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Abstract. In computer vision, human pose synthesis and transfer deal
with probabilistic image generation of a person in a previously unseen
pose from an already available observation of that person. Though re-
searchers have recently proposed several methods to achieve this task,
most of these techniques derive the target pose directly from the desired
target image on a specific dataset, making the underlying process chal-
lenging to apply in real-world scenarios as the generation of the target
image is the actual aim. In this paper, we first present the shortcomings
of current pose transfer algorithms and then propose a novel text-based
pose transfer technique to address those issues. We divide the problem
into three independent stages: (a) text to pose representation, (b) pose
refinement, and (c) pose rendering. To the best of our knowledge, this is
one of the first attempts to develop a text-based pose transfer framework
where we also introduce a new dataset DF-PASS, by adding descriptive
pose annotations for the images of the DeepFashion dataset. The pro-
posed method generates promising results with significant qualitative
and quantitative scores in our experiments.

Keywords: Text-guided generation, Pose transfer, GAN, DeepFashion

1 Introduction

Generating novel views of a given object is a challenging yet necessary task
for many computer vision applications. Pose transfer is a subclass of the view
synthesis problem where the goal is to estimate an unseen view (target image)
of a person with a particular pose from a given observation (source image)
of that person. As there can be significant differences between the source and
target images, the pose transfer pipeline requires a very accurate generative
algorithm to infer both the visible and occluded body parts in the target image.
The method also needs to preserve the person’s general appearance, including
facial expression, skin color, attire, and background. In particular, the goal is
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Fig. 1. Overview of the proposed approach. Keypoint-guided methods tend to produce
structurally inconsistent images when the physical appearance of the target pose refer-
ence significantly differs from the condition image. The proposed text-guided technique
successfully addresses this issue while retaining the ability to generate visually decent
results close to the keypoint-guided baseline.

to generate a target person image IB for a specific pose PB from an input
source image IA of that person having an observed pose PA. A human pose P is
usually expressed by a set of body-joint locations (keypoints), denoted as K. As
the location of the keypoints can vary significantly from person to person, two
different sets of keypoints K and K ′ may represent the same pose P .

As initial solutions, researchers have introduced coarse to fine generation
schemes [28,29] by splitting the problem into separate sub-tasks for handling
background, foreground, and pose separately. The architectural complexity of
such an approach is later streamlined with a unified pipeline by utilizing de-
formable GANs [42], variational U-Net [9], and progressive attention transfer
[55]. Although the state-of-the-art (SOTA) algorithms have produced visually
compelling results, a common yet noticeable flaw is present in these techniques.
For training and evaluation of the models, SOTA algorithms extract keypoints
KB directly from IB to represent PB and use it as one of the inputs. However, IB
should not be ideally known to users, and such an over-simplified training pro-
cess creates a dilemma. One way to circumvent the problem is training the model
to adapt to a target pose PB , represented by keypoints K ′

B , which is extracted
from the image I ′B of some other person. However, as the models are trained
using KB directly, they adapt poorly to any other set of keypoints K ′

B ̸= KB

representing the same pose PB . In Fig. 1, we have shown the limitation of the
existing keypoint-based models. We use the existing keypoint-guided pose trans-
fer algorithm PATN [55] as a baseline in our experiments. The keypoint-based
models try to follow the body structure of the target reference rather than the
general pose. Thus, they fail occasionally in the absence of the target image IB
to provide the keypoints. On the other hand, the proposed algorithm is not bi-
ased toward the target image as it exclusively works on the textual description
of the target pose.

In this paper, we propose a novel pose-transfer pipeline guided by the textual
description of the pose. Initially, we estimate the target keypoint set KB from
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the textual description TB of the target pose PB . The estimated keypoint set
KB is then used to generate the pose-transferred image ĨB . As the estimation
of KB is directly conditioned on TB , we do not need the target image IB for
estimating the target pose PB , and the training is free from any bias. The main
contributions of our work are as follows.

– We propose a pose transfer pipeline that takes the source image and a textual
description of the target pose to generate the target image. To the best of
our knowledge, this is one of the first attempts to design a pose transfer
algorithm based on textual descriptions of the pose.

