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We provide examples to describe the JecVector data structure and the edge-
based BA problem partitioning method. Further, we provide extra experimental
results, including the full BAL datasets [2], the 1IDSIM dataset [8] and a large
synthetic dataset. We finally provide reconstruction plots to illustrate the effects
of MegBA.

1 JetVector Design

To show the novel design of JetVector, we compare it with its predecessor: Jet
implemented in prior BA libraries such as Ceres [1].

A Jet object comprises value and grad (i.e., gradients). It has atomic opera-
tors such as +, —, *, and / which are essential for auto-differentiation. Multiple
Jet objects are contained in an Array-of-Structures (AoS). Though effective for
CPUs, the use of AoS makes it difficult to coalesce GPU memory transactions,
resulting in low efficiency in utilising GPUs.

In contrast, JetVector is implemented as a Structure-of-Arrays which allows
GPU memory transactions to be effectively coalesced. Figure 1 compares Jet
and JetVector. As we can see, if we stack Jet in a vector, the memory addresses
of Value and Grad of different each Jet objects are not continuous. In Jet Vector,
however Value and Grad objects are organised in a continuous manner in the
memory, making it friendly for GPUs.

We show how does MegBA add JetVector objects in Figure 2. Supposing there
are N Jets in JetVector. We launch N GPU threads and each GPU thread pro-
cesses a Jet object. In this way, GPU threads will access adjacent data elements,
thus coalescing memory transactions. As a result, the memory loading/storing
operations in a warp (a warp is 32 consecutive GPU threads) can be achieved
by a 128-byte memory transaction. Notably, the memory transactions of a naive
AoS structure comprises multiple serialised 32-byte memory transactions, which
can adversely affect memory performance.

2 Edge-based Partitioning of BA Problems

We provide an example that shows how MegBA partitions non-zero Hessian
blocks and assigns the partitions to multiple GPUs in a load balancing manner.

* Equal contribution, work was done during their internship in Megvii Inc.
T Corresponding author.
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Fig. 1: Comparison between Jet and JetVector.
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Fig. 2: Example of adding two Jet Vector objects.

Figure 3a shows the Jacobian structure of a BA problem. The black blocks

refer to non-zero blocks and the white blocks refer to zero blocks. It is partitioned

into two sub-matrices shown in Figure

3b and Figure 3c.

Figure 4a is the structure of the Hessian matrix to be computed by MegBA.

A Hessian, though stored in the sparse format, is still too large to fit into a
GPU. To address this, MegBA stores a part of a Hessian in each GPU, as shown
in Figure 4b and Figure 4c. Since we have H = Hy + H1, it is guaranteed that
computations based on partitioned Hessian sub-matrices are equivalent to the

original computation.
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(c) Partitioned Jacobian J; on GPU 1

(a) Jacobian J

Fig.3: A Jacobian matrix. (a) is the Jacobian of a BA problem. We partition
Jacobian into two matrix blocks (b) and (c). MegBA stores these two matrix
blocks on two GPUs.
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Fig.4: A Hessian matrix. (a) is the Hessian H constructed from Jacobian J
that H = JTJ. On each GPU, MegBA constructs a Hessian matrix so that
Hy = J&Jo, Hy = JL Jy.
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Ceres-16 | DeepLM | g20-16 |RootBA-16|MegBA-1-a|MegBA-1-m
MSE|Time|MSE|Time|MSE|Time|MSE| Time [MSE| Time |MSE| Time
Trafalgar-21 [0.83 [0.42 |0.83 |1.72 |0.83 |0.79 |0.83 [0.16 |0.83 |0.58 |0.83|0.50
Trafalgar-39 |0.95 |1.02 [0.95 |2.63 [0.95 [2.52 {0.95 |0.38 |0.95 |0.88 [0.95|0.81
Trafalgar-50 |0.70 |1.04 |0.70 |2.62 |0.70 |1.90 |0.70|0.44 |0.70 [0.97 |0.70|0.81
Trafalgar-126(0.62 (3.36 [0.62 |3.98 |0.62 |8.76 |0.62 |8.06 |0.62 {1.83 |0.62|1.52
Trafalgar-138|0.53 |8.11 [0.53 {4.00 |0.5212.90(0.52 |11.88]0.53 |1.18 [0.53 |1.03
Trafalgar-161|0.47 |4.76 |0.47 (4.11 |0.46(9.04 |0.46 [14.64 |0.47 |1.12 |0.47 |1.11
Trafalgar-170|0.47 |6.77 |0.47 |4.00 |0.46|14.23|0.46 |20.65 |0.47 (1.40 |0.47 |1.14
Trafalgar-174(0.47 |5.63 |0.46 |4.17 |0.45|23.42|0.46 (19.35(0.46 |{1.22 |0.46 |1.19
Trafalgar-193|0.46 |7.13 |0.46 |4.17 |0.45|16.92|0.46 |18.45 |0.46 (2.38 |0.46 |2.02
Trafalgar-201|0.48 |2.83 |0.46 (3.72 |0.50 |27.17|0.46 |5.18 |0.47 (1.30 |0.47 |1.22
Trafalgar-206|0.45 (12.80(0.45 |4.36 |0.45 |22.26/0.45 (17.30|0.46 |{1.52 |0.46 |1.32
Trafalgar-215(0.45 (9.97 [0.45 |4.33 |0.45 {24.01|0.45 |12.63 |0.45 {1.24 |0.45|1.21
Trafalgar-225|0.44 |5.55 |0.44 |4.49 |0.44 |19.43|0.44 |23.96 |0.44 (1.35 |0.44|1.29
Trafalgar-257(0.43 (8.16 [0.43 |3.82 |0.43 |21.69|0.43(3.307 |0.44 {1.36 |0.44 |1.15
Table 1: The results of the Trafalgar dataset.

