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1 Localization Algorithm

Due to space constraints, we could not present a pseudo-code for the localization
algorithm. We outline the process in Algorithm 1. The input to the localization
process consists of (i) initial regions of interests generated based on spatial fea-
tures BS

t (from Section 3.1 in the main paper), (ii) the spatial-temporal predic-
tion error Levent (from Section 3.2), (iii) number of attention “grids” to consider
K, and (iv) the total number of bounding box predictions per frame t.

Algorithm 1: Attention-based Action Localization

Input : BS
t ,Levent,K,N

Output: BE
t

1 Initialize: BE
t ← ∅

2 αE
t = softmax(Levent)

3 while |BE
t | ≤ N do

4 for ei,j ∈ {sorted(αE
t )}Kk=0 do

5 for bi ∈ BS
t do

6 if 1obj(ei,j , bi) then
7 BE

t ← BE
t

⋃
{bi}

8 end

9 end

10 end

11 end

2 Evaluation at various overlap thresholds

We present comparison with state-of-the-art approach at various overlap thresh-
olds on the UCF-Sports dataset in Figure 1. We also compare to PredLearn [2]
with two different settings - when the number of clusters is set to the groundtruth
Kgt and when using the optimal number of clusters Kopt, which is typically
3 × Kgt. It can be seen that we outperform all baselines, even at higher over-
lap thresholds, including fully supervised models. It is interesting to note that
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our approach at Kgt outperforms the closely related PredLearn at Kopt show-
ing that the use of object-centric representations and the hierarchical prediction
helps maintain context when faced with complex motion, both from the camera
and the object of interest, to learn robust representations and localize the object.
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Overlap Threshold

0.0

0.2

0.4

0.6

0.8

m
A

P

L
T
W
G
J
S15
S16
S17
H
A K=gt
A K=opt
Ours K_gt
Ours K_opt

Fig. 1. Comparison with state of the art approaches on the UCF Sports dataset over
multiple thresholds. We compare against baselines with varying levels of supervision
such as Lan et al. [11], Tian et al. [21], Wang et al. [23], Gkioxari and Malik [5], Jain
et al. [8], Soomro et al. [17–19], Hou et al. [7], VideoLSTM [13], and Aakur et al. [2].

We present a similar comparison for the JHMDB and THUMOS’13 datasets
in Figure 2. Again, we can see that when using optimal number of clusters we
significantly outperform other baselines while using the groundtruth number of
classes, we still perform competitively with fully supervised while outperform-
ing other unsupervised and weakly supervised baselines even at higher overlap
thresholds.

0.1 0.2 0.3 0.4 0.5 0.6
Overlap Threshold

0.0

0.2

0.4

0.6

0.8

m
A

P

G
S 16
S 17
A K=gt
A K=opt
Ours K_gt
Ours K_opt

0.1 0.2 0.3 0.4 0.5 0.6
Overlap Threshold

0.0

0.2

0.4

0.6

0.8

m
A

P

S 15
S 17
VideoLSTM
A 20 K=gt
A 20 K=opt
Ours K_gt
Ours K_opt

(a) (b)

Fig. 2. Comparison with state of the art approaches on the (a) JHMDB and (b) THU-
MOS’13 datasets. We report the mAP over multiple thresholds and compare with
several strong baselines.
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Fig. 3. Class-wise mAP visualized at various overlap thresholds for (a) Kattn=1, (b)
Kattn=5 and (c) Kattn=10 on the UCF-Sports dataset.

3 Effect of Kattn on different actions

We also present a more qualitative analysis of the use of multiple attention
grids Kattn (from Section 3.5) on different action classes in the UCF Sports
dataset in Figure 3. It can be seen that the use of multiple attention grids has
a considerable effect on classes with more background motion such as Walk,
Kick and Golf-Swing which have other actors performing similar or distracting
actions with complex motion. The use of multiple attention grids allow the model
to maintain context in prediction and hence not get distracted from the object
of interest, which was the case in PredLearn [2].

4 Effect of LSTM-based Prediction

We analyze the effect of using different configurations in the event-level predic-
tion stack (Section 3.2) in this section. We perform two different ablation studies
to find (i) the effect of changing the number of LSTM layers ℓ, and (ii) effect of
changing the prediction function from LSTM to RNN. We summarize the results
in Figure 4. As can be seen from Figure 4(a), as we reduce the number of LSTM
layers from 3, the performance drops drastically, but increasing it to 4 shows very
negligible performance improvement. We find that further increasing the num-
ber of layers (beyond 4) does not improve the performance and even degrades a
little. This could arguably be attributed to the fact that we only use 1 epoch of
training and adding more layers causes the model to underfit, leading to perfor-
mance degradation. We also change the prediction model from an LSTM to an
RNN to evaluate the effect of using an explicit ”event model” as considered in
PredLearn [2] and other continual predictive learning models [1] and summarize
the results in Figure 4(b). It can be seen that using the LSTM state as the event
model improves the performance of the approach, more significantly in the lower
detection thresholds.
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Fig. 4. Ablation studies on the effect of varying the LSTM-based parameters. (a) shows
the effect of changing the number of LSTM layers in the prediction stack, and (b) shows
the effect of using RNNs instead of LSTMs in the prediction stack.

