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In this document we provide more details and analysis that were not included
in the main paper due to space constraints. More specifically,

1. we discuss the results of the supplementary video (Section 1),
2. we include details about the captured/released data (Section 2),
3. we give statistics on camera/human distributions for our scenes (Section 3),
4. we discuss gaze estimation and evaluation (Section 4),
5. we include more qualitative results (Section 5),
6. we provide more details about the SfM optimization (Section 6),
7. we provide more details about NeRF-W training (Section 7),
8. we discuss the Amazon Mechanical Turk (AMT) evaluation (Section 8),
9. we present more experiments on the quality of estimated cameras (Section 9),
10. we discuss the importance of repetition in the data (Section 10),
11. we present experiments on temporal human reconstruction (Section 11),
12. we discuss our experimental evaluation (Section 12), and finally,
13. we include more details about the optimization procedures (Section 13).

We also encourage the readers to watch our supplementary video.

1 Results video

The included supplementary video provides extensive qualitative results from our
3D reconstruction of humans and scenes in TV show environments. We include
results for a) our camera and structure recovery (Sections 3.1 and 3.2 of the main
manuscript), b) our calibrated multi-shot human reconstruction (Section 3.3 of
the main manuscript), and c) our contextual monocular human reconstruction
(Section 3.4 of the main manuscript).

Moreover, although we follow the SMPLify paradigm [1] for these contextual
results, as we discuss in the main manuscript (Section 3.4), we believe that our
context can also inform other human reconstruction methods. To demonstrate
this, we also provide results when using HuMoR [18] with our context, which
leads to contextual temporal reconstructions. For this, we use the context we
have estimated to inform the HuMoR optimization. This helps bypass some of the
HuMoR assumptions (e.g., static camera, fixed focal length), and demonstrates
realistic contextual reconstructions. We hope that this will motivate other human
reconstruction approaches to be applied on this type of data, and benefit from
our context.
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2 Data

For the data extraction, we use the o�cial DVDs/BluRays for each TV show and
for each season we study, we extract all the relevant frames. Although releasing
the raw frames might not be possible due to copyright issues, we will release
our frame extraction pipeline. Moreover, upon publication, we will release the
results of our workflow, i.e., a) SfM reconstructions, so that follow up work
can register new images to the same coordinate frame, b) NeRF-W models, for
view synthesis and structure estimation, c) our 3D human reconstructions, d)
non-image information, i.e., annotations and e) code for our approach.

3 Camera and human distribution analysis

In Section 4.5 of the main manuscript, we provided an analysis regarding the
camera FoV/location distribution and the actors location distribution for the
show “Friends”. In this section, we extend this analysis by presenting the corre-
sponding data for all the environments and TV shows that we study. Specifically,
we present the statistics on image field of view distribution, camera location dis-
tributions, and people location distributions. The TV shows and specific loca-
tions/rooms investigated are shown in Table 1. The table is ordered from oldest
to newest TV show, and all of the images at shot boundaries are considered
for analysis in this section. In Figures 1, 2 and 3, we include the field of view
(left) and spatial camera location distributions (middle) for all of these cameras
at shot changes. Notice the long tail distribution where very few images have a
large field of view. This is why it is important to consider many episodes, or in
our case, a full season, to get a reliable reconstruction of the structure. On the
right, we additionally show the spatial distribution of human locations. We be-
lieve these statistics can be interesting for additional observations/conclusions.
For example, older TV shows tend to have more images with larger field of view,
whereas for recent TV shows, the images with large field of view tend to be more

