
Bandwidth-Aware Adaptive Codec for DNN
Inference Offloading in IoT

Xiufeng Xie1 , Ning Zhou2 , Wentao Zhu2 , and Ji Liu1

1 Kwai Inc, USA
{xiufengxie,jiliu}@kuaishou.com

2 Amazon, USA
{ningzhou,wentaozhu}@amazon.com

Abstract. The lightweight nature of IoT devices makes it challenging
to run deep neural networks (DNNs) locally for applications like aug-
mented reality. Recent advances in IoT communication like LTE-M have
significantly boosted the link bandwidth, enabling IoT devices to stream
visual data to edge servers running DNNs for inference. However, un-
compressed visual data can still easily overload the IoT link, and the
wireless spectrum is shared by numerous IoT devices, causing unstable
link bandwidth. Mainstream codecs can reduce the traffic but at the cost
of severe inference accuracy drops. Recent works on differentiable JPEG
train the codec to tackle the damage to inference accuracy. But they
rely on heuristic configurations in the loss function to balance the rate-
accuracy tradeoff, providing no guarantee to meet the IoT bandwidth
constraint. This paper presents AutoJPEG, a bandwidth-aware adap-
tive compression solution that learns the JPEG encoding parameters to
optimize the DNN inference accuracy under bandwidth constraints. We
model the compressed image size as a closed-form function of encoding
parameters by analyzing the JPEG codec workflow. Furthermore, we for-
mulate a constrained optimization framework to minimize the original
DNN loss while ensuring the image size strictly meets the bandwidth
constraint. Our evaluation validates AutoJPEG on various DNN models
and datasets. In our experiments, AutoJPEG outperforms the main-
stream codecs (like JPEG and WebP) and the state-of-the-art solutions
that optimize the image codec for DNN inference.

Keywords: DNN-Friendly Image Compression; IoT; Edge Computing;
Inference Offloading; ADMM Optimizer; Bandwidth Constraint

1 Introduction

AI applications are becoming ubiquitous in the Internet-of-Things (IoT) era. For
example, wearable items like augmented reality (AR) glasses can employ deep
neural networks (DNNs) to understand the environment and show the users an
augmented world. However, IoT devices like AR glasses are generally resource-
constrained with limited computing power, memory, and battery capacity, thus
cannot afford to run a DNN of any size. Recent advances [14], [13], [15] in IoT

https://orcid.org/0000-0003-0215-193X
https://orcid.org/0000-0002-7458-6505
https://orcid.org/0000-0002-7505-9512

2 X. Xie et al.

0 2 4 6 8
Horizontal Freq.

0

2

4

6

8

V
e
rt
ic
a
l
F
re
q
.

10

100

Q
u
a
n
t.
S
te
p

DCT
Entropy

Coding
Decoder DNN

Loss Update
DNN weights

Update
encoding parameters

(e.g., quantization table)

Bandwidth
Constraint

QUANT

IoT Side Server Side

ADMM

Optimizer

Encoder

Fig. 1: Given the IoT uplink bandwidth constraint, AutoJPEG uses an alternat-
ing direction method of multipliers (ADMM) optimizer to learn the DNN model
weights and the encoding parameters jointly.

communication like 5G and Long Term Evolution for Machines (LTE-M) have
made it possible to transport the captured data from the IoT device to an edge
computing server running DNN inference. Due to the limited wireless bandwidth
and huge IoT device population in the future, the IoT device needs to compress
large data footprints such as images or videos. Unfortunately, the compression
artifacts of mainstream codecs (e.g., JPEG) usually cause severe inference accu-
racy drop because they target human perception rather than DNNs.

This paper presents AutoJPEG, a bandwidth-aware data compression solu-
tion for DNN inference offloading. As outlined in Fig. 1, AutoJPEG jointly learns
the DNN weights and encoding parameters like the quantization table of discrete
cosine transform (DCT) coefficients in an end-to-end fashion. The core of Auto-
JPEG is a constrained optimization framework to minimize the DNN loss with
the image size as the constraint, enabling it to balance the tradeoff between the
inference accuracy and bandwidth cost. The offline optimization and deployment
(e.g., wireless broadcast) of encoding parameters to the IoT devices happen only
once before the online inference, adding no extra end-to-end latency. The IoT
device encodes its captured images using the optimized encoding parameters. It
then sends compressed images to the server that runs the optimized DNN for
inference. Considering the dynamic IoT bandwidth, we optimize multiple sets
of encoding parameters in advance, each for a particular bandwidth constraint.
Then the encoder adapts between these sets following the current bandwidth.

We built AutoJPEG on top of the prevalent JPEG codec as a testbed of our
optimization framework, which can be easily extended to improve codecs with a
similar architecture like MPEG. Our implementation is compatible with JPEG
since it only trains the configurable encoding parameters in the JPEG standard.
Our evaluation in §4 includes semantic segmentation (large image, complicated
DNN) and classification (small image, simple DNN). In our experiments, Auto-
JPEG outperforms recent DNN-friendly compression works [36], DNN inference

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 3

offloading works [20], and mainstream codecs like JPEG and WebP, in terms of
both inference accuracy and compression ratio.

The main contributions of this work can be summarized as follows:

– To the best of our knowledge, AutoJPEG is the first bandwidth-aware data
compression solution optimized for inference offloading in IoT networks.

