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Abstract. Federated learning (FL) allows multiple clients to collabora-
tively train a deep learning model. One major challenge of FL is when
data distribution is heterogeneous, i.e., differs from one client to another.
Existing personalized FL algorithms are only applicable to narrow cases,
e.g., one or two data classes per client, and therefore they do not satis-
factorily address FL under varying levels of data heterogeneity. In this
paper, we propose a novel framework, called DisTrans, to improve FL
performance (i.e., model accuracy) via train and test-time distributional
transformations along with a double-input-channel model structure. Dis-
Trans works by optimizing distributional offsets and models for each
FL client to shift their data distribution, and aggregates these offsets at
the FL server to further improve performance in case of distributional
heterogeneity. Our evaluation on multiple benchmark datasets shows
that DisTrans outperforms state-of-the-art FL methods and data aug-
mentation methods under various settings and different degrees of client
distributional heterogeneity (e.g., for CelebA and 100% heterogeneity
DisTrans has accuracy of 80.4% vs. 72.1% or lower for other SOTA
approaches).

1 Introduction

Federated learning [35,30,18,48] (FL) is an emerging distributed machine learning
(ML) framework that enables clients to learn models together with the help of a
central server. In FL, each client learns a local model that is sent to the FL server
for aggregation, and subsequently the FL server returns the aggregated model to
the client. The process is repeated until convergence. One emerging and unsolved
FL challenge is that the data distribution at each client can be heterogeneous.
For example, for FL based skin diagnostics, the skin disease distribution for each
hospital / client can vary significantly. In another use case of smartphone face
verification, data distributions collected at each mobile device can vary from one
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Fig. 1: The pipelines of DisTrans. Each client jointly optimizes the offset and
model in local training phase, then uploads both to the central server for aggre-
gation. The aggregated model and offset are sent back to clients for next-round.

client to another. Such distributional heterogeneity often leads to suboptimal
accuracy of the final FL model.

There are two types of approaches to learn FL models under data hetero-
geneity: (i) improving FL’s training process and (ii) improving clients’ local data.
Unfortunately, neither improves FL under varied levels of data heterogeneity.
On one hand, existing FL methods [35,2,14], especially personalized FLs [28,26],
learn a model (or even multiple models) using customized loss functions or model
architectures based on heterogeneity level. However, existing personalized FL
algorithms are designed for highly heterogeneous distribution. FedAwS [50] can
only train FL models when local client’s data has one positive label. The per-
formance of pfedMe [43] and pfedHN [39] degrades to even 5% to 18% lower
accuracy than FedAvg [35], when the data distribution is between heterogeneity
and homogeneity.

On the other hand, traditional centralized machine learning also rely on
data transformations, i.e., data augmentation, [7,8,46,52,27,9,53,31] to improve
model’s performance. Such transformations could be used for a pre-processing of
all the training data or an addition to the existing training set. Until very recently,
data transformations are also used during test time [38,40,21,15,42] to improve
learning models, e.g., adversarial robustness [38]. However, it remains unclear
whether and how data transformation can improve FL particularly under different
client heterogeneity. The major challenge is how to tailor transformations for
each client with different data distributions.

In this paper, we propose the first FL distributional transformation frame-
work, called DisTrans, to address this heterogeneity challenge by altering local
data distributions via a client-specific data shift applied both on train and
test/inference data. Our distributional transformation alters each client’s data
distribution so that such distribution becomes less heterogeneous and thus the
local models can be better aggregated at the server. Specifically, DisTrans
performs a so-called joint optimization, at each client, to train the local model
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and generate an offset that is added to the local data. That is, an DisTrans’s
client alternately performs two steps in each round: 1) optimizing the personalized
offset to transform the local data via distribution shifts and 2) optimizing a local
model to fit its offsetted local data. After client-side optimization, the FL server
aggregates both the personalized offsets and the local models from all the clients
and sends the aggregated global model and offset back to each client. During
testing, each client adds its personalized offset to each testing input before using
the global model to predict its label.

DisTrans is designed with a special network architecture, called a double-
input-channel model, to accommodate client-side offsets. This double-input-
channel model has a backbone network shared by both channels, a dense layer
accepting outputs from two channels in parallel, and a logits layer that merges
channel-related outputs from the dense layer. This double architecture allows the
offset to be added to an (training or testing) input in one channel but subtracted
from the input in the other. Such addition and subtraction better preserves the
information in the original training and testing data because the original data
can be recovered from the data with offset in the two channels.

We perform extensive evaluation of DisTrans using five different image
datasets and compare it against state-of-the-art (SOTA) methods. Our eval-
uation shows that DisTrans outperforms SOTA FL methods across various
distributional settings of the clients’ local data by 1%–10% with respect to testing
accuracy. Moreover, our evaluation shows that DisTrans achieves 1%–7% higher
testing accuracy than other data transformation / augmentation approaches, i.e.,
mixup [51] and AdvProp [46]. The code for DisTrans is made available under
(https://github.com/hyhmia/DisTrans).