– We introduce a new dataset DF-PASS derived from the DeepFashion dataset.
The proposed dataset contains a human-annotated text description of the
pose for 40488 images of the DeepFashion dataset.

– We extensively explore different perceptual metrics to analyze the perfor-
mance of the proposed technique and introduce a new metric (GCR) for
evaluating the gender consistency in the generated images.

– Most importantly, the algorithm is designed not to require the target image
at the time of inference, making it more suitable for real-world applications
than the existing pose transfer algorithms.

2 Related Work

Novel view synthesis is an intriguing problem in computer vision. Recently, Gen-
erative Adversarial Networks (GANs) [10] have been explored extensively for per-
ceptually realistic image generation [10,17,20,21,31,36]. Conditional generative
models [16,31,41,54] have become popular in different fields of computer vision,
such as inpainting [46], super-resolution [8,18] etc. Pose transfer can be viewed
as a sub-category of the conditional generation task where a target image is gen-
erated from a source image by conditioning on the target pose. Thus, with the
progress of conditional generative models, pose transfer algorithms have signif-
icantly enhanced performance in the last decade. Initial multi-stage approaches
divide the complex task into relatively simpler sub-problems. In [50], Zhao et al.
adopt a coarse to fine approach to generate multi-view images of a person from a
single observation. Ma et al. [28,29] introduce a multi-stage framework to gener-
ate the final pose-transferred image from a single source image. Balakrishnan et
al. [3] propose a method of pose transfer by segmenting and generating the fore-
ground and background individually. Wang et al. [44] introduce a characteristic
preserving generative network with a geometric matching module. The coarse
to fine generation technique is further improved by incorporating the idea of
disentanglement [29] where the generative model is designed as a multi-branch
network to handle foreground, background, and pose separately. In [34], the
authors propose a pose conditioned bidirectional generator in an unsupervised
multi-level generation strategy. In [55], the authors introduce a progressive at-
tention transfer technique to transfer the pose gradually. Li et al. [22] propose a
method to progressively select important regions of an image using pose-guided
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Fig. 2. Architecture of the proposed pipeline. The workflow is divided into three stages.
In stage 1, we estimate a spatial representation K∗

B for the target pose PB from the
corresponding text description embedding vB . In stage 2, we regressively refine the
initial estimation of the facial keypoints to obtain the refined target keypoints K̃∗

B .
Finally, in stage 3, we render the target image ĨB by conditioning the pose transfer on
the source image IA having the keypoints KA corresponding to the source pose PA.

non-local attention with a long-range dependency. Researchers have also investi-
gated 3D appearance flow [23], pose flow [51], and surface-based modeling [11,33]
for pose transfer. In [47], the authors first approximate a 3D mesh from a single
image, and then the 3D mesh is used to transfer the pose. Siarohin et al. [42]
propose a nearest neighbour loss for pose transfer using deformable GANs. In
[6,53], the authors generate talking-face dynamics from a single face image and
a target audio signal.

Text-based image generations are also an intriguing topic in computer vision.
In [37], the authors propose a GAN-based architecture for synthesizing the im-
ages. Qiao et al. [35] have incorporated redescription of textual descriptions for
image synthesis. Recently, text-based approaches are also explored for generat-
ing human pose [4] and appearance [49]. In [24], the authors use a Variational
Autoencoder (VAE) to generate human actions from text descriptions. In [4],
the authors generate 3D human meshes from text using a recurrent GAN and
SMPL [27] model. In [52], the authors propose a text-guided method for generat-
ing human images by selecting a pose from a set of eight basic poses, followed by
controlling the appearance attributes of the selected basic pose. However, text-
based visual generation techniques are limited in the literature, and text-guided
pose transfer is not well-explored previously to the best of our knowledge.

