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Abstract. Pushing back the frontiers of collaborative robots in indus-
trial environments, we propose a new Separable-Sparse Graph Convolu-
tional Network (SeS-GCN) for pose forecasting. For the first time, SeS-
GCN bottlenecks the interaction of the spatial, temporal and channel-
wise dimensions in GCNs, and it learns sparse adjacency matrices by a
teacher-student framework. Compared to the state-of-the-art, it only uses
1.72% of the parameters and it is ∼4 times faster, while still performing
comparably in forecasting accuracy on Human3.6M at 1 second in the fu-
ture, which enables cobots to be aware of human operators. As a second
contribution, we present a new benchmark of Cobots and Humans in In-
dustrial COllaboration (CHICO). CHICO includes multi-view videos, 3D
poses and trajectories of 20 human operators and cobots, engaging in 7
realistic industrial actions. Additionally, it reports 226 genuine collisions,
taking place during the human-cobot interaction. We test SeS-GCN on
CHICO for two important perception tasks in robotics: human pose fore-
casting, where it reaches an average error of 85.3 mm (MPJPE) at 1 sec
in the future with a run time of 2.3 msec, and collision detection, by
comparing the forecasted human motion with the known cobot motion,
obtaining an F1-score of 0.64.

Keywords: Human Pose Forecasting, Graph Convolutional Networks,
Human-Robot Collaboration in Industry.

1 Introduction

Collaborative robots (cobots) and modern Human Robot Collaboration (HRC)
depart from the traditional separation of functions of industrial robots [36],
because of the shared workspace [32]. Additionally cobots and humans perform
actions concurrently and they will therefore physically engage in contact. While
there is a clear advantage in increased productivity [62] (improved by as much
as 85% [63]) due to the minimization of idle times, there are challenges in the
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Fig. 1. A collision example from our CHICO dataset. On the top row some frames of
the Lightweight pick and place action captured by one of the three cameras. On the
bottom row, operator + robot skeletons. The forecasting takes an observation sequence
(in yellow, here pictured for the right wrist only), and performs a prediction (cyan)
which is compared with the ground truth (green). On frame 395 is it easy to see the
robot hitting the operator, which is retracting, as it is evident in frame 421. See how the
predictions by SeS-GCN follow closely the GT, except during the collision. At collision
time, due to the impact, the abrupt change of the arm motion produces uncertain
predictions, as it shows from the very irregular predicted trajectory.

workplace safety [24]: it is not about whether there will be contact, but rather
about understanding its consequences [53].

The pioneering work of Shah et al. [63] has already shown that, in order
to seamlessly and efficiently interact with human co-workers, cobots need to
abide by two collaborative principles: (1) Making decisions on-the-fly, and (2)
Considering the consequences of their decision on their teammates. The first
calls for promptly and accurately detecting the human motion in the workspace.
The second principle implies that cobots need to anticipate pose trajectories of
their human co-workers and predict future collisions.

Motivated by these problems, the first contribution of our work is a novel
Separable-Sparse Graph Convolutional Neural Network (SeS-GCN) for human
pose forecasting. Pose forecasting requires understanding of the complex spatio-
temporal joint dynamics of the human body and recent trends have highlighted
the promises of modelling body kinematics within a single GCN framework
[15,17,42,44,50,69,74]. We have designed SeS-GCN with performance and effi-
ciency in mind, by bringing together, for the first time, three main modelling
principles: depthwise-separable graph convolutions [37], space-time separable
graph adjacency matrices [65], and sparse graph adjacency matrices [64]. In SeS-
GCN, separable stands for limiting the interplay of joints with others (space),
at different frames (time) and per channel (depth-wise). Within the GCN, dif-
ferent channels, frames and joints still interact by means of multi-hop messages
For the first time, sparsity is achieved by a teacher-student framework. The re-
duced interaction and sparsity results in comparable or less parameters than all
GCN-based baselines [37,65,64], while improving performance by at least 2.7%.
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Compared to the state-of-the-art (SoA) [49], SeS-GCN is lightweight, only using
1.72% of its parameters, it is ∼4 times faster, while remaining competitive with
just 1.5% larger error on Human 3.6M [31] when predicting 1 sec in the future.
The model is described in detail in Sec. 3, experiments and ablation studies are
illustrated in Sec. 5.

