to integrate neural 2D
keypoint detection modules and 2D-3D projection algorithms for high-
precision prediction and strong generalization to unseen components. The
MEPNet outperforms existing methods on three newly collected LEGO
manual datasets and a Minecraft house dataset.

1 Introduction

As a community, we would like to build machines that can assist humans in
constructing and assembling complex objects, such as block worlds [7], LEGO
models [9], and furniture [35]. The assembly task involves a sequence of actions
that move different 3D parts to desired poses. Tackling such a long-horizon task
with machines requires significant engineering effort [35]. On the other hand,
humans usually rely on visual manuals to guide assembly procedures. These
manuals are built by expert designers to decompose the task into a sequence of
short steps that can be executed smoothly and efficiently. In this paper, we aim
to facilitate the assembly tasks for machines by building a model that translates
manuals into machine-interpretable plans. Fig. 1a shows an example of LEGO
manuals that guides the user to build a guitar. Each step in the manual involves
multiple building components presented in 2D images, and our goal is to extract
the pose of each component in order to inform a downstream autonomous agent
to execute the step to build the target object.

⋆ Work done when working at Autodesk AI Lab.
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Fig. 1: We study the problem of translating a LEGO manual to a machine-
executable plan that can be executed to build the target shape. (a) Screenshots
from an original LEGO manual. (b) A machine-executable plan generated by our
model MEPNet. (c) LEGO built by executing the generated plan.

We identify two key challenges of interpreting visual manuals. First, it requires
identifying the correspondence between a 2D manual image and the 3D geometric
shapes of the building components. Since each manual image is the 2D projections
of the desired 3D shape, understanding manuals requires machines to reason
about the 3D orientations and alignments of components, possibly with the
presence of occlusions.

The second challenge is the rich library of assembly components. Taking
LEGO as an example, while most LEGO shapes can be built from a finite set of
primitives, these primitives can be flexibly composed into more complex subparts
that are added to the main body as a whole (e.g., the head of the guitar in
Fig. 1) in a step. The compositionality of primitive bricks greatly increases
the diversity of LEGO components, and as a result increases the difficulty for
machines to interpret LEGO manuals: it requires inferring 3D poses of unseen
objects composed of seen primitives.

In this work, we develop a method that tackles this challenging problem.
Concretely, we formulate the problem of translating manuals into machine-
executable plans as a sequential task. For each step, the inputs consist of 1) a set
of primitive bricks and parts that have been built in previous steps represented
in 3D, and 2) a target 2D image showing how components should be connected
to each other. The expected output is the (relative) poses of all components
involved in this step, as shown in Fig. 1b.

There are roughly two groups of solutions to parsing a single step of a manual.
The first group is search-based methods (i.e., “analysis-by-synthesis”) [45,3].
These methods make use of a given forward synthesis model, i.e., the underlying
manual image renderer, for pose inference. They search over possible 3D poses of
new components, render manual images based on the candidate poses, and select
the pose that maximizes the matching score between the input and the rendered
images. This approach is simple and accurate but assumes a given renderer. It is
also computationally expensive as we need to search for the 3D poses of multiple
components jointly in a single assembly step. The second group is learning-based,



Translating a Visual LEGO Manual to a Machine-Executable Plan 3

using end-to-end neural networks that predict the 3D pose of each component.
This approach does not require an image renderer and is fast, but typically suffers
from poor generalization to unseen 3D shapes.

Inspired by these observations, we propose the Manual-to-Executable-Plan
Network (MEPNet), a hybrid approach that combines the best of both worlds.
The MEPNet has two stages. In the first stage, a convolutional neural network
takes as input the current 3D LEGO shape, the 3D model of new components,
and the 2D manual image of the target shape. It predicts a set of 2D keypoints
and masks for each new component. In the second stage, 2D keypoints predicted
in the first stage are back-projected to 3D by finding possible connections between
the base shape and the new components. It also refines component orientation
predictions by a local search. Our approach does not require the groundtruth
image renderer during training or inference. Experiments show that our proposed
approach maintains the efficiency of learning-based models, and generalizes better
to unseen 3D components compared to end-to-end learning-based approaches.