3 Methodology

The proposed technique is divided into three independent sequential stages, each
specific to a particular task. In the first stage, we derive an initial estimation of
the target pose from the corresponding text description embedding. This coarse
pose is then refined through regression at the next step. Finally, pose transfer is
performed by conditioning the transformation on the appearance of the source
image. We show our integrated generation pipeline in Fig. 2.
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3.1 Text to Keypoints Generation

For a given source image IA, our algorithm aims to generate the pose-transferred
image IB where the target pose PB is described by textual description TB . At
first, we encode TB into an embedded vector vB either by many-hot encoding or
using a pre-trained NLP model such as BERT [7], FastText [2], or Word2Vec [30].
We first aim to estimate the keypoint set KB from vB using a generative model
to guide the pose transfer process in a later stage. To train such a generative
model, we represent the keypoints kj ∈ Rm×n where kj ∈ K;∀j and the domain
of both IA and IB is Rm×n. As a slight spatial variation of kj does not change
the pose PB , it is better to represent it with a Gaussian distribution N (kj , σj);
∀j for mitigating the high sparsity in the data. Although for different kj , the
invariance of the pose is valid for different amounts of spatial perturbations,
we can assume σj = σ, a constant, ∀j, if σj is small. Such representation of
keypoints is often referred to as heatmaps.

Taking motivation from [49], we design a generative adversarial network to
estimate the target keypoint set KB from the text embedding vB . In our genera-
tor GT , we first project vB into a 128-dimensional latent space ϕB using a linear
layer with leaky ReLU activation. To allow some structural variations in the gen-
erated poses, we sample a 128-dimensional noise vector η ∼ N(0, I), where I is a
128× 128 identity matrix. Both ϕB and η are linearly concatenated and passed
through 4 up-convolution blocks. At each block, we perform a transposed convo-
lution followed by batch normalization [15] and ReLU activation [32]. The four
transposed convolutions use 256, 128, 64, and 32 filters, respectively. We produce
the final output from GT by passing the output of the last up-convolution block
through another transposed convolution layer with 18 filters and tanh activation.
The final generator output GT (vB , η) has a spatial dimension of 64 × 64 × 18,
where each channel represents one of the 18 keypoints kj , j ∈ {1, 2, . . . , 18}. In
our discriminator (critic) DT , we first perform 4 successive convolutions, each
followed by leaky ReLU activation, on the 18-channel heatmap. The four con-
volutions use 32, 64, 128, and 256 filters, respectively. The output of the last
convolution layer is concatenated with 16 copies of ϕB arranged in a 4× 4 tile.
The concatenated feature map is then passed through a point convolution layer
with 256 filters and leaky ReLU activation. We estimate the final scalar output
from DT by passing the feature map through another convolution layer with a
single filter. We mathematically define the objective function for DT as

LD = −E(x,vB)∼pt,η∼pη
[DT (x, vB)−DT (GT (η, vB), vB)] (1)

where (x, vB) ∼ pt is the heatmap and text embedding pair sampled from the
training set, η ∼ pη is the noise vector sampled from a Gaussian distribution,
and GT (η, vB) is the generated heatmap for the given text embedding vB . Re-
searchers [12] have shown that the WGAN training is more stable if DT is
Lipschitz continuous, which mitigates the undesired behavior due to gradient
clipping. To enforce the Lipschitz constraint, we compute gradient penalty as

CT = E(x̃,vB)∼px̃,vB
[(∥∇x̃,vB

DT (x̃, vB)∥2 − 1)2] (2)



6 P. Roy et al.

where ∥.∥2 indicates the l2 norm and x̃ is an interpolated sample between a real
sample x and a generated sample GT (η, vB), i.e., x̃ = αx + (1 − α)GT (η, vB),
where α is a random number, selected from a uniform distribution between 0 and
1. Eq. 2 enforces the Lipschitz constraint by restricting the gradient magnitude
to 1. We define the overall objective of DT by combining equations 1 and 2 as

LDT
= LD + λCT (3)

where λ is a regularization constant. We keep λ = 10 in all of our experiments.
We mathematically define the objective function for GT as

LGT
=− Eη∼pη,vB∼pvB

[DT (GT (η, vB), vB)]

− Eη∼pη,v1
B ,v2

B∼pvB

[
DT (GT (η,

v1B + v2B
2

),
v1B + v2B

2
)

]
(4)

where v1B , v
2
B ∼ pvB are text encodings sampled from the training set. The second

term in Eq. 4 helps the generator learn from the interpolated text encodings,
which are not originally present in the training set.

