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Abstract. Fabric materials are central to recreating realistic appearance of avatars
in a virtual world and many VR applications, ranging from virtual try-on, telecon-
ferencing, to character animation. We propose an end-to-end network model that
uses video input to estimate the fabric materials of the garment worn by a human
or an avatar in a virtual world. To achieve the high accuracy, we jointly learn hu-
man body and the garment geometry as conditions to material prediction. Due to
the highly dynamic and deformable nature of cloth, general data-driven garment
modeling remains a challenge. To address this problem, we propose a two-level
auto-encoder to account for both global and local features of any garment geom-
etry that would directly affect material perception. Using this network, we can
also achieve smooth geometry transitioning between different garment topolo-
gies. During the estimation, we use a closed-loop optimization structure to share
information between tasks and feed the learned garment features for temporal
estimation of garment materials. Experiments show that our proposed network
structures greatly improve the material classification accuracy by 1.5x, with ap-
plicability to unseen input. It also runs at least three orders of magnitude faster
than the state-of-the-art [59, 61]. We demonstrate the recovered fabric materials
on virtual try-on, where we recreate the entire avatar appearance, including body
shape and pose, garment geometry and materials from only a single video.
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1 Introduction

Human appearance reconstruction is one of the key techniques for building a vivid,
interactive virtual world. However, especially for fabric material estimation, has been
under-explored due to the complexity and the diversity of cloth dynamics and coupled
interaction with an avatar body. Image features are often sparse, containing many noisy
signals regarding the fabric materials worn on the body. An effective way to amplify
useful signals is to estimate garment geometry from images as a by-product. However,
this is an open challenge due to several reasons. First, garments have highly dynamical
geometry that is not easy to capture and model. Previous works on garment model-
ing [21, 40, 55] and estimation [6, 16, 39] often propose solutions on one single type of
garment, mostly t-shirts. Although the methods are also applicable to other garments,
lack of generalization in capturing different garment geometries presents a considerable
barrier for virtual try-on applications: users can only choose one of few pre-trained gar-
ment types and are not able to import new ones easily. Second, accurate estimation is
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often hindered by view projection, body occlusion, and limited availability of 3D scan-
ning. For example, the human-body estimation network may disagree with the garment
reconstruction network in skeleton orientation due to the projection ambiguity (e.g. an
arm is posed forward vs. backward), resulting in prediction misalignment. Thus, with-
out a general garment representation and an accurate geometry estimation, it is very
difficult to regress the fabric materials solely from images.

In this paper, we introduce a learning model that addresses these issues, achieving
both garment geometry and fabric material estimation simultaneously from commonly
available video inputs for virtual try-on. To handle the dynamic geometry and different
topologies of the garments and to provide a unified parametric model for the garments,
we propose a two-level auto-encoder network. The key observation is that classical
point cloud encoders such as PointNet [42] are great for capturing global shapes, but
not suitable for encoding the local details. Multi-scale feature extraction decomposes
the problem into smaller partitions and also decouples global and local features to en-
able larger coverage on local shape learning and capturing local topology transitions.
During the estimation, we couple the human body inference with the garment recovery
to maximize the estimation accuracy of the two correlated tasks. Other than traditional
multi-tasking, we further introduce a closed-loop structure so that the garment features
of different scales can guide the body estimation to improve the accuracy for both.
Based on the temporal change of garment features, we can perform accurate material
classification accordingly. Our key contributions include:

– The first neural network for fabric material recovery of a garment from a RGB
video (Section 3);

– A novel two-level auto-encoder for learning the latent space of garments through
multi-scale feature coupling, resulting in higher accuracy for material parameter
estimation (Section 4);

– Joint estimation of human body and apparels through a close-loop iterative opti-
mization that can account for arbitrary topologies of garments and ensure geometric
consistency (Section 5);

– A large dataset of garment motion sequences with wide variations of human body,
fabric materials, textures, and lightings for virtual try-on.

Our experiments show that the proposed network structure effectively increases the
performance and accuracy of the virtual fabric material estimation. By using only a few
frames of a person wearing a garment, our model can faithfully reconstruct the garment
fabric material(s), using the recovered shape and motion of both the garment and the
avatar body as the conditioning in virtual fabric material estimation.