We also introduce the very first benchmark of Cobots and Humans in Indus-
trial COllaboration (CHICO, an excerpt in Fig. 1). CHICO includes multi-view
videos, 3D poses and trajectories of the joints of 20 human operators, in close col-
laboration with a robotic arm KUKA LBR iiwa within a shared workspace. The
dataset features 7 realistic industrial actions, taken at a real industrial assembly
line with a marker-less setup. The goal of CHICO is to endow cobots with per-
ceptive awareness to enable human-cobot collaboration with contact. Towards
this frontier, CHICO proposes to benchmark two key tasks: human pose forecast-
ing and collision detection. Cobots currently detect collisions by mechanical-only
events (transmission of contact wrenches, control torques, sensitive skins). This
ensures safety but it harms the human-cobot interaction, because collisions break
the motion of both, which reduces productivity, and may be annoying to the hu-
man operator. CHICO features 240 1-minute video recordings, from which two
separate sets of test sequences are selected: one for estimating the accuracy in
pose forecasting, so cobots may be aware of the next future (1.0 sec); and one
with 226 genuine collisions, so cobots may foresee them and possibly re-plan.
The dataset is detailed in Sec. 4, experiments are illustrated in Sec. 6.

When tested on CHICO, the proposed SeS-GCN outperforms all baselines
and reaches an error of 85.3 mm (MPJPE) at 1.00 sec, with a negligible run
time of 2.3 msec (as reported in Table 5). Additionally, the forecast human mo-
tion is used to detect human-cobot collision, by checking whether the predicted
trajectory of the human body intersects that of the cobot. This is also encour-
aging, as SeS-GCN allows to reach an F1-score of 0.64. Both aspects contribute
to a cobot awareness of the future, which is instrumental for HRC in industrial
applications.

2 Related Work

Human pose forecasting. Human pose forecasting is a recent field which
has some intersection with human action anticipation in computer vision [42]
and HRC [18]. Previous studies exploited Temporal Convolutional Networks
(TCNs) [2,22,41,59] and Recurrent Neural Networks (RNNs) [20,23,33]. Both
architectures are naturally suited to model the temporal dimension. Recent
works have expanded the range of available methods by using Variational Auto-
Encoders [8], specific and model-agnostic layers that implicitly model the spatial
structure of the human skeleton [1], or Transformer Networks [9].

Pose forecasting using Graph Convolutional Networks (GCN).Most re-
cent research uses GCNs [17,44,49,65,74]. In [49], the authors have mixed GCN
for modelling the joint-joint interaction with Transformer Networks for the tem-
poral patterns. Others [44,65,74] have adopted GCNs to model the space-time
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Table 1. Comparison between the state-of-the-art datasets and the proposed CHICO;
unk stands for “unknown”.

Quantitative Details Rec.
Scene

Actions Type Tasks
Markerless

#
Classes

#
Subj.

Avg Rec.
Time

#
Joints

FPS
Aspect
Ratio

#
Sensors

Industr. HRC
Action
Recog.

Pose
Forec.

Coll.
Det.

Human3.6M [31] 15 11 100.49 s 32 25 normalized 15
mo-cap
studio

✓

AMASS [48] 11265 344 12.89 s variable variable original variable
mo-cap
studio

✓

3DPW [51] 47 7 28.33 s 18 60 original 18
outdoor
locations

✓

ExPI [25] 16 4 unk 18 25 original 88
mo-cap
studio

✓

CHI3D [19] 8 6 unk unk unk original 14
mo-cap
studio

✓

InHARD [16] 14 16 < 8 s 17 120 original 20
assembly

line
✓ ✓ ✓

CHICO (ours) 7 20 55 s 15 25 original 3
assembly

line
✓ ✓ ✓ ✓ ✓

body kinematics, devising, in the case of [17], hierarchical architectures to model
coarse-to-fine body dynamics.
We identify three main research directions for improving efficiency in GCNs:
i. space-time separable GCNs [65], which factorizes the spatial joint-joint and
temporal patterns of the adjacency matrix; ii. depth-wise separable graph convo-
lutions [30], which has been explored by [3] in the spectral domain; and iii. sparse
GCNs [64], which iteratively prunes the terms of the adjacency matrix of a GCN.
Notably, all three techniques also yield better performance than the plain GCN.
Here, for the first, we bring together these three aspects into an end-to-end
space-time-depthwise-separable and sparse GCN. The three techniques are com-
plementary to improve both efficiency and performance, but their integration
requires some structural changes (e.g., adopting teacher-student architectures
for sparsifying), as we describe in Sec. 3.

Human Robot Collaboration (HRC).

HRC is the study of collaborative processes where human and robot agents
work together to achieve shared goals [4,11]. Computer vision studies on HRC
are mostly related to pose estimation [10,21,40] to locate the articulated human
body in the scene.