We estimate the target keypoint set K∗
B from the 18-channel heatmap gener-

ated from GT by computing the maximum activation ψmax
j , j ∈ {1, 2, . . . , 18} for

every channel. The spatial location of the maximum activation for the j-th chan-
nel determines the coordinates of the j-th keypoint if ψmax

j ≥ 0.2. Otherwise,
the j-th keypoint is considered occluded if ψmax

j < 0.2.

3.2 Facial Keypoints Refinement

While GT produces a reasonable estimate of the target keypoints from the cor-
responding textual description, the estimation K∗

B is often noisy. The spatial
perturbation is most prominent for the facial keypoints (nose, two eyes, and two
ears) due to their proximity. Slight positional variations for other keypoints gen-
erally do not drastically affect the pose representation. Therefore, we refine the
initial estimate of the facial keypoints by regression using a linear fully-connected
network NR (RefineNet). At first, the five facial keypoints kfi , i ∈ {1, 2, . . . , 5}
are translated by (kfi − kn) where kn is the spatial location of the nose. In
this way, we align the nose with the origin of the coordinate system. Then, we
normalize the translated facial keypoints such that the scaled keypoints ksi are
within a square of span ±1 and the scaled nose is at the origin (0, 0). Next,
we flatten the coordinates of the five normalized keypoints to a 10-dimensional
vector vf and pass it through three linear fully-connected layers, where each
layer has 128 nodes and ReLU activation. The final output layer of the network
consists of 10 nodes and tanh activation. While training, we augment ksi with
small amounts of random 2D spatial perturbations and try to predict the orig-
inal values of ksi . We optimize the parameters of NR by minimizing the mean
squared error (MSE) between the actual and the predicted coordinates. Finally,
we denormalize and retranslate the predicted facial keypoints. The refined set of
keypoints K̃∗

B is obtained by updating the coordinates of the facial keypoints of
K∗

B with the predictions from RefineNet.
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3.3 Pose Rendering

To render the final pose-transferred image ĨB , we first extract the keypoints KA

from the source image IA using a pre-trained Human Pose Estimator (HPE) [5].
However, we may also estimate the keypoints K∗

A from the embedding vector vA
for the text description TA of the source pose PA. If we compute the keypoints
K∗

A from TA, then the refinement is also applied on K∗
A to obtain the refined

source keypoints K̃∗
A. Thus, depending on the source keypoints selection, we

propose two slightly different variants of the method – (a) partially text-guided,
where we use HPE to extract KA and (b) fully text-guided, where we estimate
K̃∗

A using GT followed by NR. However, in both cases, the pose rendering step
works similarly. For simplicity, we discuss the rendering network using KA as
the notation for the source keypoints. We represent the keypoints KA and K̃∗

B

as multi-channel heatmaps HA and H̃B , respectively, where each channel of a
heatmap corresponds to one particular keypoint.

We adopt an attention-guided conditional GAN architecture [38,39] for the
target pose rendering. We take IA, HA, and H̃B as inputs for our generator
network GS , which produces the final rendered image output ĨB as an estimate
for the target image IB . The discriminator network DS utilizes a PatchGAN
[16] to evaluate the quality of the generated image by taking a channel-wise
concatenation between IA and either IB or ĨB . In GS , we have two downstream
branches for separately encoding the condition image IA and the channel-wise
concatenated heatmaps (HA, H̃B). After mapping both inputs to a 256 × 256
feature space by convolution (kernel size = 3 × 3, stride = 1, padding = 1,
bias = 0), batch normalization, and ReLU activation, we pass the feature maps
through four consecutive encoder blocks. Each block encodes the input feature
space by reducing the dimension to half but doubling the number of filters. Each
encoder block features a sequence of convolution (kernel size = 4 × 4, stride =
2, padding = 1, bias = 0), batch normalization, ReLU activation, and a basic
residual block [13]. We combine the encoded feature maps and pass the merged
feature space through an upstream branch with four consecutive decoder blocks.
Each block decodes the feature space by doubling the dimension but reducing the
number of filters by half. Each decoder block features a sequence of transposed
convolution (kernel size = 4 × 4, stride = 2, padding = 1, bias = 0), batch
normalization, ReLU activation, and a basic residual block. We use attention
links between encoding and decoding paths at every resolution level to retain
coarse and fine attributes in the generated image. Mathematically, for the lowest
resolution level, L = 4,