2 Related Work

Fabric material estimation. Researchers have been tackling different inverse prob-
lems, including inverse cloth design [13], combinatorial material design [9], BRDF
parameter capturing [53], weaving pattern reconstruction [20], human material percep-
tion [7, 8], and frictional coefficient estimation [38, 44]. Cloth material estimation is
among the most challenging due to cloth’s highly dynamic motions. Previous works
study the task in a simplified and constrained scenario, and recover the materials using
statistical observation [10, 15], optimization [37, 59], or learning [5, 60]. In contrast,



Fabric Material Recovery from Video Using Multi-Scale Geometric Auto-Encoder 3

our method learns fabric materials from videos of a human wearing garments in more
general and widely applicable framework, assuming commonly available inputs like
image sequences and videos. More importantly, our method makes use of the estimated
multi-scale garment latent codes as input signal that is shown to be more effective in
recovering overall garment geometry with local details than merely image features.
Garment modeling and estimation. Garment geometry capturing or recovery has been
widely studied: non-learning methods using symmetry and user input [65], optimiza-
tion [25,59,61], or binocular data [11]. Recently, methods using deep learning have been
proposed for faster speed and more convenient usage [3,6,14,16,21,22,24,26,39,62,67].
In addition, direct garment modeling methods have also been proposed using spherical
parameterization [40] for estimation or displacement map [51] for retargetting.

Different from displacement-based cloth representation [6], PCA-based models [55],
and mesh-CNN-based methods [21], our garment model is universal to all topologies,
applicable to those not homotopic to human surfaces (e.g. long dresses), enabling se-
mantic interpolation between different garments. Compared with [40], our model gen-
erates a stand-alone garment mesh that is easy to export and retarget. Our method is
the first network that jointly estimates the garment material and geometry for virtual
try-on. Our method is substantially different from most garment capturing or genera-
tion methods [30, 47, 62] regarding model input, output, and assumptions. It does not
required 3D scanning, which is often not easily available, but only videos that can be
easily captured using mobile devices.
Point cloud encoder and decoder. PointNet [42] was among the first network model
for encoding an unordered point set. Follow-on improvements include spatial parti-
tion [28, 31, 43], edge convolution [56], local region filtering [41, 66], and analogous
convolutional operators [32]. Although these recent works have utilized hierarchical
structure to some extent, their methods are not sufficient for auto-encoding the garment
geometry or topology. The key difference between garment auto-encoding and rigid
gadgets auto-encoding is that there are a large number of local details (e.g. wrinkles)
due to cloth’s highly deformable and dynamical nature. As a result, latent codes for
local details are necessary.

Recently, [35, 63] use similar ideas on point-based garment geometry modeling.
The main differences between these methods and ours include (1) our garment latent
code is independent and does not need a body point-cloud to morph on, (2) their latent
code is randomly assigned before training, which is not ideal for learning a compact
latent space for smooth interpolation, and could result in noisy estimation results when
applied to downstream task, and (3) their local and global patches depend heavily on
human body surface, which makes it difficult for the resulting point cloud to represent
loose dresses.
Human reconstruction from images. Human estimation using RGB images has been a
popular research topic in deep learning for its importance in virtual reality and computer
animation. While early works propose network models for only 2D/3D body skele-
tons [12, 36, 57], more recent works introduce techniques to regress the entire human
body – either using a parametric human model [2,27] or voxel-based representation [45,
52,64]. Given the fact that the annotations in most real-world datasets contain only joint
positions, the learning process has been refined in various ways [1, 29, 33, 48, 58].
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In order to estimate the fabric material, we need to recover the garment shape on the
human body, which is an important problem rarely addressed in avatar reconstruction.
In our pipeline, we use state-of-the-art human body predictions as a strong prior for
the garment estimation module. Given the focus of this paper, we assume to use video
input for only garment material recovery. We refer the interested readers to a recent
survey [19] for comprehensive review on video-based pose estimation instead.

3 Method Overview

We first give the formal problem definition. Given a video clip showing a person moving
(e.g. walking, jumping, bending, etc), we estimate the fabric materials of the garment
worn by the person. We assume that the garment worn is made of the same material. By
fabric materials, we refer to the physical material parameters used in cloth simulation.
We adopt the same material parameter definition introduced in [54], which consists of
24 parameters for stretching stiffness and 15 parameters for bending stiffness.