TV show Environment
Season

number

Number of images

at shot boundaries

Number of images

for training NeRF-W

Seinfeld Jerry’s apartment 9 4234 156

Friends Monica’s apartment 8 4196 167

Frasier Crane’s apartment 11 5287 165

Everybody Loves Raymond Ray’s apartment 9 5493 171

How I Met Your Mother Ted’s apartment 6 2310 121

Two And A Half Men Alan’s kitchen 10 3892 153

The Big Bang Theory Sheldon’s apartment 12 3808 165

Table 1. TV show environments and image information. We reconstruct seven
TV show environments. For each environment, we consider an entire season of data.
Each season contains many images, so we recover the camera parameters with SfM for
the frames at the shot boundaries (fourth column). We cluster and filter these images
into a smaller subset, which is used to train NeRF-W (fifth column).
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Fig. 1. Cameras and person location analysis (Part 1/3). Left: Camera field
of view distribution. Notice the long tail distribution, where most images have small
FoV–meaning the cameras are often zoomed in on the actors of interest. Middle: The
camera pose distribution. Right: The person location distribution. Notice how some
parts of the rooms are rarely traversed by people. These plots help to convey the data
we are working with, in addition to providing insight into how TV shows are filmed
with respect to both the camera and actor locations.
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Fig. 2. Cameras and person location analysis (Part 2/3). Left: Camera field
of view distribution. Notice the long tail distribution, where most images have small
FoV–meaning the cameras are often zoomed in on the actors of interest. Middle: The
camera pose distribution. Right: The person location distribution. Notice how some
parts of the rooms are rarely traversed by people. These plots help to convey the data
we are working with, in addition to providing insight into how TV shows are filmed
with respect to both the camera and actor locations.
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Fig. 3. Cameras and person location analysis (Part 3/3). Left: Camera field
of view distribution. Notice the long tail distribution, where most images have small
FoV–meaning the cameras are often zoomed in on the actors of interest. Middle: The
camera pose distribution. Right: The person location distribution. Notice how some
parts of the rooms are rarely traversed by people. These plots help to convey the data
we are working with, in addition to providing insight into how TV shows are filmed
with respect to both the camera and actor locations.
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sparse. Moreover, some of the rooms are only occupied in certain parts of the
layout, indicating the preference of the directors when filming the shows.

4 Gaze following

To estimate gaze given our 3D human reconstructions, we use a few selected
vertices—one on the back of the head, and two on the eyes. Then, from a given
mesh, the gaze direction is estimated as the ray passing through the center of
the eyes and the vertex on the back of the head.

For gaze evaluation, we use the setting of Recasens et al. [17], which is the
most relevant to our approach. We consider a person in the frame before the
shot change, and we want to estimate the target of the person’s gaze in the
frame after the shot change. This requires estimating both the gaze direction
of the person and the geometric transformation between the two frames. To
simplify evaluation, because of the di↵erent formats of the two gazes (we return
a full 3D direction, while [17] returns only a point), we compare gaze directions
on the image plane (for the second image). As shown in the third image of
Figure 4, we estimate a) the ground truth gaze direction (green line) based on
the annotated gaze target, b) our estimated gaze direction (red line) based on the
human reconstruction and c) the gaze direction for [17] (blue line) based on their
estimated gaze target. Then, we estimate the error between the estimated and
ground truth gaze direction, by computing the angular error between the two
on the image plane (angle ✓). Finally, we report results based on the percentage
of correctly estimated gaze directions (PCGD), assuming a threshold ↵, where
here ↵ = 20°. In Figure 5 we provide more qualitative comparisons.

As we discuss in the main manuscript, the main two advantages we have
compared to [17] is that a) we rely on the body of the person for detection (and
reconstruction) instead of face detection as [17] does, which allows us to get a
reasonable gaze estimate even for back or side facing people and b) we have
a more explicit modeling of the 3D geometric relation between the two views.
Further improvements for our results can be achieved by explicit modeling of
the eye direction (e.g., by using the SMPL-X model [14] which models the eyes),
and by fusing the geometric gaze direction with image-based saliency methods
for gaze target detection, similar to [17].

5 Additional qualitative evaluation

Figure 6 extends Figure 8 of the main manuscript, providing further examples
that demonstrate the e↵ect of the di↵erent factors in the contextual monocu-
lar reconstruction. In general, we observe that camera information (i.e., focal
length), is the most important cue, and helps the optimization to put the person
in a reasonable location. This is important, because bad estimates for the focal
length can significantly over/under-estimate the translation of the person in the
space. Having a good estimate for the body shape helps to reduce the ambiguity
in the scale during the reconstruction and tends to move the person in a more



Supplementary for “Reconstructing 3D Humans in TV Shows” 7

1

N

NX

i

(✓i  ↵)

Gaze from 
SMPL mesh

Image before shot 
change

Image before shot 
change with gaze

Image after shot change 
with gaze

Percentage of Correct 
Gaze Direction (PCGD)

Fig. 4. Gaze following. We use the multi-shot reconstruction for the person on the
shot boundary to estimate the gaze direction. This is defined by the ray passing through
the center of the eyes and a specified vertex on the back of the head (first column).
We visualize the frame before the shot change and the person reconstruction (second
and third column). Given the relative pose between the two frames, we transform the
gaze direction to the frame after the shot change (fourth column). The evaluation is
done by comparing gaze directions on the image plane of the second frame. Using the
annotated gaze target (green point) and the gaze target from [17] (blue point), we
compute the corresponding gaze directions. We then compute the angular errors for
each approach ✓oursi and ✓baselinei . The reported error is based on the percentage of
correct gaze directions for a specific threshold ↵, where here, ↵ = 20°.