We evaluate MEPNet on two benchmarks: one in the LEGO domain and
another in a Minecraft-style house crafting domain [8]. Our results show that
MEPNet enables more accurate pose estimation and, more importantly, general-
izes better to unseen novel 3D components compared with several baselines. Most
notably, we demonstrate that MEPNet is capable of generalizing to real-world
LEGO manuals by training solely on synthetically generated manuals. We will
release all code and data for full reproducibility.

2 Related Work

Parsing human-designed diagrams. A diagram is a fundamental and commonly-
used tool for humans to communicate concepts and information [1]. There have
been a number of works on parsing different types of diagrams like engineer-
ing drawings [13], cartographic road maps [26] and sewing patterns [2] into
machine-understandable data. We focus on the task of parsing assembly manuals
into instructions that can be executed by machines. Shao et al. [34] proposes
a technique to parse assembly instructions into executable plans, but focuses
manuals in vector-graphic formats, while we work on LEGO manuals in RGB
image format with no known visual primitives like edges and polygons. Li et
al. [23] proposes a method to parse the 3D poses of parts from a single RGB
image, while our work focuses on sequentially inferring 3D poses from a series of
manual images.
Inverse 3D modeling. Inferring the geometry procedures that reconstruct
a 3D shape is useful in many domains like robotic assembly [35,19], shape
synthesis [12,6,21] and computer-aided design [40,20]. A line of research focuses
on using different geometry operations like poses of 3D primitive parts [37], shape
programs [36,18], constructive solid geometry [10] and CAD operations [44].
Different kinds of information are studied to guide the inverse inference process:
final 3D shape [27,16], single image [30,23] or multi-view images [15,9]. When it
comes to image-guided inverse modeling, previous works often assume access to
images of the final 3D shape, where the inverse problem is inherently ambiguous.
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To tackle this issue, a shape prior is learned from a corpse of 3D shapes like
ShapeNet [5], which can not be directly transferred to distribution different from
the training data. Our work focuses on recovering the poses of LEGO bricks from
a series of manual images that progressively specify building operations, which
are intended to guide the assembly of diverse shapes of objects.
Pose estimation. To parse the information from manual images, we need to infer
the poses of primitive parts to be assembled. Estimating the 3D poses of objects
is a fundamental problem in 3D vision. A line of research uses convolutional
neural networks to directly localize objects in a scene and regress their 6D
poses [4,41,22,38]. Other works adopt a two-stage approach where 2D keypoints
of objects are first extracted and then poses are inferred from them [33,31,32].
Most works focus on detecting objects from the same category of the training
objects, while our work aims to build models that can estimate the pose of
known primitives as well as novel shapes composed from them. Xiao et al. [43,42]
proposes a CNN architecture to estimate the pose of a single object in the image
with a known 3D model. On the other hand, assembly manuals often require
estimating poses of multiple objects. Furthermore, to understand manuals, models
need to ignore the parts that are assembled in previous steps and only detect
parts of interest, which is not addressed in previous works.

3 Problem Formulation

Throughout the paper, we will be using LEGO manuals as our example, although
many of the ideas generalize to other types of assembly manuals such as Minecraft
and furniture. A LEGO manual is composed of a sequence of images. The images
specify a step-by-step instruction sequence of adding new components to an
existing LEGO shape (called the base shape, which is typically the target shape in
the previous step). Each new component is either a primitive brick with specified
type and quantities, (in which case the image will specify the type and the number
of new bricks) or a pre-built component (called a submodule, such as the guitar
head shown in Fig. 1). The main diagram in each image will specify the poses of
the new components w.r.t. the base shape, by showing a 2D view of the target
shape at this step.
Sequential manual parsing. We formulate the task as a sequential prediction
task of T steps. At each step, a manual parser receives the following inputs.

1. A 3D representation of the base shape at this step. In this paper, we focus
on a voxel-based representation V cur

i . It might be an empty voxel grid when
we start building a new shape. In LEGO manuals, this usually comes from
the target shape of the previous step.