3 Experimental Results

We evaluate the performance of MegBA with the FP64, 1-GPU configuration
and compare MegBA against Ceres [1], g20 [4], RootBA [3] and DeepLM [5].
MegBA uses the Levenberg—Marquardt algorithm and the trust-region strategy
(same as Ceres).

3.1 BAL Datasets

We summarise the results of the BAL dataset in Table 1 (Trafalgar), Table 2
(Ladybug), Table 3 (Dubrovnik), Table 4 (Venice), and Table 5 (Final). As we
can see in these tables, MegBA consistently outperforms all baselines by up
to 24x. We also evaluated PBA [9] on the BAL dataset. PBA supports FP32
only, so we evaluate MegBA (FP32) with PBA in Table 6, showing that MegBA
outperforms PBA by a large margin.

3.2 1DSfM Dataset

We further compare MegBA with the baselines using the 1DSfM [3] dataset.
The statistics, such as the number of observations, of the 1DSfM dataset can be
found in Table 7. Results are shown in Table 8. 1DSfM is a challenging dataset
and other algorithms can converge to local optima that have several magnitudes
of orders larger MSE than other algorithms, while MegBA always converges to
a competitive optima.
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Ceres-16 | DeepLM g20-16 |Rootba-16|MegBA-1-a|MegBA-1-m
MSE|Time|MSE|Time|MSE| Time |[MSE|Time MSE| Time |MSE| Time
Ladybug-49 ]0.42 {1.07 |0.42 |2.23 [0.42 [2.50 |0.42 |0.32 [0.42 [0.19 |0.42|0.19
Ladybug-73 |0.37 |1.24 [0.37 [2.72 |0.37 |2.12 |0.37 |0.67 |0.37 |0.24 |0.37|0.22
Ladybug-138 |0.70 |{2.72 |0.70 |3.00 [0.70 (31.21 |0.82 |0.79 |0.70 (0.32 |0.70(0.29
Ladybug-318 |0.48 |{3.04 |0.48 |2.95 [0.48 [65.70 |0.48 |3.78 [0.48 (0.44 |0.48|0.33
Ladybug-372 |0.55 [4.45 [0.55 [2.10 [0.55 |83.52 |0.55 |2.96 |0.55 |0.54 |0.55|0.41
Ladybug-412 |0.50 {4.07 |0.50 |3.34 ]0.49 [86.94 |0.50 |2.83 [0.49 [0.58 [0.49(0.44
Ladybug-460 |0.53 {6.02 |0.53 |3.47 [0.53 [243.32|0.53 |5.38 [0.53 [0.69 |0.53|0.55
Ladybug-539 (0.55 (8.37 |0.55 |3.85 [0.55 [65.63 |0.55 |5.08 |0.55 |0.75 |0.55|0.57
Ladybug-598 |0.55 |8.54 |0.55 |3.34 [0.54(293.69|0.55 |4.16 [0.55 [0.79 [0.55 [0.60
Ladybug-646 |0.55 {9.21 |0.55 |3.56 [0.56 [200.83|0.55 |5.44 [0.55 [0.92 |0.55|0.74
Ladybug-707 |0.57 {15.30[0.56 [4.48 [0.56 |283.15|0.56 |6.59 |0.56 |0.98 |0.56|0.76
Ladybug-783 |0.53 |7.69 |0.53 |5.01 [0.53 [539.85|0.52|15.95/0.53 [0.98 [0.53 [0.78
Ladybug-810 |0.52 {9.67 |0.52 |4.77 ]0.52 [391.78|0.52 |13.71]0.52 {1.00 |0.52(0.74