Iδ3 = δ4(I
πi

4 ⊙ σ(Hπh

4 ))

and for the higher resolution levels, L = {1, 2, 3},

IδL−1 = δL(I
πi

L ⊙ σ(Hπh

L ))

where, at the resolution level L, IδL denotes the output of the decoding block

δL, I
πi

L denotes the output of the image encoding block πi
L, H

πh

L denotes the
output of the pose encoding block πh

L, σ is an element-wise sigmoid activation
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function, and ⊙ is an element-wise product. Finally, we pass the resulting feature
maps through four consecutive basic residual blocks followed by a point-wise
convolution (kernel size = 1 × 1, stride = 1, padding = 0, bias = 0) with tanh
activation to map the feature space into a 256× 256× 3 normalized image ĨB .

The optimization objective of GS consists of three loss components – a pixel-
wise l1 loss LGS

l1
, a discrimination loss LGS

GAN by DS , and a perceptual loss LGS

Pρ

computed using a pre-trained VGG-19 network [43]. We measure the pixel-wise
l1 loss as LGS

l1
= ∥ĨB−IB∥1, where ∥.∥1 denotes the l1 norm or the mean absolute

error. We compute the discrimination loss as

LGS

GAN = LBCE(DS(IA, ĨB), 1) (5)

where LBCE denotes the binary cross-entropy loss. Finally, we estimate the
perceptual loss as

LGS

Pρ
=

1

hρwρcρ

hρ∑
x=1

wρ∑
y=1

cρ∑
z=1

∥qρ(ĨB)− qρ(IB)∥1 (6)

where qρ is the output of dimension (hρ ×wρ × cρ) from the ρ-th layer of a pre-
trained VGG-19 network. We add two perceptual loss terms for ρ = 4 and ρ = 9
to the objective function. So, in our method, the overall optimization objective
for GS is given by

LGS
= λ1LGS

l1
+ λ2LGS

GAN + λ3(LGS

P4
+ LGS

P9
) (7)

where λ1, λ2, and λ3 denote the weighing parameters for respective loss terms.
We keep λ1 = 5, λ2 = 1, and λ3 = 5 in our experiments. Lastly, we define the
optimization objective for DS as

LDS
=

1

2

[
LBCE(DS(IA, IB), 1) + LBCE(DS(IA, ĨB), 0)

]
(8)

4 Dataset and Training

As this is one of the earliest attempts to perform a text-guided pose transfer,
we introduce a new dataset called DeepFashion Pose Annotations and Seman-
tics (DF-PASS) to compensate for the lack of similar public datasets. DF-PASS
contains a human-annotated textual description of the pose for 40488 images
of the DeepFashion dataset [26]. Each text annotation contains (1) the person’s
gender (e.g. ‘man’, ‘woman’ etc.); (2) visibility flags of the body keypoints (e.g.
‘his left eye is visible’, ‘her right ear is occluded’ etc.); (3) head and face orienta-
tions (e.g. ‘her head is facing partially left’, ‘he is keeping his face straight’ etc.);
(4) body orientation (e.g. ‘facing towards front’, ‘facing towards right’ etc.); (5)
hand and wrist positioning (e.g. ‘his right hand is folded’, ‘she is keeping her left
wrist near left hip’ etc.); (6) leg positioning (e.g. ‘both of his legs are straight’,
‘her right leg is folded’ etc.). We recruit five in-house annotators to acquire the
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Real Generated

A man is standing with his body facing towards right. His
head is facing right and he is keeping his face straight.
His left hand is straight but his right hand is occluded. He
is keeping his left wrist near right hip. Both of his legs are
occluded.