accurate position. Finally, using the static structure can help to avoid impossible
configurations, i.e., penetrating the walls (e.g., moving out of the wall in rows
1 & 3, column 3 in Figure 6), the floor, the furniture (e.g., moving out of the
couch in rows 2 & 4, column 3 in Figure 6), or other surfaces. This helps fixing
the final details when it comes to the location of the person.

6 Details on SfM optimization

Our workflow for estimating Structure-from-Motion on the environments we
study is described in Section 3.1 of the main manuscript. Here we provide some
more details of the SfM optimization. Specifically, we observed that COLMAP [19]
can be sensitive to the initialization, so we perform the optimization in stages.
After rejecting pixels that belong to humans (based on the output of Mask R-
CNN [6]), we sort the images based on the number of non-human pixels. This
sorting allows us to prioritize images with larger visibility of the background
(i.e., less zoomed in views), which will hopefully help with the stability during
the SfM optimization. After sorting the images, we perform the optimization in
stages. In the first stage, we start from scratch and use the 25% of images with
more valid (non-human) pixels. In the second stage, we initialize the optimiza-
tion with the output registration from the first stage and use the 50% of images
with more valid pixels. In the third stage, we initialize the optimization with the
output registration from the second stage and optimize over all images.

7 Details on NeRF-W training

In this section, we provide additional details for how we train a NeRF-W [12]
network for the seven TV show environments considered.
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Fig. 5. Qualitative results on gaze following. We present examples for the exper-
iment on gaze following. For each example, in the first column, we present the image
before the shot change. In the second column, we present our reconstruction and our
gaze direction for the same image. In the third column, we present the gaze direction
visualized on the image across the shot change. We include the ground truth (green),
our result (red) and the baseline [17] (blue).
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Fig. 6. Results for contextual monocular reconstruction. Here we show more
results like Figure 8 of the paper. Recall that we ablate the basic components of the
contextual monocular reconstruction to demonstrate their e↵ects. Our method uses all
three forms of context. Without our estimated camera intrinsics (left) and/or without
body shape (middle), the person is incorrectly placed in the scene due to scale ambi-
guity. Using structure (right) avoids interpenetration with the environment.
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Implementation details. We use the NeRF-W implementation from [15] with
slight modifications. We train with 64 coarse samples and 64 fine samples per
ray during training. Instead of defining a near and far plane per camera, we
bound the ray samples by using a bounding box. More specifically, we create a
3D bounding box around the point clouds recovered by COLMAP [19] for each
of the locations. At both training and test time, we compute the intersections of
the ray with the box and only sample points within the box. We find that this
modification helps to improve rendering quality, as samples are not wastefully
sampled outside the scene. It also helps to avoid artifacts if rendering from
camera locations outside the training set distribution. The main artifacts that
remain happen for regions of the locations that are not observed, or are observed
very rarely (e.g., see supplementary video).

Choosing informative images. Each TV show environment has a few thou-
sand images at the shot boundaries (Table 1) which COLMAP recovers the
extrinsics and intrinsics for. The most straightforward way to train NeRF-W
would be to use all of these images. However, we found that many of these im-
ages are not very informative for NeRF-W, since the majority of them have a
small field-of-view as shown in Figures 1-3. Furthermore, because we consider
images from an entire season of a TV show, many of the images have similar
camera parameters and are thus redundant to the NeRF-W training process. In
order to optimize for informative samples during the NeRF-W training process,
we first discard images with a small field of view (smaller than ⇠15°) and then
use a simple clustering method to optimize for large coverage of the scene with
few images. We create a Plücker coordinate from each image by considering the
camera origin and the ray going through the center pixel. We then use hierar-
chical clustering to create 200 clusters per scene, like those shown in Figure 7.
We discard any clusters of size one because images in these clusters are likely
to be outliers. Finally, from each cluster, we keep only the image with the least
number of pixels detected as human from Mask R-CNN, to optimize for useful
rays. Eventually, we are left with the number of images per TV show shown in
Table 1 in the far right column.