– We dig deep into a representative codec workflow to obtain the closed-form
expressions of the compressed image size & recovered image data and use
smoothed estimators to make them compatible with gradient descent.

– The crux of this work is a constrained optimization framework designed
to learn the encoding parameters under strict bandwidth constraint − a
contribution from the methodological aspect as prior works are typically a
collection of heuristic designs with no guarantee to meet the constraint.

2 Related Work

Running DNNs on resource-constrained mobile devices like smartphones is chal-
lenging. DNN weight pruning [27], [11], [10], [23], [9], [42], [23], [9], [42], [28], [24],
[35] and weight quantization [5], [4], [29], [17], [22], [41] can reduce the compu-
tation load with little or no impact on the inference accuracy. Another line of
work [20], [16] splits the DNN model at a “bottleneck” to form a lightweight
head model deployed at the mobile devices and a heavier tail model at the
server. However, the above solutions cannot migrate to IoT scenarios because
most IoT devices cannot even afford to run a lightweight DNN.

Recent works investigated the DNN-friendly JPEG codec where the com-
pressed images are inputs of DNN inference rather than human vision. DeepN-
JPEG [25] assumes the standard deviation of a DCT coefficient determines its
contribution to DNN learning, thus using a heuristic function to map the stan-
dard deviations of DCT coefficients to a JPEG quantization table. GRACE [36]
uses the gradient w.r.t. the loss function to measure a DNN’s perceptual sen-
sitivity to different DCT frequency bands and then optimizes the JPEG quan-
tization table following the frequency-domain sensitivity. Making JPEG train-
able [2], [26], [40], [32] is another related research direction, which incorporates
the encoder and DNN in an end-to-end differentiable training framework. A
comprehensive work [26] investigates the tradeoff between rate, distortion, and
inference accuracy in such a differentiable setup by formulating a loss function
as a weighted sum of loss components corresponding to the three targets.

AutoJPEG differs from the above works in the following aspects. 1) most
existing works roughly estimate the compressed image size, whereas our work
digs into the details of the encoding algorithms (like run-length encoding) and
the data formats to estimate a more accurate image size. 2) As shown in Fig. 2,
existing works typically use a weighted sum with configurable weight coefficients
to combine the original loss and the penalty of image size into one loss function,
which fails to precisely control the image size to fit the bandwidth constraint.
In contrast, we formulate a constrained optimization problem, guaranteeing the
compressed image size meets the given IoT bandwidth constraint.

4 X. Xie et al.

Compressed Size

Inference

Accuracy

Constraint

Sampled
rate-accuracy
tradeoff

AutoJPEG

search space

Fig. 2: AutoJPEG searches for the optimal encoding parameters under the band-
width constraint, while existing works coarsely sample the rate-accuracy relation
by tuning the weight coefficients in the weighted-sum loss. (The area in the black
oval is the space of encoding parameters allowed by JPEG.)

3 AutoJPEG Design

In this section, we first mathematically model the JPEG codec from the view-
point of differentiable and non-differentiable operations (§3.1), then discuss how
AutoJPEG makes JPEG codec trainable (§3.3), and elaborate on AutoJPEG’s
ADMM-based optimization (§3.4) framework.

3.1 Mathematical Modeling of JPEG Codec Workflow

(1) RGB-to-YUV conversion (differentiable). First, the encoder converts
the 3-channel RGB image x = (r, g, b)⊤ to the YUV color space as xτ =
(y,u,v)⊤. The YUV color space provides more room for compression by concen-
trating salient information to the y channel so that the other two less informative
channels u and v allow more compression. The parameter ω = (wr, wg, wb)

⊤

uniquely defines the RGB-to-YUV conversion as shown in Eq. (1).yu
v

 =

 wr wg wb

− 1
2

wr

1−wb
− 1

2
wg

1−wb

1
2

1
2 − 1

2
wg

1−wr
− 1

2
wb

1−wr

rg
b

 (1)

Eq. (1) is a linear transformation and thus differentiable. It can be written as
xτ = Φωx, where Φω is the 3×3 matrix that defines the transform. Conventional
encoders choose ω based on the color sensitivity of the human vision system [6]
, e.g., JPEG uses (wr, wg, wb) = (0.299, 0.587.0.114) following [18]. Overall, ω
follows the constraint ω⊤1 = 1,ω ≥ 0. The decoder can recover the RGB image
from the YUV image by the inverse transformation x = Φ−1

ω xτ .
(2) DCT (differentiable). The encoder then uses the 2D Discrete Cosine

Transform (DCT) to convert the YUV image xτ to the DCT coefficients X =
DCT(xτ) = (DCT(y),DCT(u),DCT(v)). DCT is a linear transformation and

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 5

differentiable. The decoder can recover the image from the DCT coefficients by
the Inverse Discrete Cosine Transform (IDCT), which is also differentiable.

(3) Quantization (non-differentiable). Next, the encoder quantizes each
channel of the DCT coefficients X by a quantization table. For simplicity,
we denote X = (X1, . . . , XN) as all DCT coefficients across 3 channels, and
Q = (q1, . . . , qN) contains all elements of the 3 quantization tables, where qi
is the quantization step on the i-th DCT coefficient. The quantized result is
denoted as XQ := R (X/Q), where R(·) denotes the round function ⌊·⌉ and
R (X/Q) = (R (X1/q1) , . . . ,R (XN/qN)). Quantization is non-differentiable.
Later, the decoder can only recover a lossy version of the original DCT coeffi-
cients by dequantization as X̂Q = Q ·XQ, and dequantization is differentiable.