Real Generated

A man is standing with his body facing towards back.
Both of his hands are straight. Both of his legs are
occluded. He is keeping his left wrist near left hip and his
right wrist near right hip. His head is facing back and he is
keeping his face straight.

Real Generated

A woman is standing with her body facing towards back
left corner. Her head is facing partially left and she is
keeping her face straight. Her left hand is straight but her
right hand is folded. She is keeping her left wrist near left
hip and her right wrist near right hip. Both of her legs are
occluded.

Real Generated

A woman is standing with her body facing towards front.
Her head is facing front and she is keeping her face
straight. Her left leg is folded but her right leg is straight.
Both of her hands are straight. She is keeping her left
wrist near left hip and her right wrist near right hip.

Fig. 3. Qualitative results of text to pose generation using GT .

text descriptions, which two independent verifiers have validated. Each anno-
tator describes a pose during data acquisition by selecting options from a set
of possible attribute states. In this way, we have collected many-hot embedding
vectors alongside the text descriptions. We use 37344 samples for training and
3144 samples for testing out of 40488 annotated samples following the same data
split provided by [55].

In stage 1, the text to pose conversion network uses the stochastic Adam
optimizer [19] to train both GT and DT . We keep learning rate η1 = 1e−4,
β1 = 0, β2 = 0.9, ϵ = 1e−8, and weight decay = 0 for the optimizer. While
training, we update GT once after every five updates of DT . In stage 2, we train
the facial keypoints refinement network NR using stochastic gradient descent
keeping learning rate η2 = 1e−2. In stage 3, the pose rendering network also uses
the Adam optimizer to train both GS and DS . In this case, we keep learning
rate η3 = 1e−3, β1 = 0.5, β2 = 0.999, ϵ = 1e−8, and weight decay = 0. Before
training, the parameters of GT , DT , GS , and DS are initialized by sampling
from a normal distribution of 0 mean and 0.02 standard deviation.

5 Results

In Fig. 3, we demonstrate the output K∗
B of the text to keypoints generator

GT . The textual descriptions used for estimating the respective K∗
B are also

shown in the figure. It can be observed that the estimated keypoints K∗
B cap-

ture the pose PB and closely resembles KB . However, a precise observation may
reveal that the facial keypoints of K∗

B significantly differ from KB . In Fig. 4,
the advantage of regressive refinement of keypoints K∗

B is shown. As depicted in
the figure, the refinement network aims to rectify only the facial keypoints. In
Fig. 5, we demonstrate that when KB is selected from the DeepFashion dataset,
the existing PATN algorithm performs satisfactorily. However, when KB comes
from real-world samples (out of the DeepFashion dataset), PATN fails to gener-
ate the pose-transferred images while maintaining structural consistency. In the
case of the proposed algorithm, as the pose description does not require struc-
tural information of the target image, the generated pose-transferred images are
consistent with the respective source images. Our proposed algorithm performs
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Fig. 4. Qualitative results of regressive refinement using NR.

well irrespective of the representation of the source pose, i.e., for the partially
text-guided approach, where the source pose is represented using keypoints, and
for the fully text-guided approach, where the source pose is described using text.

5.1 Evaluation

As the proposed method has three major steps – text to keypoint generation,
refinement of the generated keypoints, and generation of the pose-transferred
image, it is important to analyze each step qualitatively and quantitatively.
Metrics: Quantifying the generated image quality is a challenging problem.
However, researchers [9,28,42,55] have used a few well-known quantitative met-
rics to judge the quality of the synthesis. This includes a Structural Similarity In-
dex (SSIM) [45], Inception Score (IS) [40], Detection Score (DS) [25], and PCKh
[1]. We also evaluate the Learned Perceptual Image Patch Similarity (LPIPS) [48]
metric as a more modern replacement of the SSIM for perceptual image quality
assessment. In our evaluation, we calculate LPIPS using both VGG19 [43] and
SqueezeNet [14] backbones. As we are dealing with human poses and evaluating
the generation quality, we propose a novel metric, named Gender Consistency
Rate (GCR), that evaluates whether the generated image ĨB can be identified
to be of the same gender as the source image IA by a pre-trained classifier. GCR
serves two purposes: first, it ensures that the gender-specific features are present
in the generated image, and second, it ensures that the generated target image is
consistent with the source image. To calculate GCR, we remove the last layer of
the VGG19 network and add a single neuron with sigmoid activation to design
a binary classifier and train it with the image samples from the DeepFashion
dataset with label 0 for males and label 1 for females. The pre-trained network