Ladybug-856 |0.51 [{13.30{0.51 [4.81 [0.51 |114.89/0.51 |8.01 |0.51 {1.10 |0.51|0.86
Ladybug-885 [0.51 [15.00/0.51 |5.08 |0.51 [308.21]|0.51 [8.03 |0.51 (1.01 |0.51|0.79
Ladybug-931 |0.55 {15.30|0.55 |4.56 [0.55 [220.54|0.55 |11.08]0.55 [1.18 |0.55|0.96
Ladybug-969 |0.55 [17.50(0.54 |5.21 |0.55 |197.59|0.54 |7.79 |0.54 [1.19 |0.54|0.94
Ladybug-1031{0.55 {12.90(0.55 [4.04 [0.55 |203.63|0.55 |10.24|0.55 {1.48 [0.55|1.18
Ladybug-1064|0.55 {15.40|0.56 |3.17 [0.55 [355.78|0.55 |4.47 [0.55 (1.23 |0.55(1.03
Ladybug-1118|0.57 {15.40(0.58 |3.68 |0.58 |311.09/0.58 |6.16 |0.57 {1.39 |0.57|1.11
Ladybug-1152|0.56 [{13.70[0.56 [3.07 [0.56 |488.39|0.56 |7.53 |0.56 {1.46 [0.561.10
Ladybug-1197|0.57 {17.30|0.57 |4.13 |0.57 [122.18|0.57 |8.58 [0.57 (1.40 |0.57(1.13
Ladybug-1235(0.56 {20.30(0.58 [3.34 [0.56 |212.62|0.57 |5.89 |0.56 {1.30 |0.56|1.06
Ladybug-1266|0.57 [23.60[0.56 [4.53 [0.56 |342.70|0.56 |8.81 |0.56 {1.44 |0.56|1.18
Ladybug-1340(0.57 |26.20|0.57 |4.54 [2.02 |453.25|0.57 |9.17 |0.57 |1.61 |0.57|1.31
Ladybug-1469|0.56 {26.30|0.57 |3.84 [0.58 [724.13|0.56 |8.30 [0.56 [1.73 |0.56(1.37
Ladybug-1514|0.56 (25.20(0.56 |4.69 |1.18 |459.05|0.56 [8.61 |0.56 [1.59 |0.56|1.34
Ladybug-1587|0.59 |37.50|0.56 |4.82 [1.15 [567.71|0.58 |6.77 |0.56 (2.01 |0.56|1.58
Ladybug-1642|0.58 {36.10|0.56 |3.64 [0.76 [127.00|0.56 |16.12]0.56 [1.73 |0.56(1.43
Ladybug-1695(0.56 [32.30(0.56 |4.24 |0.62 |799.46/0.59 |5.46 |0.56 {1.87 |0.56|1.51
Ladybug-1723|0.56 {34.50|0.57 |3.93 [1.96 [140.69|0.56 |7.05 [0.56 [0.93 |0.56(0.77
Table 2: The results of the Ladybug dataset.

3.3 Large Synthesised Dataset

In the end, we evaluate MegBA on a larger synthetic dataset: SynthesisedData-20000.
This dataset emulates a real-world BA problem we have in production. We use
U(a,b) to denote a uniform distribution with a minimum as ¢ and a maximum
as b. We generate 20,000 cameras on a circle of radius 8 uniformly. We add a uni-
form noise € ~ ¢(0,0.01) to camera rotation and translation, as well as a uniform
noise € ~ U(0,0.5) to the camera intrinsic. We generate 80, 000 points. For each
point, the x, y coordinates are sampled from a uniform distribution /(—0.1,0.1)
and the z coordinate is sampled from a uniform distribution /(—0.03, 0.03). The
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Ceres-16 | DeepLM | g20-16 |Rootba-16|MegBA-1-a|MegBA-1-m