(4) Lossless encoding (transparent). The encoder then vectorizes the
quantized DCT coefficients XQ by running a zigzag scan from low to high fre-
quency, which forms groups of consecutive zeros. Run-length encoding (RLE)
leverages such consecutive zeros for compression: the encoder only stores the
non-zero data points and the count of consecutive 0s after each non-zero data
point (i.e., the skip length). We elaborate on the image size analysis in §3.2. The
JPEG encoder then employs entropy coding to reduce the image size further.
Both RLE and entropy coding are lossless, which means the gradient can pass
through them in backward propagation.

(5) Decoding (differentiable). The decoder recovers the image from the
compressed data by reversing the above encoding steps: entropy decoding (trans-
parent), RLE decoding (transparent), dequantization (differentiable), IDCT (dif-
ferentiable), and YUV-to-RGB conversion (differentiable). The recovered image
x̂ is not exactly the same as the original image x. Using the recovered image
x̂ as the DNN’s input, the inference accuracy is generally lower than using the
original image due to the compression artifacts.

Summary. Let N (Q,ω, ·) denote the end-to-end JPEG encoding & decod-
ing process, it can be summarized as:

N (Q,ω,x) := IDCT

(
Φ−1
ω

(
Q · R

(
DCT(Φωx)

Q

)))
(2)

Since RLE and entropy coding are lossless, their encoding and decoding cancel
out with each other in Eq. (2). N (Q,ω, ·) is non-differentiable.

3.2 Modeling Compressed Image Size of JPEG Encoder

Let H denote the size of image x after JPEG compression, we want to model it
as a function H (Q,ω,x) of the quantization table Q, RGB-to-YUV parameters
ω, and the original image x. Since the effect of the entropy coding on the image
size is always marginal and difficult to model, we use the total number of bits
after RLE as an estimation, which is an upper bound of the actual size. If H is
below the image size constraint, the actual size strictly satisfies the constraint. H
consists of two parts: (i) the number of bits (V) carrying the value of quantized
data points XQ and (ii) the number of bits (M) carrying the supporting data

6 X. Xie et al.

associated with each non-zero data point, including the bit lengths for variable-
length binary encoding, the sign bit (DCT can yield negative values), and the
skip lengths for RLE.

H (Q,ω,x) = V (Q,ω,x) +M (Q,ω,x) (3)

(i) Bits carrying the datapoint values (non-differentiable). We look into
V first. Note that a data point with value 0 consumes 0 bit in RLE. Given a
quantized DCT data point with value R(Xj/qj), Eq. (4) shows the number of
bits bj to represent this data point. We can further remove the round function
R(·) without affecting the value of bj :

bj = 1 +

⌊
log2

(
R

(
|Xj |
qj

)
+ 0.5

)⌋
= 1 +

⌊
log2

(
|Xj |
qj

+ 0.5

)⌋
(4)

By summing the sizes of all quantized data points, we have:

V =

N∑
j=1

bj = N +

N∑
j=1

⌊
log2

(
|Xj |
qj

+ 0.5

)⌋
(5)

(ii) Bits carrying the supporting data (non-differentiable). Then we
look into M. For each non-zero data point, the JPEG encoder spends 4 bits
to represent its binary data length, and it also uses 4 bit to represent the skip
length. Since only the non-zero data point needs the sign bit in RLE, we also
count it as 1 bit here. Therefore, for each non-zero data point Xj , besides the
data size bj , the encoder needs an extra 9 bits. As a result, the total supporting
data size M is the scaled L0 norm of the quantized data R (X/Q):

M = 9 ∥R (X/Q)∥0 (6)

3.3 AutoJPEG Makes JPEG Codec End-to-End Trainable

The compression artifacts harming the DNN inference accuracy come from the
quantization and are indirectly affected by the RGB-to-YUV conversion. There-
fore, we optimize the quantization table Q and the RGB-to-YUV parameters ω
to make the compression artifacts mostly “invisible” to the DNN.

As shown in Eq. (7), AutoJPEG jointly optimizes the encoding parameters
(Q and ω) and DNN weightsW. The object is to minimize the DNN loss function
ℓ(·) under a given image size constraint C := HrawS, where S ∈ (0, 1] is the
compression ratio, Hraw is the uncompressed image size, x(i) is the i-th training
sample, X = {x(1), . . . , x(M)} is the dataset with M samples, N (Q,ω,x(i)) from
Eq. (2) is the recovered image, H(Q,ω,x(i)) from Eq. (3) is the compressed
image size in bits.

min
W,Q,ω

M∑
i=1

ℓ
(
W,N (Q,ω,x(i))

)
(7a)

s.t. H(Q,ω,x(i)) ≤ C, ∀x(i) ∈ X (7b)

ω⊤1 = 1,ω ≥ 0 (7c)

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 7

Solving the problem in Eq.(7) is difficult because both N (Q,ω,x(i)) and
H(Q,ω,x(i)) are non-differentiable. In what follows, we discuss how to design the
smoothed estimators N̂ (Q,ω,x(i)) and Ĥ(Q,ω,x(i)) to enable gradient descent.