Given the fact that the differences of the material parameter values do not intuitively
reflect the human visual perception, we follow the previous work [60] to discretize the
material parameter space based on the amount of deformations due to external forces.
Using sensitivity analysis [46], the stretching stiffness is split into 6 classes and 9 for
the bending. Combining both dimensions will yield 54 different material classes. As
confirmed by [60], these 54 classes cover most of the common materials, including
polyester, cotton, nylon, rayon, and their combinations. For example, one type of mate-
rials named ‘white-swim-solid’ consisting of 87% nylon and 13% spandex, as measured
by [54], fits in the discrete classification model with the stretching label of 2 and the
bending label of 3.

In this paper, we introduce a deep neural network (Fig. 1) for simultaneously es-
timating the garment geometry and its material type(s), along with the human body.
Our key idea is that image features are not sufficient for inferring garment materials;
it is necessary to extract the garment geometry as well for a more accurate estimation.
To support different topologies of garments, we choose point clouds for its geometry
representation. To better account for the highly dynamic garment surfaces, we train a
two-level point cloud auto-encoder (Sec. 4) so that it can learn the global shapes and
local features of the garment to reduce the total number of degrees of freedom. We use
the SMPL model (see [34] for its rigorous math definition) to represent the human pose
and shape.

We divide the estimation pipeline into two phases. First, we estimate the human
body and the cloth geometry in a frame-by-frame manner (Sec. 5.1). A closed-loop
optimization structure is used to improve the estimation accuracy of these two cor-
related tasks. The garment geometry prediction module is conditioned on the human
body parameters, and at the same time provides corrective feedback to the human body
prediction module. We then feed the features of the image and the garment geometry
from each frame together to a temporal neural network for the garment material es-
timation (Sec. 5.2). By sharing common features, providing corrective feedback, and
conditioning on outputs of closely-related tasks, our network model can achieve higher
estimation accuracy on all three tasks than independent estimation baselines.
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Fig. 1. Overall network structure. Given an RGB video, we extract its image features and es-
timate the body and garment shape frame by frame (Sec. 5.1). The latter is decoded to obtain a
garment mesh (Sec. 4). The temporal sequences of image and garment are fed to an LSTM for
material classification (Sec. 5.2).

4 Garment Auto-encoder
We first set up an auto-encoder for the cloth model. Since the model is designed not to

Fig. 2. The network structure of the garment auto-encoder. The point cloud sampled from the
original mesh is first fed to a global PointNet for coarse shape features. Its representative point set
is then obtained by decoding the global features from an AtlasNet. From those points, we sample
the local patches using K-nearest neighbor and pass them to a local PointNet for detailed shape
features. The local decoder is then conditioned on the global latent code and the corresponding
patch center to recover the patches that are stitched together to form the reconstructed point cloud.

assume fixed garment topology, we choose to use point clouds as the underlying rep-
resentation. Other representations, such as graph-based [49] or displacement-based [6,
39], rely on either fixed graph structure, or fixed human surface, thus not applicable
for generalization to different garments. The use of auto-encoder here is necessary be-
cause the degrees of freedom (DoF) for point clouds are too high for estimation. An
encoder-decoder structure can effectively reduce the DoF and retain only the essential
information, such as the global shape and the local details. More importantly, it clusters
similar shapes to similar latent codes, which is beneficial to the estimation module. As
later shown in the Appendix, our model provides smooth transitioning between differ-
ent topologies by using simple interpolation between latent codes. We discuss details
on recovery methods from point cloud to mesh in the Appendix.

4.1 Two-Level Encoder-Decoder Structure

Previous point cloud auto-encoders such as AtlasNet [17] use Multi Layer Perceptron
(MLP) to transform a 2D patch to a set of 3D points in the space. Their method performs
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well in point cloud datasets that include rigid objects, such as airplanes or chairs, since
the deformations presented in those objects are simple and regular. However, it cannot
be directly applied to learn garment point clouds, since garments have a much larger
variance in point cloud distribution due to its dynamic nature. For example, a simple
dress can create different wrinkle structures under different external forces. As a result,
one global auto-encoder cannot account for all detailed structures, resulting in overly
smoothed point clouds. Recently, [4] proposes a method to resolve patch overlapping
and collapsing occurred in AtlasNet, but it still cannot account for arbitrary topologies
and detailed wrinkles.