TIPS: Text-Induced Pose Synthesis 11

Keypoints Guided 
(PATN)

Partially Text Guided 
(Ours)

Fully Text Guided 
(Ours)

Keypoints Guided 
(PATN)

Partially Text Guided 
(Ours)

Fully Text Guided 
(Ours)

DeepFashion (Within distribution target pose samples) Real World (Out of distribution target pose samples)

Text Guided 
(Zhou et al.)

Text Guided 
(Zhou et al.)

Fig. 5. Qualitative results of different pose transfer algorithms.

achieves a test accuracy of 0.995. We use this pre-trained model to compute the
gender recognition rate for the generated images.
In Table 1, we evaluate our proposed algorithm on the DeepFashion dataset.
The keypoints-guided baseline [55] performs well for within distribution target
poses from DeepFashion. However, the proposed text-guided approach performs
satisfactorily, as reflected in SSIM, IS, DS, and LPIPS scores. As PCKh uses
keypoint coordinates, our method achieves a low PCKh score compared to the
keypoint-based method, which uses precise keypoints for the target image gen-
eration. For evaluating out of distribution target poses, we select 50 pairs of
source and target images from DeepFashion; however, we estimate the target
keypoints from real-world images (outside DeepFashion) having similar poses as
the original target images. As shown in Table 2, in such a case, the proposed
technique achieves significantly higher SSIM and PCKh values, indicating much
better structural generation for real-world pose references.
User Study: It is known that quantitative metrics do not always reflect the
perceptual quality of images well [42,55] and a quantifiable metric for evaluating
image quality is still an open problem in computer vision. Therefore, we also
perform an opinion-based user assessment to judge the realness of the generated
images. Following the similar protocol as [28,42,55], the observer needs to pro-
vide an instant decision whether an image is real or fake. We create a subset of
260 real and 260 generated images with 10 images of each type used as a practice
set. During the test, 20 random images (10 real + 10 fake) are drawn from the
remaining images and shown to the examiner. We compute the R2G (the frac-
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Table 1. Performance of pose transfer algorithms on DeepFashion.

Pose Generation Algorithm SSIM IS DS PCKh GCR
LPIPS
(VGG)

LPIPS
(SqzNet)

Partially Text Guided (Ours) 0.549 3.269 0.950 0.53 0.963 0.402 0.290
Fully Text Guided (Ours) 0.549 3.296 0.950 0.53 0.963 0.402 0.289
Zhou et al. [52] 0.373 2.320 0.864 0.62 0.979 0.310 0.215
PATN [55] 0.773 3.209 0.976 0.96 0.983 0.299 0.170

Real Data 1.000 3.790 0.948 1.00 0.995 0.000 0.000

Table 2. Performance of pose transfer algorithms for real-world targets.

Pose Generation Algorithm SSIM IS DS PCKh GCR
LPIPS
(VGG)

LPIPS
(SqzNet)

Partially Text Guided (Ours) 0.696 2.093 0.990 0.84 1.000 0.262 0.155
Fully Text Guided (Ours) 0.695 2.171 0.991 0.85 1.000 0.263 0.157
Zhou et al. [52] 0.615 2.891 0.931 0.52 1.000 0.271 0.182
PATN [55] 0.677 2.779 0.996 0.64 1.000 0.294 0.183

Real Data 1.000 2.431 0.984 1.00 1.000 0.000 0.000

tion of real images identified as generated) and G2R (the fraction of generated
images identified as real) scores from the user submissions. Our method achieves
a mean G2R score of 0.6968 for submissions by 156 individual volunteers.