Smoothed estimator of the image size. The image size H(Q,ω,x(i)) is the
sum of V and M. However, both V and M are non-differentiable, so we define
their smoothed estimators V̂ and M̂ to enable gradient descent.

Ĥ(Q,ω,x(i)) = V̂(Q,ω,x(i)) + M̂(Q,ω,x(i)) (8)

The representation of V in Eq. (5) can be rewritten as:

V = 2N +

N∑
j=1

⌊
log2

(
max

(X(i)
j

qj
+

1

2
,
1

2

))⌋
+

N∑
j=1

⌊
log2

(
max

(
−

X
(i)
j

qj
+

1

2
,
1

2

))⌋
(9)

The floor function ⌊·⌋ in the above equation is piece-wise constant, which is
non-differentiable at integer inputs while having 0 gradient elsewhere, and thus
is incompatible3 with gradient descent. We use the straight through estimator
(STE) to solve this problem and define the smoothed estimator of V as:

V̂(Q,ω,x) :=

{
V(Q,ω,x), if in forward pass

Vd(Q,ω,x), otherwise

V̂ equals V in the forward pass, while Vd is simply Eq. (9) without the floor
functions ⌊·⌋ so that gradients can pass through in the backward propagation.

M in Eq. (6) is essentially an L0 regularization for sparsity, and the common
practice is to relax it to the L1 norm. We also remove the non-differentiable
round function R(·) following the idea of STE. The smoothed estimator M̂ is:

M̂(Q,ω,x) :=

{
M(Q,ω,x), if in forward pass

9
∥∥(X(i)/Q

∥∥
1
, otherwise

Smoothed estimator of the recovered image. According to Eq. (2), the
non-differentiable part of N (Q,ω,x(i)), the DNN input recovered from the
compressed image, is the round function R(·), but we cannot apply STE to
remove R(x). For the quantization and recovery process, the recovered value
Yj = R(Xj/qj) · qj with quantization step qj , if we simply ignore the round
function, then we have Yj = (Xj/qj)qj = Xj , where qj is cancelled out. Since
this work is about learning the optimal qj , we cannot let qj disappear.

3 Although the max function is also non-differentiable, gradients can still pass through
the max function during backward propagation (just like ReLU).

8 X. Xie et al.

R(·) can be written as a piece-wise constant function R(x) = A(x − 0.5 −
K)+K, if K ≤ x < K+1. Different piece of the function has different constant
integer K whose value equals ⌊x⌋. A(·) is an unit step function which is non-
differentiable at 0 and has 0 gradient elsewhere.

A(x) :=

{
1, x ≥ 0

0, x < 0
Â(x) :=

{
A(x), if in forward pass
1
2 (tanh(Tx) + 1) , otherwise

We use a smoothed estimator Â(x) of the step function A(x) to enable gradi-
ent descent, where T controls the steepness of the smoothed step function. This
work uses T = 5 to balance the approximation accuracy and training stability as
discussed in [38]. By replacing A(·) in function R(·) with Â(·), we have R̂(·), a
smoothed estimator ofR(·). Then the DNN input recovered from the compressed
image can be estimated as N̂ (Q,ω,x) in Eq. (10), which allows gradients to pass
through during backward propagation.

N̂ (Q,ω,x) = IDCT

(
Φ−1
ω

(
Q · R̂

(
DCT(Φωx)

Q

)))
(10)

By replacing the non-differentiable operators in Eq. (7) with the smoothed esti-
mators in Eq. (8) and (10), we have a new optimization problem:

min
W,Q,ω

M∑
i=1

ℓ
(
W, N̂ (Q,ω,x(i))

)
(11a)

s.t. Ĥ(Q,ω,x(i)) ≤ C, ∀x(i) ∈ X (11b)

ω⊤1 = 1,ω ≥ 0 (11c)

3.4 Solving the Optimization Problem Using ADMM

In what follows, we discuss how AutoJPEG solves the constrained optimization
problem in Eq. (11). First, we use the augmented Lagrangian method to convert
the problem to its equivalent minimax problem:

min
W,Q,ω

max
z≥0

M∑
i=1

(
ℓ(W, N̂ (Q,ω,x(i))) + ζ(Q,ω,x(i), z)

)
(12a)

s.t. ω⊤1 = 1,ω ≥ 0 (12b)

where ζ(Q,ω,x(i), z) is the augmented Lagrangian:

ζ(Q,ω,x(i), z) :=
ρz
2

[
Ĥ(Q,ω,x(i))− C

]2
+
+ z

(
Ĥ(Q,ω,x(i))− C

)
We use [·]+ to denote the non-negative clamp max(·, 0). ρz is the learning rate
of the dual variable z when using ADMM to solve the problem.