We propose a two-level auto-encoder for learning the latent space of the cloth. As
shown in Fig. 2, we use a set of representative points C to express the global shape
of the garment, and sample around them to form local patches, which are encoded
independently to account for local shapes. Specifically, given a point cloud P, we first
pass it through a global auto-encoder to form a representative point cloud:

C = Dg(Eg(P), θ) (1)

where Eg and Dg are the global encoder and decoder, and θ is the human body param-
eter. Next, we use K-nearest-neighbor to sample points around the representative ones:

Pi = KNN(P, ci) (2)

where ci is the i-th element in C, and Pi is the i-th patch. This step forms local patches
around the representative points. Finally, we pass each patch to the shared local auto-
encoder, and do a union operation to obtain the reconstructed point cloud:

Qi = Dl(El(Pi), zg, ci) (3)

Q =
⋃
i

Qi (4)

where Qi and Q are the reconstructed patches and point cloud, Dl and El are the local
decoder and encoder, and zg = Eg(P) is the global latent code.

4.2 Representative Point Set Extraction

Note that Eq. 3 and 4 imply that the representative points C have to be in the same
order as the local latent codes zl. This is the key reason why traditional methods such
as farthest point sampling [43] do not work: its ordering is very sensitive to the input,
resulting in an unknown mapping between reconstructed patch centers C and the local
patches Pi (thus the local latent code zli ).

To resolve this issue, we encode the entire point cloud and compute the represen-
tative points using the decoder itself. Due to the continuous nature of the auto-encoder
network, the continuity and consistency regarding similar point clouds are guaranteed,
thus ensuring ci to be exactly matched with Pi.
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4.3 Training Losses

During training, we use Chamfer Distance between two point clouds as the loss:

d(P,Q) =
1

|P|
∑
p∈P

min
q∈Q

∥p− q∥+ 1

|Q|
∑
q∈Q

min
p∈P

∥q− p∥ (5)

In Eq. 6, we apply the Chamfer Distance loss between the representative point set and
the point cloud to learn the global shape (first term), and the one between the recovered
and the original point clouds, both patch-wisely (second term) and globally (third term)
to capture the local details:

LAE = d(P,C) +
1

n

n∑
i=1

d(Pi,Qi) + d(P,Q) (6)

5 Material Estimation

With the garment auto-encoder (Sec. 4) at hand, garment material estimation becomes
tractable. We design our overall pipeline as shown in Fig. 3. Given the sequence of
image frames, we first feed them one by one to a model for estimating the human body
and cloth geometry. By predicting the latent vector instead of the exact positions of the
point cloud, the single-frame estimation network avoids severe overfitting or producing
irrational results, due to the reduction of the degree of freedom by the auto-encoder.

Next, we combine the image features as well as the estimated garment latent code
as the temporal signals, which go through a canonical temporal network module (i.e.
LSTM [23]) to predict the final material type. Since the latent space preserves similarity
(i.e. positive correlation between distances of latent vectors and distances between the
original point clouds), the motion of the estimated latent vector becomes a better indi-
cator of garment motion than image features, which is beneficial to garment material
learning. We do not include body features here because the garment material is directly
related to the garment motion, which has already taken the human body as the condition
(Sec. 5.1). We discuss more details of the network in the following sections.

Fig. 3. Our estimation pipeline. Each video frame is first processed to obtain the image feature,
the human body, and the garment shape. Then the image features are concatenated with the gar-
ment latent code as input to LSTM for material recovery.
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(a) Closed loop structure for body &
garment estimation

(b) Detailed structure in the garment
estimation block

Fig. 4. The network structure for body and garment estimation in each frame. (a) The gar-
ment shape estimation block takes the human body parameters as a prior, but also provides a
feedback correction. (b) The garment estimation module consists of three identical, shared-weight
blocks, each of which takes image features f and current predictions of the human body θ0 and
garment z0, and outputs the corrective values.