2. A set of components to be added at this step, where each component is
either a primitive brick or a pre-built shape composed of multiple primitive
bricks. In either cases, their shape will be represented as a set of 3D voxels
V new
ij , where j = 1, 2, · · · , Ci and Ci is the number of components for step i.

In a LEGO manual image, these are usually specified in a small diagram at
a corner as shown in Fig. 1a.



Translating a Visual LEGO Manual to a Machine-Executable Plan 5

Manual
Images

Components

…

Submodule #0 Main

Fig. 2: Our factorized representation of LEGO manuals, which is a tree-structured
plan specified by manual images. Each component is either a primitive brick or a
submodule, and each submodule is recursively constructed from a sequence of
manual images with corresponding components.

3. A 2D image Ii specifying the target shape after we compose all components
at step i. In LEGO manuals, this corresponds to the main diagram of a
manual image.

Our goal is to predict the 3D translation and rotation w.r.t. V cur
i for each added

component {(tij , rij)}Ci
j=1 for each step i, where tij ∈ R3, rij ∈ R3×3.

Once we have a model that predicts 3D poses of components at each step,
they serve as a plan that can be executed by machines to assemble a complete
object (called a LEGO set) in an iterative manner. In general, the dependency
between steps is a tree because of submodules in assembly—a step may depend
on the resulting shapes from multiple previous steps, as shown in Fig. 2.
The connection constraint. An important feature of object assembly is the
inherent connection constraints among object parts, such as the studs in LEGO
shapes and the pegs and holes in furniture assembly. This enables designers to
simply use a 2D image to specify how parts should be connected, in contrast to
specifying the exact 3D dimensions and poses of objects. This constraint brings
us benefits in both model design and evaluation. For example, in model design,
it is generally hard to accurately infer the 3D continuous pose of an object from
a 2D image, but it is easier to infer a set of discrete connections between objects.
On the evaluation side, this allows us to reconstruct a physically plausible (stable
and no inter-penetration) target shape by simulating all steps.

4 Manual-to-Executable-Plan Network

In this section, we will be focusing on developing a learning-based method for
solving the one-step prediction task. It can be applied iteratively to each assembly
step to reconstruct the full 3D shape. Recall that the input to our model is the
base shape at this step V cur, a set of new components, {V new

j }, and a 2D image
I (omitting the step index i for all variables for clarity). Our goal is to infer the
3D poses of all components {V new

j }.
Our model, the Manual-to-Executable-Plan Network (MEPNet), consists of

two stages. In the first stage, we use a neural pose estimation model to predict the
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Fig. 3: MEPNet consists of two stages. (a) In the first stage, the model detects
the 2D center keypoints, the masks, and the rotations for all added components
on the manual. (b) and (c): We use a connection-constrained inference subroutine
and an inference-by-synthesis subroutine to recover 3D poses of components from
2D information predicted in the first stage.

2D keypoint (corresponding to the center of the object), mask, and rotation for
each new component to be added. In the second stage, we use two deterministic
algorithms to infer the 3D poses of new components by fusing the predictions
from the first stage.

Our two-stage approach is primarily motivated by the difficulty of directly
estimating 3D poses from 2D images, especially considering the generalization to
unseen components. Here, we leverage the connection constraint between compo-
nents and the idea of analysis-by-synthesis to design post-processing algorithms
that refine the raw prediction made by neural networks. In the experiment sec-
tion, we will compare our two-stage approach with other alternatives, including a
single-stage neural network baseline and an analysis-by-synthesis baseline based
on mask predictions.