MSE| Time |MSE|Time|MSE|Time|MSE|Time|MSE| Time |MSE| Time

Dubrovnik-16 [0.22 |0.79 |0.22 |1.75 |0.22 |1.72 |0.22 |0.36 |0.22 |1.32 |0.22|1.24

Dubrovnik-88 0.75 |7.69 |0.75 |4.77 |0.75 (21.87|0.75 |11.14]|0.75 {1.89 |0.75|1.63

Dubrovnik-135(0.67 |17.00 |0.67 [5.88 |0.67 |34.21|0.67 |17.99|0.67 |1.52 |0.67|1.50

Dubrovnik-142{0.48 |17.30 |0.48 [6.03 |0.48 |30.11|0.48 |6.74 |0.48 |2.34 |0.48|2.25

Dubrovnik-150{0.43 |15.20 |0.43 [6.27 |0.43 |31.32|0.43 |33.01|0.43 |1.11 |0.43|1.00

Dubrovnik-161{0.41 |16.80 |0.41 (7.61 |0.41 |31.96|0.41 |19.32|0.41 |0.71 |0.41|0.69

Dubrovnik-173|0.41 |15.40 |0.41 (7.38 |0.41 |38.44|0.41 |59.45|0.41 |0.96 |0.41|0.84

Dubrovnik-182{0.45 |13.40 |0.45 (8.11 |0.45 |41.91|0.45 |67.52|0.45 |1.08 |0.45|1.00

Dubrovnik-202{0.43 |21.70 |0.43 [9.40 |0.44 |54.12|0.43 |22.19|0.43 |1.41 |0.43|1.29

Dubrovnik-237|0.42 |25.50 |0.42 [9.95 |0.42 |59.35|0.42 |17.27|0.41 (0.91 |0.41|0.80

Dubrovnik-253|0.38 {29.00 |0.38 {10.82|0.39 (69.64|0.38 |50.39|0.38 {1.45 |0.38|1.24

Dubrovnik-262{0.37 |95.90 |0.37 [11.25|0.37 |64.68|0.37 |52.60(0.37 (2.79 |0.37|2.59

Dubrovnik-273(0.37 |47.90 |0.37 (11.41]|0.37 |63.24|0.36 |60.37|0.37 |1.87 |0.37|1.78

Dubrovnik-287|0.36 {26.80 |0.36 |11.43|0.37 (93.30(0.36 |40.84|0.36 |{2.35 |0.36|2.13

Dubrovnik-308{0.37 |33.80 |0.37 (11.22]|0.37 |91.82|0.37 |37.15|0.37 |3.23 |0.37|2.88

Dubrovnik-356{0.39(116.00{0.40 [6.12 |0.39 [94.39|0.39 |78.16|0.41 |3.64 [0.41 |3.26

Table 3: The results of the Dubrovnik dataset.

x,y coordinates of each point are also added noise € ~ U/(—0.1,0.1). Each point
can be captured by 1,000 cameras, and there are 80,000,000 observations in total.

The evaluation was conducted on a GPU server with 300 GB CPU memory
in total and 32 GB GPU memory for each GPU. RootBA [3] and DeepLM [5]
incur out-of-memory (OOM) errors and fail to complete in this experiment. g2o
cannot return results in a reasonable time (1 hour) and throws an out-of-time
error.

Figure 5 shows the experimental results of MegBA, Ceres, DeepL.M and g2o.
DeepLM and g2o both cannot solve this problem due to memory and compu-
tation limitations. Only MegBA and Ceres can process such a large dataset;
however, MegBA is 20x faster than Ceres, making MegBA the state-of-the-art
BA library for large BA problems (with more than 100s millions of observations).