In [12,34,57], methodologies for robot motion planning and collision avoid-
ance are proposed; their study perspective is opposite to ours, since we focus on
the human operator. In this regard, the works of [5,14,35,45] model the operators’
whereabouts through detection algorithms which approximate human shapes us-
ing simple bounding boxes. Approaches that predict the human motion during
collaborative tasks are in [66,73] using RNNs and in [68] using Guassian pro-
cesses. Other work [38] models the upper body and the human right hand (which
they call the Human End Effector) by considering the robot-human handover
phase. As motion prediction engine, DCT-RNN-GCN [49] is considered, against
which we compare in the experiments.

Datasets for pose forecasting. Human pose forecasting datasets cover a wide
spectrum of scenarios, see Table 1 for a comparative analysis. Human3.6M [31]
considers everyday actions such as conversing, eating, greeting and smoking.
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Data were acquired using a 3D marker-based motion capture system, composed
of 10 high-speed infrared cameras. AMASS [48] is a collection of 15 datasets
where daily actions were captured by an optical marker-based motion capture.
Human3.6M and AMASS are standard benchmarks for human pose forecasting,
with some overlap in the type of actions they deal with. The 3DPW dataset [51]
focuses on outdoor actions, captured with a moving camera and 17 Inertial Mea-
surement Units (IMU), embedded on a special suit for motion capturing [60]. The
recent ExPI dataset [25] contains 16 different dance actions performed by profes-
sional dancers, for a total of 115 sequences, and it is aimed at motion prediction.
ExPI has been acquired with 68 synchronised and calibrated color cameras and a
motion capture system with 20 mocap cameras. Finally, the CHI3D dataset [19]
reports 3D data taken from MOCAP systems to study human interactions.

None of these datasets answer our research needs, i.e., a benchmark taken
by a sparing, energy-efficient markerless system, focused on the industrial HRC
scenario, where forecasting may be really useful for anticipating collisions be-
tween the humans and robots. In fact, the only dataset relating to industrial
applications is InHARD [16]. Therein, humans are asked to perform an assem-
bly task while wearing inertial sensors on each limb. The dataset is designed for
human action recognition, and it involves 16 individuals performing 13 different
actions each, for a total of 4800 action samples over more than 2 million frames.
Despite showcasing a collaborative robot, in this dataset the robot is mostly
static, making it unsuitable for collision forecasting.

3 Methodology

We build an accurate, memory efficient and fast GCN by bridging three diverse
research directions: i. Space-time separable adjacency matrices; ii. Depth-wise
separable graph convolutions; iii. Sparse adjacency matrices. This results in an
all-Separable and Sparse GCN encoder for the human body kinematics, which
we dub SeS-GCN, from which the future frames are forecast by a Temporal
Convolutional Network (TCN).

3.1 Background

Problem Formalization. Pose forecasting is formulated as observing the 3D
coordinates xv,t of V joints across T frames and predicting their location in the
K future frames. For convenience of notation, we gather the coordinates from
all joints at frame t into the matrix Xt = [xv,t]

V
v=1 ∈ R3×V . Then we define the

tensors Xin = [X1, X2..., XT ] and Xout = [XT+1, XT+2..., XT+K ] that contain
all observed input and target frames, respectively.

We consider a graph G = (V, E) to encode the body kinematics, with all joints

at all observed frames as the node set V = {vi,t}V,Ti=1,t=1, and edges (vi,t,vj,s) ∈ E
that connect joints i, j at frames t, s.

Graph Convolutional Networks (GCN). A GCN is a layered architecture:

X (l+1) = σ
(
A(l)X (l)W (l)

)
(1)



6 A. Sampieri et al.

The input to a GCN layer l is the tensor X (l) ∈ RC(l)×V×T which maintains the
correspondence to the V body joints and the T observed frames, but increases
the depth of features to C(l) channels. X (1) = Xin is the input tensor at the first
layer, with C(1) = 3 channels given by the 3D coordinates. A(l) ∈ RV T×V T is
the adjacency matrix relating pairs of V T joints from all frames. Following most

recent literature [17,49,64,65], A(l) is learnt. W (l) ∈ RC(l)×1×1 are the learn-
able weights of the graph convolutions. σ is a the non-linear PReLU activation
function.

3.2 Separable & Sparse Graph Convolutional Networks (SeS-GCN)

We build SeS-GCN by integrating the three mentioned modelling dimensions:
i. separating spatial and temporal interaction terms in the adjacency matrix
of a GCN; ii. separating the graph convolutions depth-wise; iii. sparsifying the
adjacency matrices of the GCN.