4.1 Neural Pose Estimation

Our neural module for estimating component poses follows an encoder-fusion-
decoder pipeline. It combines convolution-based 3D shape encoders and a 2D
Hourglass network—a state-of-the-art model for 2D keypoint and mask prediction.
We will use separate 2D and 3D encoders to extract features for V cur, V new

j , and
I, fuse the latent representations, and predict the center keypoint, mask, and
rotation for each individual V new

j .
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Our first module, shown in Fig. 3a (i) is a state-manual encoder, which fuses
the information of V curand the image I representing the target shape. Specifically,
the state-manual encoder takes the voxel representation of V cur as input, and
extracts a 3D representation with two 3D Convolution-BatchNorm-ReLU modules.
Let f3d denote the output tensor of shape RC1×H×W×D, where (H,W,D) is the
3D dimension of the input voxel and C1 is the number of channels. Then, we use
the camera parameters of the manual image to transform this voxel to the camera
frame. This is computed by a differentiable spatial transformation based on [17].
Next, we project this voxel to the camera plane by rasterization, that is, for each
pixel on the sensor plane, select the first non-empty voxel hit by a ray shooting
from the sensor pixel towards the camera center. This gives us a 2D feature map
f2d ∈ RC1×H×W . Then the feature map is upsampled with bilinear interpolation
to have the same resolution as the manual image I. Then we concatenate this
feature map and the image along the feature channel to generate an “augmented”
image representation, i.e., Ia ∈ R(C1+3)×Himg×Wimg .

Our second module, shown in Fig. 3a (ii) is a component-conditioned Hourglass
model for predicting the center keypoint, mask, and rotation for each component.
Specifically, for each new component V new

j , also represented as a 3D voxel, we
use five 3D Convolution-BatchNorm-ReLU layers, followed by an average pooling
layer to extract the corresponding feature, denoted as fnew

j ∈ RC2 . Note that, for
multiple components that have the same shape (w.r.t. SO(3)), we only encode
one of them. We order all components based on their order in the input manual
and get an sequence of component feature embeddings {fnew

j }. We concatenate
all embeddings along the channel dimension into a vector fnew∗, whose number of
channels is K × C2, where K is the total number of distinct-shaped components,
which we call “component types”. We pad this vector by adding 0’s into a vector
of length Kmax × C2, where Kmax = 5 is the maximum number of distinct
components considered in MEPNet.

Given the state-aware manual image Ia and component features {fnew
j }, we

predict the 3D poses of the added components using an adapted implementation of
stacked Hourglass Networks [29,46]. We first use a top-down network to process the
Ia into a low-resolution 2D feature map Iaenc of resolution (Himg/32,Wimg/32).
Next, we tile the concatenated component embeddings fnew∗ along spatial dimen-
sions into a 2D feature map of resolution (Himg/32,Wimg/32), and concatenate
this feature map to Iaenc. Then we use a bottom-up decoder network to output
a high-resolution feature map of resolution (Himg/4,Wimg/4).

Then we use three separate small fully-convolutional neural networks to
extract the center keypoint, mask, and rotation for each input component based
on the feature map output by the Hourglass decoder.

1. For the center keypoint, we employ the structure of CenterNet [46]. For
each component type, the model output is a tuple of three 1D feature maps:
(h, dx, dy). h is a heatmap of centers, and dx and dy form a two-dimensional
offset prediction which is the difference between the actual center of an object
and the pixel location of the heatmap. This helps mitigate the discretization
error caused by downsampling.
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2. For the component mask, we employ the structure of Associative Embed-
ding [28]. For each component type, the output is a tuple of two feature
maps (m, emb), where m is a segmentation mask of the component type
and emb is a 2D feature map where each pixel is associated with a vector
embedding (called the “associative embeddings”). The L2 distance between
pixels associated with different instances should be large, while the distance
between pixels of the same instance should be small. To get the instance-level
segmentation, we perform a pixel clustering based on emb.

3. For the rotation, our model output is a 4-dimensional vector, with a Softmax
nonlinearity†, since the component will only have rotations chosen from
(0◦, 90◦, 180◦, 270◦) around the vertical axis in the LEGO problem we
considered.
It is important to note that since we have merged components of the same

shape into one component type, there will be multiple instances detected for each
component type. For example, shown in Fig. 3a, the center keypoint heatmap for
the first component type has two peaks, corresponding to two instances of this
component type.
Training and losses. We train MEPNet with full supervision on a synthetically
generated dataset where we have the groundtruth keypoint, mask, and rotation
information. The entire neural network module is trained end-to-end with gradient
descent. Our objective function is computed by

L = α · Lkeypoint + β · Lmask + γ · Lrotation.