4 GPU Utilisation

Solving BA problems on a single GPU can suffer from computation and memory
bottlenecks. We are interested in if the computation bottleneck can be resolved
by adding more GPUs. We used nvprof to profile MegBA and calculated its GPU
utilisation. In particular, we plot the time proportion of different computation
in MegBA. We repeat the same experiment with 1, 2, 4 GPUs and report the
results in Figure 6. According to this figure, the profiling results show that using
multiple GPUs incurs only marginal communication cost and the computation
time decreases around 50%.
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Ceres-16 | DeepLM g20-16 Rootba-16 [MegBA-1-a|MegBA-1-m

MSE|Time|MSE|Time|MSE| Time [MSE| Time |MSE| Time |MSE| Time

Venice-52 |0.75 [7.95 (0.75 |4.66 |0.68(17.94 |0.68 |2.39 |0.73 {1.85 [0.73 |1.59

Venice-89 |0.50 |8.47 |0.50 (6.41 |0.50 |27.53 |0.51 [4.51 [0.50 |5.05 |0.50(4.85

Venice-245 |0.84 |31.90|0.87 [5.66 |0.87 |123.27|0.85 {10.47 |0.84 |3.26 |0.84|3.06

Venice-427 |0.63 |58.20(0.63 [15.46|0.62|115.24|0.63 [43.12 |0.63 |5.17 |0.63 |5.17

Venice-744 |0.51 |109.0{0.51 (27.79|0.51 |659.83|0.51 [43.60 |0.50 {6.26 |0.50|6.04

Venice-951 |0.44 |84.30|F F 0.57 |793.15/0.45 |59.45 |0.45 [13.80 |0.45 [13.64

Venice-1102|0.40 |146.0{0.39 [32.80|0.56 |585.86/0.40 [94.13 [0.39 {14.42 |0.39|13.24

Venice-1158|0.42 |33.10(0.43 [{12.07]|0.48 [581.79/0.36 |51.18 |0.36 |6.74 |0.36|6.32

Venice-1184|0.77 |30.10{0.35 [36.32]|0.46 |600.57|0.35 [38.16 [0.34 |36.24 |0.34|28.52

Venice-1238|0.35 |71.40(0.34 [{13.20|0.46 [531.25|0.34 |{90.36 |0.34 |8.36 |0.34|7.75

Venice-1288|0.33 |153.0{0.33 (19.79]0.45 |630.90|0.33 [95.45 |0.33 |8.36 |0.33|7.64

Venice-1350(0.34 |52.30(0.34 [{10.47|0.44 |551.41|0.34 |53.85 |0.33 |6.79 |0.33|6.43

Venice-1408|0.35 [76.50(0.35 |10.72|0.47 |687.48|0.35 |47.00 |0.34 |5.66 |0.34|5.34

Venice-1425|0.34 |153.0|0.34 {10.80|0.44 (635.88|0.34 |{183.28|0.34 |5.67 |0.34|5.28

Venice-1473|0.33 |110.0|0.33 [43.24|0.42 |571.33|0.33 |61.21 |0.33 |7.05 |0.33|6.68

Venice-1490(0.33 [66.80(0.33 |14.25|0.33 |571.17|0.33 |123.52|0.32 |5.64 |0.32|5.32

Venice-1521|0.33 |75.60(0.33 [{10.98|0.33 (666.63|0.33 {93.50 |0.32 |7.47 |0.32]6.78

Venice-1544|0.33 |173.0|0.33 [26.59|0.42 (653.50|0.33 {132.69|0.32 |5.71 |0.32|5.33

Venice-1638|0.57 |75.40(0.58 |30.04|0.56 1015 |0.57 |54.58 |0.58 {17.66 |0.58 |16.60

Venice-1666|0.48 |74.00(0.48 |23.48|0.45 |1033 |0.43|85.30 |0.44 {10.75 |0.44 |10.08

Venice-1672|0.38 |260.0(0.38 [33.49|0.38 |991.73|0.37(123.52]0.40 {12.20 |0.40 {11.06

Venice-1681|0.37 |48.40(0.34 [46.98|0.34 (1067 |0.34 |{118.23|0.34 |9.16 |0.34|8.38

Venice-1682(0.34 [164.0(0.33 |38.92|0.34 |956.35|0.33 |274.34|0.33 |{17.39 |0.33|15.78

Venice-1684|0.34 |207.0{|0.33 [43.94|0.33 |1658 |0.33 |202.10{0.33 |{11.78 |0.33|11.25

Venice-1695|0.37 |53.40(0.34 (44.99|0.34 |1648 |0.33|292.24/0.34 {16.16 |0.34 [14.48

Venice-1696|0.38 [43.00(0.33 |47.04|0.34 |1335 |0.33|243.68|0.34 |7.43 |0.34 |7.06

Venice-1706|0.34 |234.0(|0.34 (38.17|0.33 1845 |0.34 [196.48]0.34 {19.72 |0.34 |18.59

Venice-1776|0.33 |192.0|0.33 [46.69|0.35 |1147 |0.34 [62.10 [0.33 {10.56 |0.33|10.02

Venice-1778|0.33 [319.0(0.33 |24.44|0.34 |890.55|0.34 |73.94 |0.33 {11.96 |0.33|10.92

Table 4: The results of the Venice dataset. F stands for failed.