Separating space-time. STS-GCN [65] has factored the adjacency matrix A(l)

of the GCN, at each layer l, into the product of two terms A
(l)
s ∈ RV×V×T and

A
(l)
t ∈ RT×T×V , respectively responsible for the temporal-temporal and joint-

joint relations. The GCN formulation becomes:

X (l+1) = σ
(
A(l)

s A
(l)
t X (l)W (l)

)
(2)

Eq. (2) bottlenecks the interplay of joints across different frames, implicitly plac-

ing more emphasis on the interaction of joints on the same frame (A
(l)
s ) and on

the temporal pattern of each joint (A
(l)
t ). This reduces the memory-footprint of

a GCN by approx. 4x while improving its performance (cf. Sec. 5.1). Note that
this differs from alternating spatial and temporal modules, as it is done in [71]
and [7], respectively for trajectory forecasting and action recognition.

Separating depth-wise. Inspired by depth-wise convolutions [13,30], the ap-
proach in [37] has introduced depth-wise graph convolutions for image classi-
fication, followed by [3] which resorted to a spectral formulation of depth-wise
graph convolutions for graph classification. Here we consider depth-wise graph
convolutions for pose forecasting. The depth-wise formulation bottlenecks the
interplay of space and time (operated by the adjacency matrix A(l)) with the
channels of the graph convolution W (l). The resulting all-separable model which
we dub STS-DW-GCN is formulated as such:

H(l) =γ
(
A(l)

s A
(l)
t X (l)W

(l)
DW

)
(3a)

X (l+1) = σ
(
H(l)W

(l)
MLP

)
(3b)

Adding the depth-wise graph convolution splits the GCN of layer l into two
terms. The first, Eq. (3a), focuses on space-time interaction and limits the chan-

nel cross-talk by the use of W
(l)
DW ∈ RC(l)

α ×1×1, with 1 ≤ α ≤ C(l) setting
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the number of convolutional groups (α = C(l) is the plain single-group depth-
wise convolution). The second, Eq. (3b), models the intra-channel communi-
cation just. This may be understood as a plain (MLP) 1D-convolution with

W
(l)
MLP ∈ RC(l)×1×1 which re-maps features from C(l) to C(l+1). γ is the ReLU6

non-linear activation function. Overall, this does not significantly reduce the
number of parameters, but it deepens the GCN without over-smoothing [58],
which improves performance (see Sec. 5.1 for details).

Sparsifying the GCN. Sparsification has been used to improve the efficiency
(memory and, in some cases, runtime) of neural networks since the seminal
pruning work of [39]. [64] has sparsified GCNs for trajectory forecasting. This
consists in learning masks M which selectively erase certain parameters in the
adjacency matrix of the GCN. Here we integrate sparsification with the all-
separable GCN design, which yields our proposed SeS-GCN for human pose
forecasting:

H(l) =γ
(
(M(l)

s ⊙A(l)
s )(M(l)

t ⊙A
(l)
t )X (l)W

(l)
DW

)
(4a)

X (l+1) = σ
(
H(l)W

(l)
MLP

)
(4b)

⊙ is the element-wise product andM(l)
{s,t} are binary masks. Both at training and

inference, [64] generates masks, it uses those to zero certain coefficients of the
adjacency matrix A, and it adopts the resulting GCN for trajectory forecasting.
By contrast, we adopt a teacher-student framework during training. The teacher
learns the masks, and the student only considers the spared coefficients in A.
At inference, our proposed SeS-GCN only consists of the student, which simply
adopts the learnt sparse As and At. Compared to [64], the approach of SeS-GCN
is more robust at training, it yields fewer model parameters at inference (∼30%
less for both As and At), and it reaches a better performance, as it is detailed
in Sec. 5.1.

3.3 Decoder Forecasting

Given the space-time representation, as encoded by the SeS-GCN, the future
frames are then decoded by using a temporal convolutional network (TCN)
[2,22,41,65]. The TCN remaps the temporal dimension to match the sought
output number of predicted frames. This part of the model is not considered for
improvement because it is already efficient and it performs satisfactorily.

4 The CHICO dataset

In this section the CHICO dataset is detailed by describing the acquisition sce-
nario and devices, the cobot and the performed actions. We release RGB videos,
skeletons and calibration parameters ‡.

‡Code and dataset are available at: https://github.com/AlessioSam/

CHICO-PoseForecasting.

https://github.com/AlessioSam/CHICO-PoseForecasting
https://github.com/AlessioSam/CHICO-PoseForecasting
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The scenario. We are in a smart-factory environment, with a single human
operator standing in front of a 0.9m× 0.6m workbench and a cobot at its end
(see Fig.1). The human operator has some free space to turn towards some
equipment and carry out certain assembly, loading and unloading actions [54].
In particular, light plastic pieces and heavy tiles, a hammer, abrasive sponges
are available. The detailed setups for each action are reported graphically in
the additional material. A total of 20 human operators have been hired for this
study. They attended a course on how to operate with the cobot and signed an
informed consent form prior to the recordings.