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 9

Algorithm 1: Codec & DNN Joint Optimization Under Size Constraint

Input : Image size constraint C,
Pretrained DNN weights WI ,
BT.601 RGB-to-YUV parameter ωI

Output : Quantization table Q∗,
RGB-to-YUV parameters ω∗,
DNN weights W∗

Initialize W = WI ,Q = J3,8,8,ω = ωI

while x(t) ∈ X and H
(
Q,ω,x(t)

)
> Hc do

Update the primary variable W by SGD following Eq.(13);
Update the primary variable Q by SGD following Eq.(14);
Update the primary variable ω by PGD following Eq.(15);
Update the dual variable z following Eq.(16)

end
Q∗ = Q, ω∗ = ω, W∗ = W

Following Alg. 1, in the t-th iteration, we first optimize the DNN weights W
by stochastic gradient descent (SGD) with learning rate ρW :

W(t+1) = W(t) − ρW∇W(t)L(t) (13)

L(t) is the loss
∑M

i=1(ℓ(W(t), N̂ (Q(t),ω(t),x(t))) + ζ(Q(t),ω(t),x(t), z(t))) from
Eq. (12a) in the t-th iteration. We then use SGD to optimize the quantization
table Q with learning rate ρq:

Q(t+1) = Q(t) − ρq∇Q(t)L(t) (14)

The constraint ω⊤1 = 1,ω ≥ 0 is an unit 3-simplex, hence the variable ω can
be optimized by projected gradient descent (PGD) with learning rate ρω:

ω(t+1) = P(ω(t) − ρω∇ω(t)L(t)) (15)

where P (·) is the projection to an unit 3-simplex.

Finally, the optimizer performs the dual update by updating the dual variable
z using project gradient ascent with learning rate ρz, where the non-negative
clamp [·]+ projects the gradient ascent result to the space where z ≥ 0:

z(t+1) =
[
z(t) + ρz

(
Ĥ(Q(t),ω(t),x(t))− C

)]
+

(16)

The initial quantization table Q is a 3 × 8 × 8 all-one matrix J3,8,8 that
barely compresses the image. Meanwhile, the initial RGB-to-YUV parameters
ωI = (0.299, 0.587, 0.114) comes from BT.601 standard, and the initial DNN
weights WI comes from a model pre-trained by uncompressed training dataset.

10 X. Xie et al.

4 Evaluation

4.1 Experiment Setup

Benchmarks. We compare AutoJPEG with a recent work GRACE [36] that
optimizes quantization tables following the DNN’s perceptual sensitivity. Neuro-
surgeon [20] is another benchmark, which partitions the DNN into two parts, one
running on the client and the other on the server. Our benchmarks also include
the mainstream codecs like JPEG [34], PNG [31], WebP [7], and H.264 [30].

Datasets. Since semantic segmentation typically requires high-quality im-
ages that may overload the IoT link, it is an ideal application of AutoJPEG. Our
evaluation in §4.2 tests semantic segmentation on the Cityscapes dataset [3] with
2048×1024 resolution and lossless PNG format. We also evaluate AutoJPEG in
classification tasks on CIFAR10 [21] dataset with small 32 × 32 images in §4.3.
Such scenarios can be found in low-cost IoT devices.

DNN models. AutoJPEG aims to achieve less inference accuracy loss than
other encoders. Therefore, we test commonly used models instead of the lat-
est models with state-of-the-art accuracy. For image classification, we use the
ResNet models including ResNet20, ResNet32, ResNet56, ResNet110 [8] and
VGG models including VGG11 and VGG13 [33]. For semantic segmentation, we
use the dialated ResNet models [39] DRN-D-38 and DRN-D-22, following the
evaluation setup of GRACE, the vital benchmark algorithm.

Hardware & training details. We run the experiments on a machine with
a 2.1GHz Intel Xeon Gold 5218R CPU, 120GB memory, and 4 Nvidia Geforce
RTX 2080Ti GPUs. The ADMM-based optimization framework and DNNs are
based on PyTorch. The joint optimization finishes when the compressed image
size satisfies the given constraint so there is no preset total epoch number. The
initial model weights are pretrained on uncompressed datasets so we set the
learning rate of the model weights to a small 10−4 for finetuning.

4.2 AutoJPEG in Semantic Segmentation

Fig. 3 shows AutoJPEG’s superior performance to existing solutions when com-
pressing the input image for semantic segmentation model. The target DNN
model is DRN-D-38, and the dataset is Cityscapes. We observe that AutoJPEG
achieves the best balance between the inference accuracy and compression ratio.

Comparison with Neurosurgeon. Neurosurgeon has poor performance be-
cause its effectiveness relies on the DNN structure. It only works for DNNs with
“bottleneck” layers whose output tensor is small. However, for DNNs to per-
form complicated tasks, the output tensor of every hidden layer can be bulky.
Here the output data size of any layer in DRN-D-38 is larger than the input
image, so the Neurosurgeon fails to reduce the data size. We further improve it
as Neurosurgeon-Prune by using the DNN pruning solution from [37] to carve
a “bottleneck” layer if the DNN does not have any, and thus the output tensor
size of the partitioning point is reduced. Fig. 3 shows that Neurosurgeon-Prune’s

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 11

 1000

 3000

 5000

 7000

 9000
 62 64 66 68 70 72

mIoU [%]

 100

 200

 300

 400

 500

 600

Im
a

g
e

 S
iz

e
 [

K
B

y
te

]

B
ette

r

 AutoJPEG

 GRACE
 WebP
 JPEG

 JPEG+Finetune
 H.264
 PNG
 BMP

 Neurosurgeon
 Neurosurgeon-Prune

Fig. 3: AutoJPEG achieves a better balance between the DNN inference accuracy
(mIoU) and compressed image size than existing solutions.