5.1 Single Frame Closed-Loop Estimation
As shown in Fig. 4, we train a model to estimate the human body and cloth geometry
given one single frame. Formally, in each frame, we are given the image features f . We
first go through a state-of-the-art body estimation block [29], HB, to get a first-hand
body estimation, θ̂ = HB(f), where θ̂ = [θ, β] are the human body parameters includ-
ing pose and shape. In the garment estimation block, we take as input f together with θ̂
and regress the garment latent code z, consisting of both zg and zl, and body parameters
θ. Inside the garment estimation block, we use three shared-parameter small regression
blocks, RB, to iteratively provide the correction, given the current estimation:

θ0 = θ̂ z0 = 0 (7)
∆θi, ∆zi = RB(θi−1, zi−1) (8)
θi = θi−1 +∆θi zi = zi−1 +∆zi (9)

Overall, the garment estimation block forms a closed-loop structure, in which the hu-
man body parameters are required to predict the garment, and are later corrected back
by the garment prediction as well.

The key insight of our module design is that the human body and garment shape are
highly correlated at different scales and should be jointly learned using shared informa-
tion. On the global scale, the detailed features of the garments restrict the variance of
the human body and reduce ambiguity due to camera projection. On the local scale, the
body pose and shape largely defines the valid distribution of the garment wrinkle posi-
tions. Our proposed structure is also analogous to iterative optimization and feedback
control in other areas, where two objectives serve as prior knowledge of each other and
are improved iteratively. This work is the first to introduce this idea for the human and
garment joint estimation task.

The loss function for the single-frame estimation is defined as:

Ls = Lbody + LAE (10)
Lbody = L2D + L3D + LSMPL (11)
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where L2D, L3D, and LSMPL represent the 2D joint loss, the 3D joint loss, and the
body parameter loss defined to supervise the human body estimation [33], and LAE is
the Chamfer distance defined in Eq. 6 to supervise the garment estimation.

5.2 Temporal Estimation for Garment Material

Garment material estimation is challenging since the visual difference of different ma-
terials is subtle and can easily be overwhelmed by disturbance, e.g. various directions
or magnitudes of external forces. To tackle this problem, previous works often assume
fixed environment settings and cloth shapes [59, 60]. While we follow a similar princi-
ple when training the material estimation module, we go one step further that we only
assume common human motion for driving the garment instead of the whole external
force field. While previous works [59, 60] can only handle videos of a piece of cloth
hanging and dragged by the wind, our method possesses a wider applicability regarding
the diversity of the garment shapes, sizes and human motions in the input video, which
for the first time enables practical usages for garment material cloning.

As shown in Fig. 3, we collect and concatenate the image features and the estimated
garment latent vector of each frame as the input signal, and feed the sequence of the
signals to LSTM to produce a summary feature. Finally, we pass the summary feature
to a fully-connected layer for material type classification. We use the cross-entropy loss
for supervision.

Training the entire pipeline from scratch is not ideal because the system is too large
and the training could be unstable. Instead, we first trained the single frame body and
garment estimation module using single view images. After the convergence on the sin-
gle frame module, we fixed its parameters and applied it to train the material estimation
network. Our experiments demonstrated in Sec. 6 indicate that the multi-scale garment
features are not merely useful for detecting the fabric materials; they are the dominant
features during the estimation and can boost the test accuracy compared to methods that
only use the image features.

6 Results

We demonstrate the performance of our model as follows. (1) We compare our work
with with the baselines and SOTA methods quantitatively (Sec. 6.1) and qualitatively
(Sec. 6.2). (2) Ablation studies are presented in Sec. 6.2 on the improvements by our
network design. (3) A user study on material perception using this work and the sim-
ilarity between the measurements of real-world fabrics from lab experiments vs. our
predicted garment materials from videos is presented in Sec. 6.4, with detail in Ap-
pendix. (4) We compare ours with other related learning-based methods (Sec. 6.5) and
show application to virtual try-on, with detail in Appendix. (5) Additional latent code
interpolation between garments, training data and perceptual study examples can be
found in both Appendices and the supplementary video.
Training process. We first trained the auto-encoder alone. Next, we trained the single-
frame estimation module, with the fixed decoder attached at the end. Finally, we trained
the material estimation with other parts fixed. See Appendix for more training details.
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6.1 Quantitative Analysis

Ours vs. Image-Only [60]. Due to the difference regarding the input distribution (dressed
garment on a human body in our method vs. hanging cloth in theirs), we re-train their
model on our datasets for a fair comparison. We study the contribution of image-only
features vs. garment-only features, as well as CNN vs. LSTM (that exploits the tempo-
ral coherence). Finally, we compare the overall performance difference between ours
and [60]. The test classification accuracy is reported in Table 1.