We adopt the keypoint loss adapted from [46]: Lkeypoint = Lheatmap + Loffset,
where Lheatmap is a focal loss [24] computed based on the predicted heatmap and
a groundtruth heatmap generated by Gaussian kernels. Loffset is an L1 loss for
the regression task of dx and dy (the offsets). The mask loss is adapted from [28]:
Lmask = Lsemantic +Lpull +Lpush, where Lsemantic is a cross-entropy loss applied
to the predicted mask, and Lpull + Lpush is the contrastive loss for learning the
associative embeddings. Finally, we use a cross-entropy loss to train the rotation
prediction module. More details are in the supplementary material.

4.2 3D Pose Inference

Based on the 2D predictions from the first stage, we infer 3D poses for each
component. Here, we will exploit two important ideas: the connection constraint
in assembly domains, and the idea of analysis-by-synthesis.
Connection-constrained 3D translation inference. Given the center key-
point of each component, our goal is to find the 3D XYZ position of the component.
Here, we will rely on the connection constraints, that is, there should be at least
one position where the new component is attached to another existing brick. In
LEGO, the attachment is achieved by inserting a “stud” of the existing brick into
an “anti-stud” of the new component. As illustrated in Fig. 3b, our inference has
three steps. First, given the center keypoint of the new component, we infer the
2D location of all anti-studs of the new component (this process is deterministic

† In the implementation we used a slightly more complex scheme to handle symmetries.
Details are included in the supplementary material.
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and does not require any depth information because images in LEGO manuals are
orthographically projected, see a detailed proof in the supplementary material).
Next, we also project all studs in the base shape V cur onto the same 2D plane.
Finally, we perform a matching between all possible studs and anti-studs followed
by a majority voting. Then we can predict the 3D position of the new component
based on the 3D position of existing studs, which is known.
Rotation inference by synthesis.We empirically found that directly predicting
the rotation of a submodule is hard. Thus, instead of using the rotation predicted
from Section 4.1, we employ an analysis-by-synthesis process to estimate the
rotation. Illustrated in Fig. 3c, for each submodule, we compute all possible
translations for each of the 4 rotations based on connection constraints. Then
for each rotation-translation candidate (r, t), we project the component with
pose (r, t) to the image, obtain a mask and compute its Intersection-over-Union
(IoU) with the predicted mask from Section 4.1. We select the pose (r, t) with
the highest IoU score as the final pose prediction.

4.3 Implementation Details

LEGO discretization. To enable flexible attachments between different LEGO
bricks, most LEGO bricks have sizes that are the multiples of the smallest 1×1×1
brick and thus are inherently voxelized. In this work, we voxelize the basic 1×1×1
LEGO brick as a 2× 2× 2 voxel grid. We double the resolution of the voxel grid
because the 3D translation of a brick can be half the size of the brick.
Center keypoint. We observe that although the components of interest can
be severely occluded in a manual image, their top faces often remain visible.
This is a consistent design pattern across many LEGO manuals [14]. Thus, the
center keypoint of a primitive brick is defined as the center of the top surface
of a LEGO brick, as illustrated in Fig. 3a (iii). For submodules, we define the
center keypoint to be the center keypoint of the topmost primitive brick in the
submodule. If there are multiple topmost primitive bricks, we use a randomly
selected brick during training and use a modified 3D pose inference algorithm
during evaluation. Details are in supplementary materials.
Camera projection. Same as the real-world LEGO manuals, we model the
camera projection as a weak perspective (scaled orthographic) transformation.
Thus, the camera is parameterized by scale s ∈ R, translation t ∈ R2, and
rotation r represented by three Euler angles. In this paper, we assume known
camera parameters for all methods including baselines. The camera parameters
are predicted by a pretrained pose estimation model [43] which takes the input
base shape and manual image as input. Details are in supplementary materials.