 200

 300

 400

 500

 600
 66 66.4 66.8 67.2 67.6 68

B
ett

er

Im
a

g
e

 S
iz

e
 [

K
B

]

mIoU [%]

 AutoJPEG

 GRACE

(a) Model: DRN-D-22

 200

 300

 400

 500

 600
 70.4 70.6 70.8 71 71.2 71.4

B
ett

er

Im
a

g
e

 S
iz

e
 [

K
B

]

mIoU [%]

 AutoJPEG

 GRACE

(b) Model: DRN-D-38

Fig. 4: Our solution AutoJPEG vs. GRACE.

performance is still far behind AutoJPEG. It only slightly compresses the data
size but lowers the mIoU by more than 2%, because the channel-wise pruning is
too coarse-grained compared to the spectral quantization in AutoJPEG.

Comparison with GRACE. We then perform a detailed comparison between
AutoJPEG and GRACE, the state-of-the-art solution on DNN-friendly image
compression. We run the experiments under multiple compression levels for both
algorithms to profile their tradeoff between the image size and inference accuracy.
As shown in Fig. 4a and 4b, AutoJPEG outperforms GRACE on both models
by achieving higher mIoU at smaller image size. For example, from Fig. 4b, we
observe that AutoJPEG achieves a 71.24% mIoU at image size of 408KB, while
GRACE has a 0.24% lower mIoU at a larger image size of 418KB.

12 X. Xie et al.

 0

 300

 600

 900

 1200

 1500

 1800
 58 60 62 64 66 68 70

B
ett

er

Im
a

g
e

 S
iz

e
 [

K
B

]

mIoU [%]

 AutoJPEG

 JPEG (Q 100%)
 JPEG (Q 95%)
 JPEG (Q 85%)
 JPEG (Q 75%)

(a) Model: DRN-D-22

 0

 300

 600

 900

 1200

 1500

 1800
 66 67 68 69 70 71 72

B
ett

er

Im
a

g
e

 S
iz

e
 [

K
B

]

mIoU [%]

 AutoJPEG

 JPEG (Q 100%)
 JPEG (Q 95%)
 JPEG (Q 85%)
 JPEG (Q 75%)

(b) Model: DRN-D-38

Fig. 5: Our solution AutoJPEG vs. JPEG.

 0

 300

 600

 900

 1200

 1500

 1800
 64 65 66 67 68 69

B
ett

er

Im
a

g
e

 S
iz

e
 [

K
B

]

mIoU [%]

 AutoJPEG

 JPEG (Q 100%)
 JPEG (Q 95%)
 JPEG (Q 85%)
 JPEG (Q 75%)

(a) Model: DRN-D-22

 0

 300

 600

 900

 1200

 1500

 1800
 66 67 68 69 70 71 72

B
ett

er

Im
a

g
e

 S
iz

e
 [

K
B

]

mIoU [%]

 AutoJPEG

 JPEG (Q 100%)
 JPEG (Q 95%)
 JPEG (Q 85%)
 JPEG (Q 75%)

(b) Model: DRN-D-38

Fig. 6: Our solution AutoJPEG vs. JPEG+FT.

Comparison with JPEG and WebP. In this experiment, we first compare
AutoJPEG with the JPEG encoder. We use multiple JPEG quality levels (75%,
85%, 95%, and 100%) since image size depends on the quality level ranging from
1% to 100% [34]. As shown in Fig. 5, AutoJPEG achieves higher mIoU than
JPEG with similar image size. When the image size is small, JPEG suffers from a
significant accuracy drop, while AutoJPEG’s accuracy only reduces slightly. For
instance, in Fig. 5a, the 85% JPEG quality causes a 7.43% mIoU loss compared
to the uncompressed image. AutoJPEG with a similar size achieves a high mIoU
with only 0.26% accuracy loss. When the image size is large, AutoJPEG still
outperforms JPEG. For instance, the 100% JPEG quality yields a large image
size of 1180KB but causes a 0.69% mIoU loss, while AutoJPEG has a slight
0.15% mIoU loss at a smaller image size of 1036KB. Finetuning the DNN by the
JPEG-encoded image (JPEG+FT) can improve the inference accuracy, but the
accuracy remains far below AutoJPEG as shown in Fig. 6. We further compare
AutoJPEG with the WebP encoder of quality 80%, 85%, 90%, 100%, and lossless.
As shown in Fig. 7, AutoJPEG also outperforms WebP in our experiments.

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 13

 1200
 1600
 2000

 52 56 60 64 68 72
mIoU [%]

 0

 200

 400

 600

 800

Im
a

g
e

 S
iz

e
 [

K
B

]

Bette
r

 AutoJPEG

 WebP (lossless)

 WebP (Q 100%)

 WebP (Q 95%)

 WebP (Q 90%)

 WebP (Q 85%)

 WebP (Q 80%)

(a) Model: DRN-D-22

 1200
 1600
 2000

 52 56 60 64 68 72
mIoU [%]

 0

 200

 400

 600

 800

Im
a

g
e

 S
iz

e
 [

K
B

]

Bette
r

 AutoJPEG

 WebP (lossless)

 WebP (Q 100%)

 WebP (Q 95%)

 WebP (Q 90%)

 WebP (Q 85%)

 WebP (Q 80%)

(b) Model: DRN-D-38

Fig. 7: Our solution AutoJPEG vs. WebP.