Comparison to training with all images. As a simple comparison to demon-
strate the e↵ect of clustering, we show some qualitative results of training with
all images compared to training with our filtered images in Figure 8. For the
same number of rays seen during training, we observe that using the selected
images produces less blurry renderings for RGB and more faithful structure for
depth. We note that this comparison is informative in that training is more ef-
ficient and leads to cleaner results, but further analysis in this direction could
be explored in the future. For example, one could investigate ways to detect
and disregard images with significant transient e↵ects, with di↵erences in the
generally static structure (e.g., temporarily moved furniture, open doors), etc.
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Cameras before clustering Cameras in clusters NeRF-W training images

Fig. 7. Clustering and selecting images to train NeRF-W. We cluster the cam-
eras recovered by SfM into clusters based on Plücker coordinates to find a smaller
number of informative, diverse training images for training NeRF-W. (Top left) we
show 10% of the COLMAP cameras and their viewing directions for Sheldon’s apart-
ment in The Big Bang Theory. (Middle and bottom) we show some of the 200 clusters
that our pipeline creates. The colors indicate association with a particular cluster. (Top
right) we show the 165 images after discarding clusters of size one and only keeping
one informative image per cluster.
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Training with all images
Camera location

Training with our selected images

Fig. 8. NeRF-W with di↵erent training images. Here we show some static
NeRF-W renderings on Sheldon’s apartment of The Big Bang Theory. On the left,
we show results for a model trained without any clustering or filtering. This model
trains with the 3808 images at the shot boundaries. On the right, we show results for a
model trained with our clustering and filtering procedure where 165 images are chosen.
The far left images indicate where in the scene the rendering is occurring. We show
both RGB and depth renderings, and we see that the model trained with our view
selection has more desirable results.
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8 Details on Amazon Mechanical Turk (AMT) evaluation

Code. Our code for the AMT evaluation will be released so others can run
similar system evaluation experiments.

Evaluation data. The AMT task is used to qualitatively evaluate the e↵ect of
di↵erent calibration information in multi-shot human reconstruction. We provide
the results in Table 1 of the main manuscript, where our proposed calibrated
multi-shot version is at the bottom row. The AMT task consists of a force-choice
question for 50 humans per each of our seven TV shows.

Question details. For each human reconstruction, we generate a 10 second
video with a person-centric camera path that looks like a “bowtie” in order to
show the human from multiple angles to expose any errors (e.g., the human
intersecting a couch, the human being in the wrong location in the scene, etc.).
The videos are similar to those shown in the Sup. Mat., video but with custom
per-person camera paths. For each question asked on AMT, we present the shot
change images and bounding boxes overlayed on the person of interest. Below
this, we show the two videos side-by-side with random ordering, and the user
must choose the better video according to the question, “Which 3D visualization
corresponds to where the person is in the room?”.

Quality control. Each AMT task consists of 20 side-by-side video comparisons,
but we hide additional videos in the task for consistency quality control. More
specifically, we hide 3 consistency questions in the task. We also swap the order
of the 3 hidden videos (i.e., we change which video is shown first) and randomly
place these questions in the task too. This results in 26 consecutive questions to-
tal per task. The annotators must respond consistently on all 3 hidden questions
and their reversed versions in order to submit; otherwise, they will be notified
of low consistency and their responses will be discarded.

9 Quality of estimated cameras

Given the nature of the TV show data (legacy content captured years or decades
ago), it is not possible to get accurate 3D ground truth data regarding the cam-
era information. Although we cannot explicitly evaluate the camera accuracy,
we consider our results (e.g., successful re-ID after the shot change, good gaze
estimation) as an implicit indication of the reliable camera estimation.

To further validate the correctness of our recovered cameras from SfM, we
perform an experiment by adding noise to the recovered camera parameters and
reexamining the re-ID F1 scores (pointing to Table 3 of the main manuscript).
More specifically, we perturb camera poses with random rotation and translation.
We use a parameter n, and for various values of n, we apply a random rotation of
no and a random translation with magnitude n% of the scene size (where scenes
are roughly 10m). We then measure the e↵ect of this noise on re-ID results after
the calibrated multi-shot human reconstruction. As shown in Table 2, even small
perturbations (e.g., for n = 1, we have a rotation of 1o and a translation < 10cm)
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No noise n=1 n=2 n=5 n=10

Re-ID F1
0.91 0.79 0.64 0.42 0.33

on TV shows

MPJPE (mm)
65.8 72.9 90.3 158.0 269.3

on Human3.6M [8]

PA-MPJPE (mm)
47.1 49.8 56.7 83.7 123.0

on Human3.6M [8]

Table 2. The e↵ect of adding noise to cameras on the calibrated multi-shot
optimization. We add noise to the camera rotation and translation (di↵erent n values
as described in text) and measure the e↵ect on re-ID F1 scores for TV shows (top row)
and human body pose accuracy, measured in MPJPE and PA-MPJPE (in mm) on
Human3.6M (middle and bottom row).

immediately deteriorate performance. After n = 2, the re-ID F1 performance is
worse than the image-based baselines from Table 3 of the main manuscript. This
suggests that the originally recovered SfM cameras are high quality, otherwise
they would not achieve competitive results for re-ID F1 scores.