The collaborative robot. A 7 degrees-of-freedom Kuka LBR iiwa 14 R820 col-
laborates with the human operator during the data acquisition process. Weighing
in at 29.5 kg and with the ability to handle a payload up to 14 kg, it is widely
used in modern production lines. More details on the cobot can be found in the
supplementary material.

The acquisition setup. The acquisition system is based on three RGB HD
cameras providing three different viewpoints of the same workplace: two frontal-
lateral, one rear view. The frame rate is 25Hz. The videos were first checked
for erroneous or spurious frames, then we used Voxelpose [67] to extract 3D
human pose for each frame. Extrinsic parameters of each camera are estimated
w.r.t. the robot’s reference frame by means of a calibration chessboard of 1×1m,
and temporal alignment is guaranteed by synchronization of all the components
with an Internet Time Server. In our environment, Voxelpose estimates a joint
positioning accuracy in terms of Mean Per Joint Position Error (MPJPE) of
24.99mm using three cameras, which is enough for our purposes, as an ideal
compromise between portability of the system and accuracy. We confirm these
numbers in two ways: the first is by checking that human-cobot collisions were
detected with 100% F1 score (we have a collision when the minimum distance
between the human limbs and the robotic links is below a predefined threshold).
Secondly, we show that the new CHICO dataset does not suffer from a trivial
zero velocity solution [52], i.e. results achieved by a zero velocity model under-
perform the current SoA in equal proportion as for the large-scale established
Human3.6M.

Actions. The 7 types of actions of CHICO are inspired from ordinary work
sessions in an HRC disassembly line as described in the review work of [29].
Each action is repeated over a time interval of ∼1 minute on average. Each
action is associated to a goal that the human operator has to achieve by a given
time limit, which requires them to move with a certain velocity. Each action
consists of repeated interactions with the robot (e.g., robot place, human picks)
which, due to the limited space, lead to some unconstrained collisions∗ which
we label accordingly. Globally, from the 7 actions × 20 operators, we collect 226
different collisions. On the additional material, an excerpt of the videos with
collisions are available. In the following, each action is shortly described.

∗Unconstrained collisions is a term coming from [26], indicating a situation in which
only the robot and human are directly involved into the collision.
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– Lightweight pick and place (Light P&P). The human operator is required
to move small objects of approximately 50 grams from a loading bay to a
delivery location within a given time slot. The bay and the delivery location
are at the opposite sides of the workbench. Meanwhile, the robot loads on
of this bay so that the human operator has to pass close to the robotic arm.
In many cases the distance between the limbs and the robotic arm is few
centimeters.

– Heavyweight pick and place (Heavy P&P). The setup of this action is the
same as before, but the objects to be moved are floor tiles weighing 0.75 kg.
This means that the actions have to be carried out with two hands.

– Surface polishing (Polishing). This action was inspired by [47], where the
human operator polishes the border of a 40 by 60cm tile with some abrasive
sponge, and the robot mimics a visual quality inspection.

– Precision pick and place (Prec. P&P). The robot places four plastic
pieces in the four corners of a 30×30cm table in the center of the workbench,
and the human has to remove them and put on a bay, before the robot repeats
the same unloading.

– Random pick and place (Rnd. P&P). Same as the previous action, except
for the plastic pieces which were continuously placed by the robot randomly
on the central 30×30cm table, and the human operator has to remove them.

– High shelf lifting (High lift). The goal was to pick light plastic pieces
(50 grams each) on a sideway bay filled by the robot, putting them on a
shelf located at 1.70m, at the opposite side of the workbench. Due to the
geometry of the workspace, the arms of the human operator were required
to pass above or below the moving robotic arm. In this way, close distances
between the human arm and forearm and the robotic links were realized.

– Hammering (Hammer). The operator hits with a hammer a metallic tide
held by the robot. In this case, the interest was to check how much the
collision detection is robust to an action where the human arm is colliding
close to the robotic arm (that is, on the metallic tile) without properly
colliding with the robotic arm.

5 Experiments on Human3.6M

We benchmark the proposed SeS-GCN model on the large and established Hu-
man3.6M [31]. In Sec. 5.1, we analyze the design choices corresponding to the
models discussed in Sec. 3, then we compare with the state-of-the-art in Sec. 5.2.

Human3.6M [31] is an established dataset for pose forecasting, consisting of 15
daily life actions (e.g. Walking, Eating, Sitting Down). From the original skeleton
of 32 joints, 22 are sampled as the task, representing the body kinematics. A total
of 3.6 million poses are captured at 25 fps. In line with the literature [49,52,17],
subjects 1, 6, 7, 8, 9 are used for for training, subject 11 for validation, and
subject 5 for testing.

