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1 Description of Exercise Errors

We provide a description of various errors from various exercises in our dataset
in Table 1. It lists all the exercises, all the types of errors, and for each error, we
have provided illustrations of correct and incorrect forms.

2 Additional Discussion on Approaches

For our CVCSPC approach, we believe that during self-supervised training,
the network learns pose sensitive features from rough/noisy pose matching-
contrasting. A more refined mapping of these features to error labels is learned
during the fine-tuning phase.
For MD approach, through contrastive learning, the 3DCNN learns to cap-
ture the local, anomalous motions that are accentuated in our specially created
triplets. During the finetuning phase, the learnt representations are calibrated
so as to distinguish between harmful irregularities and harmless variations.

3 Implementation Details

We implemented all of our models using PyTorch [4]. In the following, we provide
further implementation details regarding finetuning phase:

CVCSPC/PAD: During finetuning phase, we use 180 frames from an exercise
sequence. To train the ResNet-1D temporal model [3], we optimize using ADAM
optimizer [2] for 50 epochs with an initial learning rate of 1e-4 and with a
batchsize of 25.

MD: We use 32 frames from an exercise sequence. We add fully-connected layers
for classification on top of the backbone. We optimize using ADAM optimizer
for 20 epochs with a batchsize of 5.

TDM: When evaluating the static errors, we passed TDMs through multiple
fully-connected layers followed by ReLU non-linearity to do the classification.
For this, we experimented with using one to five fully-connected layers, and
found that four fully-connected layers worked the best.
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Exercise Error type Correct Incorrect

BackSquat Knees Inward Error Knees pointing outwards knees buckling in

BackSquat Knees Forward Error Knees should be aligned over the toes knees moving forward excessively

BackSquat Shallow Squat Error Glutes below knees-line glutes above knees-line

BarbellRow Lumbar Error Lower back should be neutral Exaggerated curvature of the lumbar spine

BarbellRow Torso-Angle Error Back aligned with the hips at a 45◦-90◦

angle with the core
Too high less than 45◦ torso inclination /
Too low, torso below parallel, compared to
the floor

OverheadPress Elbow Error Elbows underneath the wrists Elbows flaring out or caving in

OverheadPress Knees Error Knees should be locked at all times Knees are bent. Knees go from being bent
to straight to help jerk the bar up (because
the weights overly heavy for the person)

Table 1: Description of various errors covered in our dataset.
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BarbellRow splits: For BarbellRow exercise, we used a comparatively small train-
ing set, in particular, we used train/val/test set of sizes: 2075/2227/2191.

Further Details Regarding Pose and Appearance Disentangling Base-
line. In this baseline, we aim to disentangle pose of the humans doing exercises
from their appearance (in computer vision sense). To accomplish this, we lever-
age an autoencoder setup as show in Fig. 1. This approach involves two randomly
selected frames, X, and Y , from an exercise video instance and comprises of the
following four stages:

Image encoding: We pass the input frames through encoder, E, and obtain the
output of the last layer convolutional block, e.g., the last bottleneck of Resnet-18.

Feature partition: We partition the feature volume obtained in the previous step
at the certain along the channel dimension. We take inspiration from pose esti-
mation networks, where each body joint is spatially represented in a particular
feature plane. Typically, the number of joints are in the range of 18-24. We arbi-
trarily assume the number of joints to be 21, and therefore, partition the feature
volume in a way that we set 21 feature maps for representing pose information,
while the remaining for appearance information. The partitioned features are
then projected into a lower dimensional feature space using a fully-connected
layer. Appearance and pose corresponding to an image, x, are denoted by ψ(x),
and π(x), respectively. Appearance and pose features concatenated together form
the overall image representation, ϕ. We take care to keep the dimensionality of
pose feature vector to be very compact, so as to not allow any appearance in-
formation to leak through it. Using appearance vector of much larger size than
the pose vector also helps in ensuring that appearance features do not collapse
to trivial/null solution. Finally, Pose vector, P (in Fig. 1), is only 32-dim vector.
We then use the pose features for error detection.

Feature swapping: After computing pose and appearance features for both frames,
we swap the appearance feature vectors before passing through the decoder (dis-
cussed in the next stage). Before swapping operation, the overall image repre-
sentation would be,

ϕ(X) = ψ(X)⊕ π(X), (1)

ϕ(Y ) = ψ(Y )⊕ π(Y ), (2)

where, ⊕ denotes concatenation operation. After swapping operation, the overall
image representation would be,

ϕ(X) = ψ(Y )⊕ π(X), (3)

ϕ(Y ) = ψ(X)⊕ π(Y ). (4)
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Fig. 1: Pose and appearance disentangling via feature partition and swap-
ping. E and D denote encoder and decoder CNNs; A and P denote appearance
and pose feature representations.

Image reconstruction: After swapping step, we pass the overall image represen-
tations through image decoder/reconstruction network, D, to reconstruct the
input frames. Reconstruction loss is a sum of pixelwise (L1 and L2 losses), and
perceptual loss [1] as in Eq. 8.

LL1 =
1

i.j

∑
Xi,j − X̃i,j (5)

LL2 =
1

i.j

∑
||Xi,j − X̃i,j ||2 (6)

Lperc =
1

m

∑
||G(X)BBox −G(X̃)BBox||2 (7)

Lrecon = λ1LL1 + λ2LL2 + λ3Lperc (8)

X and X̃ represent original and the reconstructed images. G represents layer
VGG16 network [6] upto relu2 2, trained on ImageNet [5]. For computing losses
for this approach, we use bounding box around the person and consider only the
image/feature area within the box when computing losses in equations 5 to 8.

4 Additional Information on Exercise Errors

The errors we target in this work include those where an excessive amount of
strain on certain ligaments/tendons/muscles, which are likely to cause injuries
and those where the wrong muscle group is activated due to the subject not
maintaining the proper form. For example, moving the knees too much forward
during the squats, places a huge strain on the patellar tendon and anterior
cruciate ligament (ACL), and calling on the quadriceps to do the most work



Domain Knowledge-Informed Self-Supervised Learning 5

during the squat instead of the glutes and hamstrings sharing the load. These
kinds of errors also result in lower than optimal gains.

5 Attention Visualization
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Fig. 2: Attention visualization.

We compared the location of attentions before and after our self-supervised
training (refer to Fig. 2). We found that after self-supervised training, the CNN
focused more on the human doing the exercise, around the important body parts,
for example, legs in case of squats.
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