Ceres-16 | DeepLM g20-16 Rootba-16 |MegBA-1-a|MegBA-1-m
MSE|Time|MSE|Time|MSE| Time [MSE| Time |MSE| Time |MSE| Time
Final-93 [0.51 |4.10 |0.51 |1.56 [0.51 |6.22 |0.51 [1.84 |0.51 |0.78 |0.51|0.67
Final-394 |0.56 {30.10(0.56 [5.10 |0.56 {101.72|0.56 {20.07 |0.56 [1.10 |0.56|0.92
Final-871 [0.62 [115.0]0.62 |26.12]0.62 |481.22|0.62 |76.65 |0.62 |8.20 |0.62|7.75
Final-961 [0.94 [44.30(0.94 |{12.82]0.94 |710.55|0.94 [348.11|0.94 |3.32 |0.94|2.85
Final-1936|0.89 {106.0]{0.89 [17.03]0.89 |789.57|0.89 [595.28(0.89 [7.03 |0.89|6.67
Final-3068{1.09 [31.60(1.03 |5.49 [1.13 {26203 |0.98 |72.27 |1.01 |2.82 |1.01|2.40
Final-4585(0.57 {417.0/0.56 |66.13|0.56 |23221 |0.56 |373.30|0.57 |22.22 |0.57 |{15.60
Table 5: The results of the Final dataset.
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PBA (FP32)[MegBA-1-m(FP32)
MSE| Time |MSE Time
Trafalgar-257 | 0.85 | 0.57 |0.44 0.11
Ladybug-1695|34.13| 0.37 (1.33 0.32
Dubrovnik-287( 0.84 | 1.22 |0.38 0.10
Venice-89 0.86 | 1.32 |0.51 0.28
Final-4585 | 1.87 | 4.96 |0.57 3.13
Table 6: We evaluate PBA with the BAL dataset. To make a fair comparison,
we compare PBA against the FP32 MegBA. Both PBA and FP32 MegBA suffer
from numerical instability issues in some datasets. In addition, PBA uses texture
memory, it failed to solve large-scale BA problems due to memory limitations. We
chose the largest datasets that can be solved successfully by PBA to evaluate
its performance. The result shows that MegBA outperforms PBA by a large
margin, with maximum 12.5 times speed up while achieving a lower MSE.

Dataset #Points|#Observations
Alamo-577 140080 (816891
Ellis Island-233 9210 20500

Gendarmenmarkt-704 76964 268747
Madrid Metropolis-347 44479 1195660
Montreal Notre Dame-459(151876 |811757

Notre Dame-548 224153 [1172145
NYC Library-334 54757 |211614
Piazza del Popolo-336 29731 |150161
Piccadilly-2292 184475 |798085
Roman Forum-1067 223844 (1031760
Tower of London-484 126648 |596690
Trafalgar-5052 327920 (1266102
Union Square-816 26430 (90668
Vienna Cathedral-846 154394 1495940
Yorkminster-429 100426 |376980

Table 7: The statistics of the datasets in 1DSfM.

5 Reconstruction Plots

Finally, we show the visualisation results of MegBA. Specifically, we show the
landmark point clouds (i.e. black dots) with cameras (i.e. red frames) for each
dataset. The point clouds are rendered by COLMAP [6] [7].
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Fig. 5: Experimental results of the synthesised dataset. DeepLM throws an OOM
error after the 6th step. g2o is significantly slower than all other baselines and
we terminate its execution after 6 steps.

I Build linear system B spmv [ Ncclallreduce Others
25%
ZGPUS _ -
4GPUS _ -

Fig.6: The visualisation of the profiling result returned by nvprof. We use the
dataset Venice-1778. SpMV denotes sparse matrix-vector multiplication. Using
2 GPUs, the all-reduce communication accounts for 2.5%, while the overall time
reduces 60.6% compared with the result using 1 GPU. Using 4 GPUs, the all-
reduce communication accounts for 7.8%, while the overall time reduces 69.8%
compared with the result using 2 GPUs.
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