Metric. The prediction error is quantified via the MPJPE error metric [31,50],
which considers the displacement of the predicted 3D coordinates w.r.t. the
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ground truth, in millimeters, at a specific future frame t:

LMPJPE =
1

V

V∑
v=1

||x̂vt − xvt||2. (5)

5.1 Modelling choices of SeS-GCN

We review and quantify the impact of the modelling choices of SeS-GCN:

Efficient GCN baselines. In Table 2, we first validate the three difference mod-
elling approaches to efficient GCNs, namely space-time separable STS-GCN [65],
depth-wise separable graph convolutions DW-GCN [37], and Sparse-GCN [64].
STS-GCN yields the lowest MPJPE error of 117.0 mm at a 1 sec forecasting
horizon (2.4% better than DW-GCN, 4.8% better than Sparse-GCN) with the
fewest parameters, 57.6k (ca. x4 less). We build therefore on this approach.

Deeper GCNs. It is a long standing belief that Deep Neural Networks (DNN)
owe their performance to depth [27,46,70,72]. However, deeper models require
more parameters and have a longer processing time. Additionally, deeper GCNs
may suffer from over-smoothing [58]. Seeking both better accuracy and efficiency,
we consider three pathways for improvement: (1) add GCN layers; (2) add MLP
layers between layers of GCNs; (3) adopt depth-wise graph convolutions, which
also add MLP layers between GCN ones (cf. Sec. 3.2).

As shown in Table 2, there is a slight improvement in performance with
5 STS-GCN layers (MPJPE of 115.9 mm), but deeper models underperform.
Adding MLP layers between the GCN ones (depth of 5+5) also decreases per-
formance (MPJPE of 125.2). By contrast, adding depth by depth-wise separable
graph convolutions (STS-DW-GCN of depth 5+5) reduces the error to 114.8
mm. This may be explained by the virtues of the increased depth in combina-
tion with the limiting cross-talk of joint-time-channels, which existing literature
confirms [13,37,65]. We note that space-time and depth-wise channel separability

Table 2. MPJPE error (millimeters) for long-range predictions (25 frames) on Hu-
man3.6M [31] and numbers of parameters. Best figures overall are reported in bold,
while underlined figures represent the best in each block. The proposed model has com-
parable or less parameters than the GCN-based baselines [30,64,65] and it outperforms
the best of them [65] by 2.6%.

Depth MPJPE Parameters (K) DW-Separable ST-Separable Sparse w/ MLP layers Teacher-Student

GCN 4 123.2 222.7

DW-GCN [37] 4+4 119.8 223.2 ✓ ✓
STS-GCN† [65] 4 117.0 57.6 ✓
Sparse-GCN [64] 4 122.7 257.9 ✓
STS-GCN 5 115.9 68.6 ✓
STS-GCN 6 116.1 79.9 ✓
STS-GCN w/ MLP 5+5 125.2 101.4 ✓ ✓
STS-DW-GCN 5+5 114.8 70.0 ✓ ✓ ✓
STS-DW-Sparse-GCN 5+5 115.7 122.4 ✓ ✓ ✓ ✓
SeS-GCN (proposed) 5+5 113.9 58.6 ✓ ✓ ✓ ✓ ✓
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is complementary. Altogether, this performance is beyond the STS-GCN perfor-
mance (114.8 Vs. 117.0 mm), at a slight increase of the parameter count (70k
Vs. 57.6k).

Sparsifying GCNs and the proposed SeS-GCN. Finally, we target to im-
prove efficiency by model compression. Trends have reduced the size of models
by reducing the parameter precision [61], by pruning and sparsifying some of
the parameters [56], or by constructing teacher-student frameworks, whereby
a smaller student model is paired with a larger teacher to reach its same per-
formance [28,43]. Note that the last technique is the current go-to choice in
deploying very large networks such as Transformers [6].

We start off by compressing the model with sparse adjacency matrices by the
approach of Sparse-GCN [64]. They iteratively optimize the learnt parameters
and the masks to select some (the selection occurs by a network branch, also at
inference, cf. 3.2). As illustrated in Table 2, the approach of [64] does not make
a viable direction (STS-DW-Sparse-GCN), since the error increases to 115.7 mm
and the parameter count to 122.4k.

Reminiscent of teacher-student models, in the proposed SeS-GCN we first
train a teacher STS-DW-GCN, then use its learnt parameters to sparsify the
affinity matrices of a student STS-DW-GCN, which is then trained from scratch.
SeS-GCN achieves a competitive parameter count and the lowest MPJPE error
of 113.9 mm, being comparable with the current SoA [49] and using only 1.72%
of its parameters (58.6k Vs. 3.4M).