5.2 Ablation

We perform exhaustive ablation experiments to understand the effectiveness of
different architectural components of the proposed pipeline. As shown in Table
3, refinement helps to improve SSIM, IS, and GCR scores in both partially and
fully text-based approaches. Though the improvement in terms of metric values
may look incremental, as shown in Fig. 6, the qualitative improvement due to
the refinement operation is remarkable. Facial features play an essential role in
the overall human appearance. Thus, the use of refinement is highly desirable in
the pipeline. We report the rest of the ablation results with a partially text-based
scheme while keeping the refinement operation intact in the pipeline.
We also explore several text embedding techniques and their effects on the gen-
eration pipeline. As shown in Table 4, the encoding methods like FastText [2]
and Word2Vec [30] perform closely to BERT [7]. Thus, we can conclude that our
method is robust to standard text embedding algorithms.
We also observe the effect of multi-resolution attention used in GS . In the case
of single-scale attention, we only take point-wise multiplication of the channels
of the final pose encoder and the final image encoder and skip all the following
supervision of the pose encoders at higher resolution levels. As shown in Table 5,
multi-scale attention significantly improves majority of the evaluation metrics.
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Table 3. Effects of source encoding and regressive refinement.

Source Encoding Refinement SSIM IS DS PCKh GCR
LPIPS
(VGG)

LPIPS
(SqzNet)

Keypoints ✘ 0.545 3.221 0.952 0.53 0.960 0.404 0.290
Keypoints ✔ 0.549 3.269 0.950 0.53 0.963 0.402 0.290
Text Embedding ✘ 0.545 3.261 0.952 0.53 0.960 0.404 0.290
Text Embedding ✔ 0.549 3.296 0.950 0.53 0.963 0.402 0.289

Real Data 1.000 3.790 0.948 1.00 0.995 0.000 0.000

Table 4. Effects of different text encoding methods.

Text Embedding SSIM IS DS PCKh GCR
LPIPS
(VGG)

LPIPS
(SqzNet)

Multi-hot 0.558 3.228 0.953 0.60 0.970 0.388 0.274
BERT [7] 0.549 3.269 0.950 0.53 0.963 0.402 0.290
FastText [2] 0.548 3.275 0.949 0.52 0.968 0.399 0.285
Word2Vec [30] 0.550 3.251 0.949 0.52 0.973 0.401 0.289

Real Data 1.000 3.790 0.948 1.00 0.995 0.000 0.000

Table 5. Effects of multi-resolution attention.

Pose Transfer Method SSIM IS DS PCKh GCR
LPIPS
(VGG)

LPIPS
(SqzNet)

Single-scale Attention Guided 0.540 3.170 0.921 0.54 0.954 0.415 0.298
Multi-scale Attention Guided 0.549 3.269 0.950 0.53 0.963 0.402 0.290

Real Data 1.000 3.790 0.948 1.00 0.995 0.000 0.000
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Fig. 6. Qualitative results by the proposed pipeline using the partially text-guided
generator with and without refinement.
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Fig. 7. Failure cases of the proposed framework.

6 Limitations

To the best of our knowledge, this is one of the earliest attempts to transfer pose
using textual supervision. As shown in Sec. 5, although the results produced
by the proposed approach are often at par with the existing keypoint-based
baseline, it fails to perform well in some instances. When the textual description
is brief and lacks a fine-grained description of the pose, the generator GT fails to
interpret the pose correctly. Some of the failed cases produced by our algorithm
are shown in Fig. 7.

7 Conclusion

In this paper, we have shown that the existing keypoint-based approaches for hu-
man pose transfer suffer from a significant flaw that occasionally prevents these
techniques from being useful in real-world situations when the target pose refer-
ence is unavailable. Thus, we propose a novel text-guided pose transfer pipeline to
mitigate the dependency on the target pose reference. To perform the task, first,
we have designed a text to keypoints generator for estimating the keypoints from
a text description of the target pose. Next, we use a linear refinement network to
regressively obtain a refined spatial estimation of the keypoints representing the
target pose. Lastly, we render the target pose by conditioning a multi-resolution
attention-based generator on the appearance of the source image. Due to the
lack of similar public datasets, we have also introduced a new dataset DF-PASS,
by extending the DeepFashion dataset with human annotations for poses.
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