Findings: (1) While all three models have learned the relationship between motion
and materials and all three outperform random guess, the garment feature signals are
shown to be much more important than the image features. This finding is not surpris-
ing, since the garment shape is directly affected by the material. (2) Combining the
two features, as our model does, further improves the test accuracy. A possible reason
is that an overall capturing of the garment shape (e.g. width and length of the entire
piece), which is difficult to retrieve using garment latent codes, could be more easily
extracted using image features. (3) By exploiting temporal coherence, unsurprisingly
all three versions of the model achieve better accuracy than only using 1 image.

Method Mean Accuracy Temporal Gain Garment Features Gain

Random guess 1.85% - -

Image only, CNN 5.11%
40.16%

-
Image only, LSTM [60] 45.27% -

Garment only, CNN 11.85%
53.31%

6.74%
Garment only, LSTM 65.16% 19.89%

Image + Garment, CNN 12.62% 57.52% 7.51%
Image + Garment, LSTM (ours) 70.14% 24.87%

Table 1. Comparison on material estimation: our method achieves ∼1.5x higher accuracy
(45.27% vs. 70.14%) in material identification than [60].

Ours vs. Optimization-based [59, 61]: An optimization-simulation framework to ob-
tain the fabric material parameters using wrinkle density of the garment in a single
image was proposed in [59,61]. In contrast, our method extracts both static image fea-
tures and spatio-temporal garment features across frames. We generate the same set of
test scenes as shown in the Appendix. Our model is tested on these sequences under
varying lighting and visibility conditions (Appendix); the average accuracy is reported
in Table 2. In this challenging case where the lighting condition and the textures are
not seen in the training distribution, our method still achieves comparable accuracy
with previous method [59, 61], but it runs more than 1,000x faster. Ours is the first
learning-based method to predict fabric materials directly from a video of garments
worn on a human body.

6.2 Qualitative Results

We compare ours with the most relevant work of [59] for joint estimation of garment
shapes and materials, as shown in Fig. 5. Our method achieves similar reconstruction
accuracy and visual quality as [59, 61]. But, [59, 61] uses semantic segmentation, thus
suffering from tedious manual processing and long inference time. In contrast, our
learning-based method is fully automatic and can compute the prediction in real time.
Moreover, our method does not assume the sewing patterns as a prior.
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Method
Accuracy (%)

SpeedMid-day Sunset

T-shirt Pants Skirt T-shirt Pants Skirt

[59, 61] 80.2 80.2 83.3 81.6 79.9 80.7 4-6 hours
Ours 86.5 91.6 81.6 82.4 91.6 79.6 8.7 sec

Table 2. Quantitative comparison with [59, 61]. Our method achieves comparable or higher
accuracy, but runs at least three orders of magnitude faster than the state-of-the-art [59, 61].

(a) Input image (b) Results from [61] (c) Our results
Fig. 5. Qualitative comparison with [59,61]: Ours is easier to use and achieves visually compa-
rable reconstruction much faster without priors on garment patterns and topology.

We further compare with several learning methods [6, 22] in the Appendices for
reference. Many often use additional information (e.g. mesh templates or known gar-
ment types) as priors, so direct visual comparison is not meaningful. Nonetheless, our
model successfully generalizes to unseen real-world images/videos with comparable vi-
sual results, as shown in Appendices. During these experiments, our method is directly
applied without any fine-tuning or post-optimization. Although trained using synthetic
datasets, our model correctly identifies people and the garments from real-world im-
ages, and achieves similar visual results in all examples, when compared with previous
works. The network is also capable of the predicting correct sizes of garments relative
to the body, due to multiscale auto-encoders.
Material Cloning for Virtual Try-On: we show three application scenarios of our
method. In Fig. 6, given an RGB video of a person wearing garments of different fabric
materials, our method can identify the underlying material and clone it onto other gar-
ment models using cloth simulation. Our method is the first to achieve fast and accurate
material extraction from videos of dressed garments on a body. We further show the
ability of our method to reconstruct the entire human appearance from the input video
using one single network. We first estimate the body and the garment geometry frame
by frame, and use the temporal information to infer the material. The three parts are
combined using cloth simulation to generate the final output. Fig. 7 shows the recon-
struction results (also see the supplement video). Our reconstructed garment shapes and
wrinkles match those in the input video frames.