5 Experiments

We evaluate MEPNet in two assembly domains: LEGO and 3D-Craft [7].

5.1 Setup

Baselines. We compare MEPNet with two baselines.
PartAssembly [23] is a two-stage method designed for inferring object part

poses from a single image. It first predicts the masks for individual components.
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Classics ArchitectureSynthetic

(a) Examples of manual images to build a LEGO set. (b) Examples of complete LEGO sets from each dataset.

Fig. 4: Example manual images and shapes in our LEGO datasets.

Then, it encodes the feature for each component and predicts the pose. We have
made the following adaptations to it for our sequential prediction setting. First,
to incorporate information about the current object state, we replaced the input
image with the state-augmented manual image Ia using the same encoder as
MEPNet. Second, we add CoordConv [25] to the model to enhance its prediction
about 3D positions. Third, we add a post-processing procedure to the model
prediction that quantizes the prediction based on the connection constraints.
Finally, we also replaced their original point cloud encoder with our voxel-based
encoder. More details can be found in the supplementary materials.

Direct3D, the second baseline, is an ablative variant of MEPNet, in which
we directly predict the 3D translation and rotation for each instance (instead
of predicting keypoints, masks, and rotations). We also use CoordConv and
prediction quantization with connection constraints in this model.
Metrics. We evaluate MEPNet and baselines at three different levels of granular-
ity: componentwise, stepwise and setwise. In the componentwise and the stepwise
case, the input to each model is the ground truth voxel grid V cur and submodules
(if any). We evaluate the 3D pose accuracy (correct or incorrect because we
have quantized the model predictions using the connection constraint) and the
Chamfer distance [11]. To account for the rotation symmetry of components, we
restricted the set of possible rotations based on component shapes. For stepwise
pose accuracy, we say a step is correct if the predictions for all components in this
step are correct. To compute Chamfer distance, following [39], we uniformly sam-
ple 10000 points from their meshes. For stepwise Chamfer distance, we compute
the metric between the union of all components in a step.

In the setwise case, each model will be run on all manual images sequentially,
and auto-regressively. That is, the predicted target shape from the first step will
be the input for the second step. Submodules will be built by models as well. We
compute two metrics: the Chamfer distance between the ground truth final shape
and the shape output by each model. We also compute a normalized Mistakes to
Complete (MTC) score, proposed in [7]. MTC computes the average percentage
of steps where a model gives wrong poses predictions. In this case, the model
will be fed with the ground truth V cur and submodules.

5.2 Results on LEGO
Dataset. Our first dataset is a synthetic LEGO dataset that is procedurally
generated based on 72 types of primitive bricks, and rendered using a standard
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Fig. 5: Qualitative Results on the LEGO datasets. Each column contains the
ground truth and the predictions from models for a single step. Components
added in the step are highlighted in the manual images. To have a straightforward
comparison between different models, we render their predictions in the same
way as rendering the target manual.

Componentwise Stepwise Setwise

Pose Acc ↑ (%) CD ↓ Pose Acc ↑ (%) CD ↓ CD ↓ MTC ↓ (%)

Synthetic
PartAssembly [23] 63.74 393.21 47.05 226.48 321.91 52.72
Direct3D 88.51 32.60 77.39 5.08 9.18 25.62
MEPNet 96.96 11.60 93.41 1.93 4.74 8.63

Classics
PartAssembly [23] 2.26 1171.57 0.00 296.82 775.29 100.00
Direct3D 34.84 303.56 24.27 3.00 67.75 80.77
MEPNet 88.69 72.79 90.29 0.10 15.52 13.97

Architecture
PartAssembly [23] 5.12 1964.31 3.24 858.58 719.88 96.13
Direct3D 13.71 936.77 23.17 227.41 191.28 87.79
MEPNet 83.47 136.40 82.23 15.35 107.95 16.00

Table 1: Quantitative results of models on the three LEGO datasets. Chamfer
distance metrics are multiplied by a factor of 105. MEPNet outperforms baselines
in all metrics on the three datasets.