5.2 Comparison with the state-of-the-art (SoA)

In Table 5.2, we evaluate the proposed SeS-GCN against three most recent tech-
niques, over a short time horizon (10 frames, 400 msec) and a long time horizon
(25 frames, 1000 msec). The first, DCT-RNN-GCN [49], the current SoA, uses
DCT encoding, motion attention and RNNs and, differently from other models,
demands more frames as input (50 vs. 10). The other two, MSR-GCN [17] and
STS-GCN [65] adopt GCN-only frameworks, the former adopts a multi-scale
approach, the latter acts a separation between spatial and temporal encoding.

Both on Short- and long-term predictions, at the 400 and 1000 msec horizons,
the proposed SeS-GCN outperforms other techniques [65,49] and it is within a
1.5% error w.r.t. the current SoA [49], while only using 1.72% parameters and
being ∼4 times faster than [49].

6 Experiments on CHICO

We benchmark on CHICO the SoA and the proposed SeS-GCN model. The two
HRC tasks of human pose forecasting and collision detection are discussed in
Secs. 6.1 and 6.2 respectively.

†Results for STS-GCN differ from [65], due to revision by the authors, cf. https:
//github.com/FraLuca/STSGCN.

https://github.com/FraLuca/STSGCN
https://github.com/FraLuca/STSGCN
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Table 3. MPJPE error in mm for short-term (400 msec, 10 frames) and long-term
(1000 msec, 25 frames) predictions of 3D joint positions on Human3.6M. The proposed
model achieves competitive performance with the SoA [49], while adopting 1.72% of its
parameters and running ∼4 times faster, cf. Table 5. Results are discussed in Sec. 5.2.

Walking Eating Smoking Discussion Directions Greeting Phoning Posing

Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [49] 39.8 58.1 36.2 75.5 36.4 69.5 65.4 119.8 56.5 106.5 78.1 138.8 49.2 105.0 75.8 178.2
MSR-GCN [17] 45.2 63.0 40.4 77.1 38.1 71.6 69.7 117.5 53.8 100.5 93.3 147.2 51.2 104.3 85.0 174.3

STS-GCN† [65] 51.0 70.2 43.3 82.6 42.3 76.1 71.9 118.9 63.2 109.6 86.4 136.1 53.8 108.3 84.7 178.4

SeS-GCN (proposed) 48.8 67.3 41.7 78.1 40.8 73.7 70.6 116.7 60.3 106.9 83.8 137.2 52.6 106.7 82.6 173.5

Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [49] 73.9 134.2 56.0 115.9 72.0 143.6 51.5 115.9 54.9 108.2 86.3 146.9 41.9 64.9 58.3 112.1
MSR-GCN [17] 79.6 139.1 57.8 120.0 76.8 155.4 56.3 121.8 59.2 106.2 93.3 148.2 43.8 65.9 62.9 114.1

STS-GCN† [65] 83.1 141.0 60.8 121.4 79.4 148.4 59.4 126.3 62.0 113.6 97.3 151.5 49.1 72.5 65.8 117.0

SeS-GCN (proposed) 82.2 139.1 59.9 117.5 78.1 146.0 57.7 121.2 58.5 107.5 94.0 147.7 48.3 70.8 64.0 113.9

6.1 Pose forecasting benchmark

Here we describe the evaluation protocol proposed for CHICO and report com-
parative evaluation of pose forecasting techniques.
Evaluation protocol. We create the train/validation/test split by assigning 2
subjects to the validation (subjects 0 and 4), 4 to the test set (subjects 2, 3,
18 and 19), and the remaining 14 to the training set. For short-range prediction
experiments, abiding the setup of Human3.6M [31], we consider 10 frames as
observation time and 10 or 25 frames as forecasting horizon. Differently from all
reported techniques, DCT-RNN-GCN requires 50 input frames.
We adopt the same Mean Per Joint Position Error (MPJPE)[31] as Human3.6M,
in Eq. (5), which also defines the training loss for the evaluated techniques.
None of the motion sequences for pose forecasting contains collisions. In fact,
the objective is to train and test the “correct” collaborative human behavior,
and not the human retractions and the pauses due to the collisions∗∗.

Table 4. MPJPE error in mm for short-term (400 msec, 10 frames) and long-term
(1000 msec, 25 frames) prediction of 3D joint positions on CHICO dataset. The average
error is 7.9% lower than the other models in the short-term and 2.4% lower in the long-
term prediction. See Sec. 6.1 for a discussion.