6.3 Ablation Study
We verify the effectiveness of our network model in the following ablation studies re-
ported in Table 3. We compare our method with baselines that replaces (a) the two-level
auto-encoder with AtlasNet [17], and (b) the joint body-garment estimation block with
a parallel estimation structure, respectively. The metrics include both the reconstruction
accuracy and the material classification accuracy in the final stage. Our method results
in notably smaller errors than both baselines in reconstruction and material prediction.
See Appendix on the details of this ablation study.
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Input video Reconstructed Avatar
wearing the same garment

Fig. 6. Material transfer between videos. Our method can take videos of a person wearing any
garments and clone the underlying fabric materials onto a virtual avatar wearing the same garment
with the same fabric.

(a) Real (b) Virtual (c) Real (d) Virtual

Fig. 7. Qualitative results: our method faithfully recovers the T-shirt materials (a, c) in video so
that the wrinkles around the simulated t-shirt sleeves (b, d) appear similar under different poses.

Method CD SD Accuracy
AtlasNet [17] 0.31 8.05 54.20%

Ours 0.12 1.03 70.14%

Method MPJPE CD Accuracy
Separate 80.89 1.55 49.15%

Ours 55.20 0.88 70.14%
(a) Auto-encoder (b) Human and garment estimation

Table 3. Ablation study for different parts of our proposed network. CD stands for errors
in Chamfer Distance; SD stands for Sinkhorn Divergence [18]; and MPJPE stands for Mean
Per Joint Position Error – all in millimeters (mm). Separate predicts the body and the garment
separately in parallel branches. Our method results in notably smaller errors (in CD, SD, MPJPE)
than all baselines in reconstruction and material prediction, with 30% to 40% higher accuracy.

We further compare our method with a recent work [6] since their task is the most
relevant to ours. As shown in Table 4, our model, without any fine-tuning or domain
adaptation, achieves the smallest error – whether the ground-truth human body model
is provided or not during reconstruction. Since our model is trained on a wider range of
body poses and garment types than theirs while achieving better accuracy, it has shown
to offer good generality to unseen inputs. See Appendix for more detail.

6.4 Lab Experiments and User Study
In this experiment, we test the prediction accuracy of our method using real-world mate-
rials. We used five real-world materials measured from lab experiments [54], which are
sampled from sweater, t-shirt, tablecloth, jeans, and blanket, respectively. The measured
values are then compared with the one predicted from our method, reported in Table 5.
Our method achieves a relatively small error between 9.5% to 16.7%. See Appendix for
more detail.
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Methods
[1] [6] Ours

GT Pose GT Pose Full Pred. GT Pose Full Pred.

Pants (mm) 5.44 5.57 10.16 1.58 3.08
Short Pants (mm) 8.23 5.97 10.00 4.92 5.69

T-shirt (mm) 5.80 5.63 11.97 1.67 3.08
Shirt (mm) 5.71 6.33 9.05 2.29 3.75
Coat (mm) 5.85 5.66 9.09 2.84 3.65

Table 4. Test errors on the Multi-Garment Net datasets [1,6]. Our method achieves the lowest
errors (by up to 3x–4x) across all garment types, without any fine-tuning or reference body.

Material Name [54] Stretching Ratio Bending Ratio Mean Relative
(GT/Prediction) (GT/Prediction) Error

gray-interlock 1.01/1 1.6/2 10.5%
navy-sparkle-sweat 0.56/0.5 1.7/2 12.8%
white-dots-on-blk 15.8/20 3.5/4 16.7%
11oz-black-denim 3.6/3 3.0/3 8.3%
pink-ribbon-brown 2.93/3 12/10 9.5%

Table 5. Lab experiment results. Our material estimation achieves relatively small errors com-
pared to lab measurements on all real-world materials tested.