We further examine the importance of accurate camera information for multi-
shot human reconstruction, by using the setting of the Human3.6M dataset [8],
where accurate 3D ground truth is available, and we can estimate the e↵ect
on pose estimation through the Mean Per Joint Position Error (MPJPE) and
Procrustes Aligned MPJPE (PA-MPJPE) metrics [10,24]. For this evaluation,
we synthesize shot changes by using consecutive frames in time, captured from
di↵erent viewpoints. We use all actions from users S9 and S11, and we employ
2D keypoint detections from OpenPose [3] for the optimization. As we can see
from Table 2, even small noise values can immediately a↵ect the accuracy of the
3D pose result. This is further evidence that high quality cameras are important
for accurate pose estimation from calibrated multi-shot reconstruction.

10 Importance of repetition in the data

The repetition in the data, i.e., using images across a whole season of a TV show,
is the key that allows us to recover the rich 3D context – good camera intrinsics
and extrinsics from SfM, scene geometry and relative human scale. To highlight
this even more, we perform an experiment where we ignore this repetition over
the whole range of a season and only consider short sequences (⇠5 secs) before
and after each shot change for the SfM computation. This independent treat-
ment of each sequence around the shot change leads to consistent failures in
the COLMAP reconstruction. More specifically, for the shot changes included
in our test set (Section 4 of main manuscript), for 45% of the sequences, the
reconstruction fails completely, for 42% of the sequences, only a partial recon-
struction is recovered (i.e., it was not possible to register some cameras), while
only for 13% of the sequences, all cameras are registered in the same coordinate
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frame. Given these common failures, without the data repetition, we would be
unable to continue with the computation of scene structure & relative human
scale, and extract the rich 3D context, which is crucial for our results.

11 E↵ect of context on temporal reconstruction

In the Supplementary Video, we provide qualitative results for temporal hu-
man reconstruction with and without the use of our recovered 3D context. For
this demonstration, we employ the HuMoR [18] method for the temporal re-
construction. To better highlight this e↵ect, we also present quantitative results
using the cross-shot evaluation we employed for the contextual reconstruction.
For this experiment, we employ PHALP [16] for tracking people in monocular
sequences. For the most confident tracklets, we reconstruct their motions us-
ing HuMoR [18]. When we use HuMoR out of the box, the reconstruction only
achieves a cross-shot PCK of 15.1%. However, when we use our estimated cam-
eras, the performance on the cross-shot PCK metric improves to 61%. These
results are not directly comparable with the numbers reported in Table 2 of the
main manuscript, since some humans on the shot boundary might not be tracked
successfully by PHALP, meaning that HuMoR can only operate on a subset of
the test set. However, the improvement in performance for HuMoR is further
quantitative indication of the e↵ect of using our context for other methods too.

12 Experimental details

Data. For the experimental evaluation, we use frames captured at the shot
boundaries. These frames correspond to sequential time instances, which means
very similar 3D structure for the humans and the environment, while also being
captured from di↵erent viewpoints, thus providing complementary information.
We curate a set of 50 person instances for each of the seven TV shows. Each
person is present on both the frame before and after the shot boundary, which
translates to 700 appearances overall. This set of people and the corresponding
frames are equipped with curated information for a) person identity, i.e., infor-
mation whether a person appears both before and after the shot change, b) 2D
keypoints for the pose, c) location of the person (where we use the pelvis to
specify the location of the person) in the scene from a top-down perspective,
and d) gaze target on the image across the shot change. Identity is used in the
person re-identification experiment, the keypoints are used in the contextual
monocular reconstruction experiment, top-down location in the scene is used in
the calibrated multi-shot human reconstruction experiments, while gaze target
is used for the gaze following experiment.