LEGO manual renderer‡. Our data generation pipeline encapsulates two features
of real-world LEGO manuals: 1) using submodules to assemble two components
that have been built separately, and 2) stacking or tiling multiple bricks of the
same shape at one step to form structures such as walls and floors. Examples
of generated LEGO objects are shown in Fig. 4(b). Details of the generation
pipeline, attribution of assets and their license can be found in the supplementary
materials. We generate 8000 manuals for training, 10 sets for validation, and 20
sets for testing. In sum, there are 200K individual steps in training, 300 for the
validation split, and 600 for the test split.

‡ https://trevorsandy.github.io/lpub3d/

https://trevorsandy.github.io/lpub3d/
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Classics Architecture

Fig. 6: Qualitative Results of MEPNet building LEGOs from scratch. We visualize
several intermediate steps and final results by rendering them in the same way
as the manual images. MEPNet can successfully parse manuals into executable
plans with diverse target shapes.

We have also collected two datasets from real-world LEGO manuals. We select
11 sets from LEGO’s Classics theme, which contains simple objects designed
for children older than 4, and 5 sets from LEGO’s Architecture theme, which
contains more complex building-shaped LEGOs for kids older than 10. There
are around 200 individual steps in each dataset. We manually exclude or replace
bricks that are not in our primitive brick set, and re-render the LEGO manuals
with the factorized representation. Examples of our datasets are shown in Fig. 4.
Results on the synthetic dataset. Quantitative results on the synthetic
dataset are summarized in Table 1. MEPNet outperforms baseline models in all
metrics considered. From visualizations in Fig. 5, we can see MEPNet is able
to accurately predict 3D poses of both primitive bricks and submodules, even
in cases with significant occlusions. Baseline models tend to either have a small
deviation in 3D translation, or fail to infer the orientation of submodules. We also
find that PartAssembly fails to predict accurate masks for target components,
which are critical in its pose estimation.
Generalization to the Classics and the Architecture datasets. We directly
apply models trained on our synthetically generated datasets on the Classics and
the Architecture datasets. Illustrated in Table 1, there is a large performance
drop for PartAssembly and Direct3D due to the distribution mismatch between
these two datasets and our synthetic training dataset, while MEPNet maintains
high accuracy. We found that the Direct3D model can still predict accurate
keypoints on these two datasets, but fails to accurately predict their 3D poses.
This shows the effectiveness of our two-stage inference procedure. Noticeably,
MEPNet can successfully build sets with diverse shapes guided by manuals as
illustrated in Fig. 6, although they look drastically different from the synthetic
dataset and contain submodules of unseen shapes. We present several examples
of the full assembly process in the supplementary materials.

The architecture dataset is the most challenging one because it contains a
large number of primitive bricks and severe occlusion. MEPNet still achieves a
decent prediction accuracy while both baselines fail significantly.
Ablation: submodules. We perform an ablation study comparing how different
models handle submodules, as shown in Table 2. Specifically, we evaluate the
componentwise pose prediction accuracy and Chamfer distance across all steps
that involve submodules. The table indicates the challenge of 3D pose inference
for submodules. Our rotation-inference-by-synthesis (RS) consistently improves
the results across all three datasets.
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Synthetic Classics Architecture

Pose Acc ↑ (%) CD ↓ Pose Acc ↑ (%) CD ↓ Pose Acc ↑ (%) CD ↓

PartAssembly [23] 0.00 1754.64 0.00 2107.11 0.00 4816.21
Direct3D 22.75 161.59 10.00 180.86 0.00 1539.04
MEPNet (w.o. RS) 22.27 192.93 20.00 25.17 23.08 256.55
MEPNet 75.83 23.27 90.00 0.25 38.46 271.35

Table 2: Quantitative results on the submodules exclusively. Chamfer distance
metrics are multiplied by a factor of 105. Rotation inference by synthesis (RS)
plays an important role in inferring the pose of submodules.