Method Input Dependencies Generality Dresses support Separate mesh Material Estimation

MGN [6] Semantic seg. + 2D joints Garment correspondences One model per garment No Yes No
DeepCap [22] Foreground seg. Template mesh One model per garment Yes (w/ known template) No No

[59] Semantic seg. Template mesh One model per garment Yes (w/ known template) Yes Yes
DeepFashion3D [67] RGB frame (garment only) None One model for all Yes (limited topologies) Yes No

Tailornet [39] Body parameters Garment correspondences One model per garment Yes (limited topologies) Yes No
BCNet [26] RGB frame Garment correspondences One model per garment Yes (limited topologies) Yes No
SIZER [51] Body scan Garment labels One model per garment No Yes No
ARCH [24] RGB frame (foreground only) None One model for all Yes (water-tight) No No

Ours RGB frame None One model for all Yes Yes Yes

Table 6. Comparison with previous works. Our method can handle the largest set of garments,
using the fewest possible information (i.e. widely available RGB images only), in one stand-alone
network.

Soft Silk Blue Dress Karate Green Dress Stiff Polyester Blue Dress Karate Green Dress

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8. Material transfer examples. Our method can accurately estimate the material parameters
from input videos (a, e) and replicate the same ’feel’ in other animations (b, c, d) and (f, g, h),
respectively, creating significantly different visual effects for the same pose.

Perceptual Validation: To further validate and quantify the material similarity, we
conduct a user study to examine how close our estimation results are to the ground-truth
data in human perception. Our results show that the average similarity ratings for five
tested materials vs. the ground-truth data are all larger than 5, ranging from 5.7 to 8.5,
with an overall mean value of 7.1. These indicate that our method indeed can recover
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fabric materials with only minor perceptible differences to the real-world materials.
Furthermore, we also conducted on material perceptions under different environmental
conditions. Please see Appendix for details on these perceptual studies.

6.5 More Comparison with Previous Works

In Table 6, we extensively compare our work with previous ones regarding different
assumptions, functionalities, and abilities. We define ‘one model per garment’ in ‘gen-
erality’ as that the method needs to create extra templates or registrations to the body,
or need to retrain part of the network in order to predict a different garment type. Al-
though DeepFashion3D [67] and ARCH [24] also have generality to different topolo-
gies to some extent, there are still limitations in their pipeline. The output from Deep-
Fashion3D has to be continuous in one body part, meaning that they cannot support
all topologies (e.g. dresses with holes). ARCH does support different garments on the
body, but the output is a water-tight mesh together with the body, which is not always
convenient for certain applications like virtual try-on. In contrast, our method naturally
supports all kinds of topologies, and predicts the body and the garment in separate
meshes. Additional comparison results with DeepCap [22] and MGN [6] can be found
in the Appendix.

Virtual Try-on: Visual results of our work on application to virtual try-on are
shown in Fig. 8. More animations are shown in the supplementary video.

7 Conclusion

In this paper, we introduced a learning model for garment material estimation using
RGB videos. We do not assume other inputs (e.g. segmentation, 3D scans, multi-views,
etc.) or any prior knowledge on the garment shape/topology, design patterns/templates,
or correspondences. We extract the multi-scale features to effectively represent the dy-
namic geometry structure of garments, which can be combined with image features to
estimate fabric materials by learning their temporal patterns, while improving the hu-
man body reconstruction using a feedback loop. This approach is perhaps the first to
introduce a unified parametric model for all garment types, and it can thereby support
garments of different topologies without the need to retrain different models. Experi-
ments show that our method achieves much higher accuracy up to 70.14% in estimat-
ing fabric materials than prior works, while offering capabilities in recovering garment
types and topologies with generality and simplicity for an unification of multiple corre-
lated tasks.
Limitations: We assume that garment motion is captured as videos of adequate im-
age resolution under sufficient lighting to show fabric movement, wrinkles and folds.
The current implementation does not support multi-layer, folded garments, or detection
of different materials at once. These issues can likely be addressed by adding more
structural prior to encode multi-layer clothing, introduction of curvature representation
for multi-fold features, and a point cloud segmentation module. The accuracy of fab-
ric material estimation perhaps can probably be further enhanced by integrating neural
rendering [50] with this work.
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