Re-ID. For the person re-identification, we compare results from our calibrated
multi-shot optimization with two types of baselines, one relying only on ge-
ometry, and one relying only on appearance (as always, further fusion of the
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individual cues is feasible). For each baseline and our method, we compute a�n-
ity/matching costs, and then we do the matching using the Hungarian algorithm.
We want to note that given a larger temporal window, one can use stronger
baselines by clustering the identities [2,21], or building actor-specific models [20].
However, our goal is to highlight that in the simplest form of the problem, where
only two frames are considered, using the geometry from registered cameras plus
anthropometric information can lead to strong performance. Further improve-
ments can be expected by fusing geometric & anthropometric information with
image-based appearance information. Finally, it is important to note that this is
also a very challenging setting, since we might only have very partial information
for each person, e.g., part of their back, which is challenging for methods that
rely on face recognition.

Contextual monocular reconstruction. For the contextual monocular re-
construction results, we evaluate the e↵ect of the context in monocular recon-
struction. We use di↵erent baselines in the base setting without the use of context
(Table 2 of the main manuscript) and then we show the benefits of context on
an optimization similar to SMPLify [1]. E↵ectively, we reconstruct the person
given one image, and then we project the 3D person on the image across the
shot boundary, computing PCK on that image plane. This can be considered a
proxy for 3D pose evaluation, since we evaluate the pose from a novel viewpoint.
However, the focus of this evaluation is more about verifying the validity of the
reconstruction in a holistic manner, and less about focusing on the detailed 3D
pose. For a single-frame reconstruction to project well across the shot-boundary,
we should have consistent cameras for the two viewpoints, a valid estimate of
the body shape of the person from a neighboring shot change and a good estima-
tion for structure that will be consistent with the human poses. In other words,
this metric is more about holistic reconstruction, i.e., recovering a body that is
consistent with the accumulated context and less about capturing the nuances
of the 3D human pose. If mm-level of accuracy is desired, one can use ground
truth from MoCap, e.g. [5], but since MoCap is not possible to obtain for our
in-the-wild TV setting, we believe that cross-shot PCK gives a good indication
of the overall consistency of the result with respect to the context of the scene.

Calibrated multi-shot reconstruction. For the calibrated multi-shot recon-
struction, we use the system evaluation by AMT workers to study the perfor-
mance of our method. In presence of perfect cameras, we can expect very strong
results from a calibrated multi-shot baseline, since this is very close to the cal-
ibrated multi-view setting, which has been considered in many occasions with
ground truth cameras [4,7,9]. However, their setting is di↵erent, since we only
rely on estimates for the camera intrinsics and extrinsics, instead of using ground
truth values. Since we do not have access to accurate ground truth poses, we use
this evaluation from AMT workers to assess the accuracy of the positioning of
the people in the 3D space. This aspect is also evaluated quantitatively through
the use of our pelvis position annotations from a top-down perspective in the 3D
scene. To report the average distance errors with respect to these positions (Ta-
ble 1 of the main manuscript), we rescale the scenes to a “common”/“average”
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scale, since the SfM optimization cannot recover the absolute metric scale of
the scene. Specifically, we consider all reconstructed humans from the calibrated
multi-shot reconstruction and find their average height hs for each scene s. We
then use the overall average person height hm, based on the SMPL model, and
rescale the scene size by hm

hs
. This e↵ectively establishes that the people have

roughly the same average height across all scenes, i.e., we have a roughly “com-
mon” scale, even if we do not know the exact metric scale of each scene. We
highlight that the position information we use for evaluation is important for
many of the relevant works that study TV show data, e.g., for a↵ordance learn-
ing [23], human interactions [13] or activity forecasting [22]. For example, is the
person sitting on the couch, or on the floor (see Figure 6 first row, first column),
is the person inside or outside a room (see Figure 6 first row, second column)?

13 Optimization details

For the optimization, in the calibrated multi-shot setting, or the contextual
single-frame setting, we start from an estimate of a regression network, similar
to SPIN [11], but trained with cropping augmentation. After that, we follow
with one optimization step for the single-frame reconstruction, or two for the
calibrated multi-shot. In the case of multi-shot, in the first step we optimize over
all parameters, and then optimize only over translation and body shape. The
prior terms Epriors include the two body pose priors and the body shape prior
from SMPLify [1], while the weights for the prior terms have the same values
with [1]. In the multi-shot setting, we trust Eglob a lot, so it incurs a heavy
penalty with a weight of 1e+6. In the contextual monocular setting, Estructure

has a weight comparable to the other terms, 0.01.
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