DNN
Tuning

YUV
Tuning

mIoU
(%)

Avg.
Size (KB)

✓ ✓ 71.24 408

✓ × 71.17 419

× ✓ 70.94 404

× × 70.75 402

Table 1: Ablation study for components of AutoJPEG’s joint optimization.

Ablation study. We validate AutoJPEG’s components separately in this ex-
periment. The results in Table 1 show that enabling both DNN tuning and
YUV tuning yields the highest mIoU. Without YUV tuning (using JPEG’s de-
fault YUV color space), the mIoU drops by 0.07% even when the image size is
slightly larger. We also evaluate AutoJPEG without DNN tuning (use the orig-
inal pre-trained DNN for inference), as some users may not want to update the
DNNs already deployed on servers. In this case, the mIoU is slightly lower than
when the DNN tuning is on but still outperforms using JPEG with 95% quality.

4.3 AutoJPEG in Image Classification

We further evaluate AutoJPEG in image classification tasks on CIFAR10. The
experiment setup follows §4.1, and the benchmark is the widely used 75% qual-
ity JPEG. Fig. 8 shows that AutoJPEG outperforms JPEG (no matter with
or without finetuning the DNN by the JPEG training set) on all tested DNN
models, with significantly higher Top-1 classification accuracy and smaller image
size. For instance, AutoJPEG reduces the image size by 13% while improving
the Top-1 classification accuracy by 4.73% on ResNet56 even when the JPEG
benchmark uses DNN finetuned by JPEG-encoded dataset for inference.

14 X. Xie et al.

 0.5

 1

 1.5

 2

 2.5

 3
 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Bette
r

Im
a
g
e
 S

iz
e
 [
K

B
]

Top-1 Accuracy [%]

1 2
3

45 61
2 34

5 6

1 2 3 4 561 2 3 4 56

1 2 3 45 6

 AutoJPEG (S=0.6)

 AutoJPEG (S=0.4)

 JPEG Q 75%

 JPEG Q 75%+Finetune

 Raw Image

Fig. 8: Comparison of classification accuracy (Top-1) and compressed image
size targeting different models, label 1, 2, 3, 4, 5, 6 correspond to ResNet20,
ResNet32, ResNet56, ResNet110, VGG11, VGG13, respectively.

5 Limitations and Future Works

Our constrained optimization algorithm uses STE [1] to approximate the non-
differentiable functions. A more rigorous approach to handle such non-differentiable
functions is proximal gradient descent [12], which guarantees the same con-
vergence rate as gradient descent. However, finding the proximity operator is
challenging, and we leave it to future work. Meanwhile, our end-to-end frame-
work enables joint optimization of the DNN model weights quantization (like
QAT [19]) and DNN input image quantization, which is a future direction we
plan to explore. Finally, inference offloading faces a general challenge that is out
of the scope of this work: communication latency. A low-latency link is required
to exploit inference offloading in delay-sensitive applications like AR.

6 Conclusion

This paper presents AutoJPEG, a DNN-friendly image compression solution
tailored for DNN inference offloading in IoT networks. By harnessing ADMM
to jointly optimize the encoding parameters and DNN model weights under a
given image size constraint, AutoJPEG achieves significant IoT link bandwidth
saving while preserving high inference accuracy. It has low complexity and is
compatible with the JPEG codec, making deployment easy. In our evaluation of
semantic segmentation and image classification tasks, AutoJPEG demonstrates
superior performance to recent DNN-friendly data compression algorithms, DNN
splitting algorithms, and mainstream codecs.

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 15

References

1. Bengio, Y., Léonard, N., Courville, A.: Estimating or Propagating Gradi-
ents Through Stochastic Neurons for Conditional Computation. arXiv preprint
arXiv:1308.3432 (2013)

2. Choi, J., Han, B.: Task-Aware Quantization Network for JPEG Image Compres-
sion. In: European Conference on Computer Vision. pp. 309–324. Springer (2020)

3. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes Dataset for Semantic Urban Scene
Understanding. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 3213–3223 (2016), https://www.cityscapes-dataset.
com/

4. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: Training Deep Neu-
ral Networks with Binary Weights during Propagations. In: Advances in Neural
Information Processing Systems (2015)

5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized Neu-
ral Networks: Training Deep Neural Networks with Weights and Activations Con-
strained to + 1 or -1. arXiv preprint arXiv:1602.02830 (2016)

6. Fairman, H., Brill, M., Hemmendinger, H.: How the CIE 1931 Color-matching
Functions were Derived from Wright-Guild Data. Color Research and Application
22(1), 11–23 (1997)

7. Google: An Image Format for the Web (2021), https://developers.google.com/
speed/webp/, [Online]

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778 (2016)

9. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft Filter Pruning for Accel-
erating Deep Convolutional Neural Networks. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. pp.
2234–2240. International Joint Conferences on Artificial Intelligence Organization
(7 2018). https://doi.org/10.24963/ijcai.2018/309, https://doi.org/10.24963/

ijcai.2018/309

10. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: AutoML for Model
Compression and Acceleration on Mobile Devices. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 784–800 (2018)

11. He, Y., Zhang, X., Sun, J.: Channel Pruning for Accelerating Very Deep Neural
Networks. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1389–1397 (2017)

12. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algo-
rithms I: Fundamentals, vol. 305. Springer Science & Business Media (2013)