5 Effect of Training Sequence

The proposed model is continually in a streaming manner. Hence, each training
video is presented sequentially to the model and the parameters are updated
every frame. Note that this is significantly different from most other approaches
which are trained in batch mode with each batch containing examples a balanced
distribution across classes. In this section, we evaluate the effect of training order
on the approach and evaluate its incremental learning capabilities. Specifically,
we present the videos per class in sequence to the model while training, in-
stead of shuffling it randomly as is the usual practice. We summarize the results
in Figure 5. It can be seen that the order of training videos does not have a
detrimental effect on the performance of the model. This could arguable be at-
tributed to both the adaptive learning rate scheduling as well as the inherent
nature of predictive learning that aims to capture the intra-event correlations
and inter-event variations. In fact, at higher thresholds (σ ≥ 0.5), the difference
is very negligible or even exceeds that of the random sequence training by a
small margin ( 1.25%).

6 Quality of localizations.

We also independently assess the quality of the localization returned by the ap-
proach by computing the recall of the bounding boxes returned. We summarize
the results in Table 1. Again, it can be seen that the approaches with full su-
pervision (top half) have a higher recall at a more stringent overlap threshold
of σ=0.5 while the recall and mAP drop with decreasing levels of supervision.
However, it is interesting to note that our approach has a higher recall than
both weakly supervised and unsupervised baselines at higher overlap thresholds
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Fig. 5. Ablation study conducted to evaluate how the order of training video sequences
affect the continual learning aspect of the proposed approach.

Approach
Average Recall mAP
0.1 0.3 0.5 @0.2

Action Tubelets [9] - - 0.33 0.48

Learning to Track [25] - - 0.61 0.47

ALSTM [16] 0.46 0.05 - 0.06

VideoLSTM [13] 0.71 0.32 - 0.37

Actor Supervision [3] 0.89 - 0.44 0.46

PredLearn [2] 0.84 0.58 0.33 0.31 (0.59∗)

Ours 0.86 0.74 0.56 0.38 (0.63∗)

Table 1. Quality of localization on THUMOS’13. We report average recall at various
overlap thresholds and the mAP at 0.2 overlap. ∗ refers to evaluation with optimal
clusters k = kopt.

while also significantly improving ( 7% absolute mAP) upon prior unsupervised
localization approaches.

7 Generalization for Action Recognition

We also evaluate the proposed approach’s representation learning ability for the
action recognition task. We use the first split of UCF-101 [20] and HMDB-51
[10] datasets as the evaluation data following prior work in Motion Statistics [22].
We summarize the results in Table 2 and compare against early self-supervised
approaches. We evaluate the performance under two conditions, (i) when the
number of clusters is set to the ground truth number of classes (kgt) and (ii) allow
for over-segmentation by setting k=2kgt. Note that we do not finetune on any
data and use the model trained on THUMOS’13 to obtain video-level features
for clustering. It can be seen that we can learn robust representations that allow



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#5764

ECCV
#5764

6 ECCV-22 submission ID 5764

Approach HMDB51 UCF-101

Invariant Mapping [6] 13.4 38.4
Temporal Coherence [15] 15.9 45.4

Object patch [24] 15.6 42.7
Shuffle & Learn. [14] 19.8 50.9

OPN [12] 22.1 56.3
Geometry [4] 23.3 55.1

Motion Statistics [22] 32.6 58.8

PredLearn [2] 19.9 (26.2 ) 21.3 (33.7 )
Ours 23.6 (40.4 ) 29.1 (50.73 )

Table 2. Evaluation of the actor-centered features for recognition. Methods in the
bottom are not finetuned with labeled data.

the model to cluster the videos in more complex datasets with significantly
more classes to a reasonable level while obtaining competitive performance with
models finetuned on the domains when allowed to over-segment. We see that
the clusters’ homogeneity score was 79% for UCF-101 and 63% when allowed
to over-segment i.e. setting k=2kgt. This indicates that although the number
of clusters is higher than the ground-truth, the videos in the same cluster were
mostly from the same label.
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