Classics Architecture

Pose Acc ↑ (%) Time ↓ (s) TLE ↓ (%) Pose Acc ↑ (%) Time ↓ (s) TLE ↓ (%)

Direct3D 34.84 0.233 0 13.71 0.320 0
MEPNet (a-by-s) 48.42 10.94 0.9 34.14 70.77 11.65
MEPNet 88.69 0.311 0 83.47 0.406 0

Table 3: Comparison with an ablation model based purely on analysis-by-synthesis.
We show the component pose accuracy and the average inference time per step
(which may include multiple components). TLE (Time-Limit-Exceeded) measures
the percentage of components whose prediction cannot terminate in 1 minute.

Ablation: pure analysis-by-synthesis. We also perform an ablation study
of the second stage algorithm by replacing it with an algorithm that is entirely
based on analysis-by-synthesis, for both primitive bricks and submodules. In
contrast, our full model MEPNet only applies analysis-by-synthesis for the
rotation inference of submodules. Since we do not assume access to the underlying
image renderer, we will perform analysis-by-synthesis based on the 2D mask of
the manual image.

Specifically, we use the mask prediction from our Hourglass model. Our goal is
to set the 3D pose for new components to maximize the matching score between
detected 2D masks and the 2D projections of these new components. To avoid the
exponential scaling with respect to the number of components, we employed a
sequential greedy algorithm. Given the current shape and a set of new components
to be added, we iteratively search the pose for each new component. For each
component, we enumerate all possible poses, and select the pose that minimizes
the IoU between the projected mask and segmentation mask of that component
type predicted by the Hourglass model. We set the maximum searching time for
each component to 1 minute.

The accuracy and runtime of different models are summarized in Table 3.
Direct3D is the fastest because 3D poses are directly predicted by the Hourglass
model, but the performance is significantly worse than other methods. The
analysis-by-synthesis baseline outperforms the Direct3D method, but it runs
significantly slower. Our full model, MEPNet, performs the best. We empirically
attribute the inferior performance of the analysis-by-synthesis variant to the
imprecise prediction of component masks, especially for small primitive bricks.

5.3 Results on 3D-Craft

We also evaluate MEPNet on building Minecraft houses from 3D-Craft [7].
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GT VoxelCNN

Direct3DMEPNet

Fig. 7: Qualitative results on the 3D-Craft dataset. Ground truth and predictions
of new bricks are zoomed in. Predictions of baseline models often lie in a small
neighborhood of the ground truth positions, while our model is more accurate.

Data. The original 3D-Craft contains houses built with equally-sized bricks from
crowdworkers in the format of building operation sequence. We leverage this
sequence information to generate manuals. Each step in the manuals contains
only one new brick. And our goal is to predict the 3D translation of the new
brick in each manual image. We select 80 houses (20k steps) for training, 5 (1.5k
steps) for validation, and 5 (1.5k steps) for testing. As the original dataset has a
heavily imbalanced distribution of brick types, we select 5 frequently-used types
in the dataset. In general houses in 3D-Craft contains more bricks than LEGO,
and the appearance of bricks will be affected by lighting.
Setup. To migrate MEPNet to this setting, we use one-hot embedding to encode
different types of bricks occupying each voxel. Because there is no rotation
involved, we also remove the rotation prediction modules for all methods. Finally,
we modify the 2D-to-3D algorithm according to Minecraft’s connection constraints.
Details are in the supplementary material.
Results.MEPNet achieves translation accuracy of 86.3% on the 3D-Craft dataset,
while VoxelCNN and Direct3D only achieve 49.8% and 75.8%. Based on the
visualizations shown in Fig. 7, we can also see that MEPNet can yield more
accurate results across all different lighting conditions.

6 Discussion

We study the problem of translating an image-based, step-by-step assembly
manual created by human designers into machine-interpretable instructions. We
propose Manual-to-Executable-Plan Network (MEPNet), a model that recon-
structs the assembly steps from a sequence of manual images. The key idea behind
our model is to combine learning-based methods and inference-by-synthesis algo-
rithms to wire in the connection constraints in assembly domains. Results show
that our model outperforms existing methods on three newly collected LEGO
manual datasets and a Minecraft house dataset.
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