13. Hoglund, A., Bergman, J., Lin, X., Liberg, O., Ratilainen, A., Razaghi, H.S., Tir-
ronen, T., Yavuz, E.A.: Overview of 3GPP Release 14 Further Enhanced MTC.
IEEE Communications Standards Magazine 2(2), 84–89 (2018)

14. Hoglund, A., Lin, X., Liberg, O., Behravan, A., Yavuz, E.A., Van Der Zee, M.,
Sui, Y., Tirronen, T., Ratilainen, A., Eriksson, D.: Overview of 3GPP Release 14
Enhanced NB-IoT. IEEE Network 31(6), 16–22 (2017)

15. Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J.F., Hoglund, A.,
Frenne, M., Blasco, R., Huschke, J., Gunnarsson, F.: LTE Release 14 Outlook.
IEEE Communications Magazine 54(6), 44–49 (2016)

https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/
https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.24963/ijcai.2018/309

16 X. Xie et al.

16. Hu, C., Bao, W., Wang, D., Liu, F.: Dynamic Adaptive DNN Surgery for Infer-
ence Acceleration On the Edge. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. pp. 1423–1431. IEEE (2019)

17. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized Neu-
ral Networks. In: Advances in Neural Information Processing Systems (2016)

18. ITUR: BT 601: Studio Encoding Parameters of Digital Television for Standard 4:
3 and Wide-screen 16: 9 Aspect Ratios. ITU-R Rec. BT 656 (1995)

19. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2704–2713 (2018)

20. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.:
Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge.
ACM SIGARCH Computer Architecture News 45(1), 615–629 (2017)

21. Krizhevsky, A., et al.: Learning Multiple Layers of Features from Tiny Images.
Tech. rep., University of Toronto (2009), https://www.cs.toronto.edu/~kriz/
cifar-10-python.tar.gz

22. Li, F., Zhang, B., Liu, B.: Ternary Weight Networks. arXiv preprint
arXiv:1605.04711 (2016)

23. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, P.H.: Pruning Filters for Effi-
cient ConvNets. International Conference on Learning Representations (2017)

24. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: HRank:
Filter Pruning using High-Rank Feature Map. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1529–1538 (2020)

25. Liu, Z., Liu, T., Wen, W., Jiang, L., Xu, J., Wang, Y., Quan, G.: DeepN-JPEG: A
Deep Neural Network Favorable JPEG-based Image Compression Framework. In:
Proceedings of the 55th Annual Design Automation Conference. pp. 1–6 (2018)

26. Luo, X., Talebi, H., Yang, F., Elad, M., Milanfar, P.: The Rate-Distortion-Accuracy
Tradeoff: JPEG Case Study. arXiv preprint arXiv:2008.00605 (2020)

27. Ma, X., Guo, F.M., Niu, W., Lin, X., Tang, J., Ma, K., Ren, B., Wang, Y.: PCONV:
The Missing but Desirable Sparsity in DNN Weight Pruning for Real-Time Exe-
cution on Mobile Devices. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 5117–5124 (2020)

28. Peng, H., Wu, J., Chen, S., Huang, J.: Collaborative Channel Pruning for Deep
Networks. In: International Conference on Machine Learning. pp. 5113–5122 (2019)

29. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet Clas-
sification Using Binary Convolutional Neural Networks. In: European Conference
on Computer Vision (2016)

30. Richardson, I.E.: H. 264 and MPEG-4 Video Compression: Video Coding for Next-
Generation Multimedia. John Wiley & Sons (2004)

31. Roelofs, G., Koman, R.: PNG: the Definitive Guide. O’Reilly & Associates, Inc.
(1999)

32. Shin, R., Song, D.: JPEG-resistant Adversarial Images. In: NIPS 2017 Workshop
on Machine Learning and Computer Security. vol. 1 (2017)

33. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv preprint arXiv:1409.1556 (2014)

34. Wallace, G.K.: The JPEG Still Picture Compression Standard. IEEE Transactions
on Consumer Electronics (1992)

35. Wang, Y., Zhang, X., Xie, L., Zhou, J., Su, H., Zhang, B., Hu, X.: Pruning from
Scratch. In: AAAI Conference on Artificial Intelligence (2020)

https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT 17

36. Xie, X., Kim, K.H.: Source Compression with Bounded DNN Perception Loss for
IoT Edge Computer Vision. In: The 25th Annual International Conference on
Mobile Computing and Networking. pp. 1–16 (2019)

37. Yang, H., Zhu, Y., Liu, J.: ECC: Platform-Independent Energy-Constrained Deep
Neural Network Compression via a Bilinear Regression Model. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 11206–
11215 (2019)

38. Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., Hua, X.s.:
Quantization Networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 7308–7316 (2019)

39. Yu, F., Koltun, V., Funkhouser, T.: Dilated Residual Networks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 472–480
(2017)

40. Zhang, C., Karjauv, A., Benz, P., Kweon, I.S.: Towards Robust Data Hiding
Against (JPEG) Compression: A Pseudo-Differentiable Deep Learning Approach.
arXiv preprint arXiv:2101.00973 (2020)

41. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained Ternary Quantization. arXiv
preprint arXiv:1612.01064 (2016)

42. Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J.:
Discrimination-Aware Channel Pruning for Deep Neural Networks. In: Advances
in Neural Information Processing Systems. pp. 875–886 (2018)

	Bandwidth-Aware Adaptive Codec for DNN Inference Offloading in IoT