Hammer High Lift Prec. P&P Rnd. P&P Polishing Heavy P&P Light P&P Average

Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [49] 41.1 39.0 69.4 128.8 50.6 83.3 52.7 88.2 42.1 76.0 64.1 121.5 62.1 104.2 54.6 91.6
MSR-GCN [17] 41.6 39.7 67.8 130.2 50.2 81.3 53.4 90.3 41.1 73.2 62.7 118.2 61.5 101.9 54.1 90.7
STS-GCN [65] 46.6 52.1 64.2 116.4 48.3 79.5 52.0 87.9 42.1 73.9 60.6 106.5 57.2 95.2 53.0 87.4

SeS-GCN (proposed) 40.9 49.3 62.1 116.3 46.0 77.4 48.4 84.8 38.8 72.4 56.1 104.4 56.2 92.2 48.8 85.3

Comparative evaluation. In Table 4, we compare pose forecasting techniques
from the SoA and the proposed SeS-GCN. On the short-term predictions the

∗∗After the collisions, the robot stops for 1 seconds, during which the human operator
usually stands still, waiting for the robot to resume operations.
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best performance is that of SeS-GCN, reaching an MPJPE error of 48.8 mm,
which is 7.9% better than the second best STS-GCN [65].
On the longer-term predictions, the best performance (MPJPE error of 85.3 mm)
is also detained by SeS-GCN, which is 2.4% better than the second best STS-
GCN [65]. The proposed model outperforms all techniques on all actions except
Hammer, a briefly repeating action which may differ for single hits. We argue
that DCT-RNN-GCN [49] may get an advantage from using 50 input frames (all
other methods use 10 frames)

For a graphical illustration, Fig. 2 shows a distribution of the error per joint
calculated over all the actions, for the horizons 400 (left) and 1000 msec (right).
In both cases the error gets larger as we get closer to the extrema of the kinematic
skeleton, since those joints move the most. The slightly larger error at the right
hands (70.03 and 125.76 mm, respectively) matches that subjects are right-
handed (but some actions are operated with both hands).

For a sanity check of results, we have also evaluated the performance of a
trivial zero velocity model. [52] has found that keeping the last observed positions
may be a surprisingly strong (trivial) baseline. For CHICO, the zero velocity
model scores an MPJPE of 110.6 at 25-frames, worse than the 85.3 mm score
of SeS-GCN. This is in line with the large-scale dataset Human3.6M [31], where
the performance of the trivial model is 153.3 mm.

6.2 Collision detection experiments

Evaluation protocol. We consider a collision to occur when any body limb
of the subject gets too close to any part of the cobot, i.e. within a distance
threshold, for at least one frame. In particular, a collision refers to the proximity
between the cobot and the human in the forecast portion of the trajectory. The
(Euclidean) distance threshold is set to 13 cm.
The motion of the cobot is scripted beforehand, thus known. The motion of
the human subjects in the next 1000 msec needs to be forecast, starting from

Fig. 2. Average MPJPE distribution for all actions in CHICO on different joints for
(a) short-term (0.40 s) and (b) long-term (1.00 s) predictions. The radius of the blob
gives the spatial error with the same scale of the skeleton.
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the observation of 400 msec. The train/validation/test sets sample sequences of
10+25 frames with stride of 10.
Evaluation of collision detection. For the evaluation of collision, following
[55], both the cobot arm parts and the human body limbs are approximated by
cylinders. The diameters for the cobot are fixed to 8cm. Those of the body limbs
are taken from a human atlas.
In Table 5, we report precision, recall and F1 scores for the detection of collisions
on the motion of 2 test subjects, which contains 21 collisions. The top performer
in pose forecasting, our proposed SeS-GCN, also yields the largest F1 score
of 0.64. The lower performing MSR-GCN [17] yields poor collision detection
capabilities, with an F1 score of 0.31.

Table 5. Evaluation of collision detection performance achieved by competing pose
forecasting techniques, with indication of inference run time. See discussion in Sec. 6.2.

Time Horizon (msec) 1000

Metrics Prec Recall F 1 Inference Time (sec)

DCT-RNN-GCN [49] 0.63 0.58 0.56 9.1× 10−3

MSR-GCN [17] 0.63 0.30 0.31 25.2× 10−3

STS-GCN [65] 0.68 0.61 0.63 2.3× 10−3

SeS-GCN (proposed) 0.84 0.54 0.64 2.3× 10−3

7 Conclusions

Towards the goal of forecasting the human motion during human-robot collabo-
ration in industrial (HRC) environments, we have proposed the novel SeS-GCN
model, which integrates three most recent modelling methodologies for accuracy
and efficiency: space-time separable GCNs, depth-wise separable graph convo-
lutions and sparse GCNs. Also, we have contributed a new CHICO dataset,
acquired at real assembly line, the first providing a benchmark of the two funda-
mental HRC tasks of human pose forecasting and collision detection. Featuring
an MPJPE error of 85.3 mm at 1 sec in the future with a negligible run time
of 2.3 msec, SeS-GCN and CHICO unleash great potential for perception algo-
rithms and their application in robotics.
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