2 Related Work

Existing federated learning (FL) studies focus on improving accuracy [35,50,43,39],
convergence [12,6,37,17,45,32], communication cost [24,41,22,3,23,13,34,49], se-
curity and privacy [36,10,5,4], or others [16,20,11,47]. Our work focuses on FL
accuracy.
Personalized Federated Learning. Prior studies [43,50,39] have attempted
to address personalization, i.e., to make a model better fit a client’s local training
data. For instance, FedAwS [50] investigates FL problems where each local model
only has access to the positive data associated with only a single class and
imposes a geometric regularizer at the server after each round to encourage
classes to spread out in the embedding space. pFedMe [43] formulates a new
bi-level optimization problem and uses Moreau envelopes to regularize each client
loss function and to decouple personalized model optimization from the global
model learning. pFedHN [39] utilizes a hypernetwork model as the global model
to generate weights for each local model. MOON [29] uses contrastive learning
to maximize the agreement between local and global model.
Data Transformation. Data transformation applies label-preserving trans-
formations to images and is a standard technique to improve model accu-

https://github.com/hyhmia/DisTrans
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Fig. 2: Training loss with respect to optimal weight w on two clients’ local training
data with and w/o offset. We observe that offsets can make the training loss
against weight more consistent on local clients and help FL model converge.

racy in centralized learning. Most of the recent data transformation meth-
ods [7,8,46,52,27,9,53,31] focus on transforming datasets during the training
phase. For instance, mixup [51] transforms the training data by mixing up the
features and their corresponding labels; and AdvProp [46] transforms the training
data by adding adversarial examples. Additionally, transforming data at testing
time [38,40,21,15,42] has received increased attention. The basic test-time trans-
formations use multiple data augmentations [15,42] at test time to classify one
image and get the averaged results. Pérez et.al [38] aims to enhance adversarial
robustness via test-time transformation. As a comparison, DisTrans is the first
to utilize test-time transformation to improve federated learning accuracy under
data heterogeneity.

3 Motivation

DisTrans’s intuition is to transform each client’s training and testing data with
offsets to improve FL under heterogeneous data. That is, DisTrans transforms
the client-side data distribution so that the learned local models are less het-
erogeneous and can be better aggregated. To better illustrate this intuition, we
describe two simple learning problems as motivating examples. Specifically, we
show that well-optimized and selected offsets can (i) align two learning problems
at different FL clients and (ii) help the aggregated model converge.
Local Non-convex Learning Problems. We consider a non-convex learning
problem, i.e., f(x) = cos(wx) where w ∈ R, at two local clients with heterogeneous
data. The local data is generated via x, y ∈ R with y = cos(wtrue

clientkx) + ϵclientk,
where x is drawn i.i.d from Gaussian distribution and ϵclientk is Gaussian noise
with mean value as 0. The offsets are px+q where p is a fixed value at both clients
and q is chosen via brute force search. Figure 2a shows the squared training
loss with and without offsets. The difference between the training losses of two
learning models are reduced, thus making two clients consistent.
Linear Regression Problems with An Aggregation Server. We train two
local linear models, i.e., f(x) = wx with the model parameter w ∈ R2, aggregate
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Algorithm 1 Pseudo-code of DisTrans

Input: Number of clients C, local training dataset Di for client i, number of rounds R, batch size
B, number of epochs E, and learning rates η and ηp for model and offset t, respectively

Output: Offset ti for client i and global model θ
1: Server initializes global model θ0 and offset t0i for each client i
2: for r = 0 to R− 1 do
3: Server sends θr and tri to client i
4: for i = 0 to C − 1 do
5: θr

i ← θr // Initialize local model θr
i for client i

6: for e = 0 to E − 1 do
7: for each mini-batch Dm from Di do
8: tri ← SGD(∇tr

i
Lr

i , t
r
i , ηt) // Update offset tri

9: xt ← ((1− α)x + αtri , (1 + α)x− αtri ) // Combine tri with each x ∈ Dm

10: θr
i ← SGD(∇θr

i
Lr

i , θ
r
i , η) // Update local model

11: end for
12: end for
13: Client i sends θr

i and tri to server
14: end for
15: Server updates global model: θr+1 ← 1

C

∑
i∈[C] θ

r
i

16: Server updates offset tr+1
i for each client i via Offset Aggregation

17: end for

the parameters at a server following FL, and then repeat the two steps following
FL until convergence. The local training data is heterogeneous and generated
as y = wtrue

clientkx+ ϵclientk, where each of the two dimensions of x is drawn i.i.d
from normal distribution and ϵclientk is a Gaussian noise. The offset is the same
as the non-convex learning problem. We fix p and optimize q and w via SGD at
each client to minimize learning loss respectively. Figure 2b shows the squared
training loss with respect to the optimal w (sum value of two dimensions) with
and without the offsets. Clearly, when offsets are not present, the aggregated
model does not converge, resulting in a set of sub-optimal weights. Instead, the
aggregated model converges with a small training loss with the presence of offsets,
confirming our intuition.

4 Method

In this section, we present our proposed method in detail. DisTrans aims to learn
a single shared global model for the clients. Algorithm 1 shows the pseudo-code
of DisTrans. In each round, each client learns a local model and an offset, which
are sent to the central server. The server aggregates the clients’ local models and
local offsets, and sends them back to the clients. Based on the intuition presented
above, we propose a joint optimization method to learn a local model and offset
for a client in each round. Figure 1 illustrates our joint optimization that each
client performs.
Notations. We assume C clients and denote by Di the local training dataset for
client i, where i = 1, 2, · · · , C and |Di| = ni. We consider z = (x, y) a training
sample, where x ∈ Rm denotes the training input and y the label of the training
input. We also denote by Dti the offsetted local training dataset for client i, xt an
offsetted training input, and zt = (xt, y) a training sample offsetted with offset.
We denote by θ the global model.
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4.1 Double-Input-Channel Model Architecture

DisTrans uses a double-input-channel neural network architecture (see Figure 1)
for a local/global model. Our architecture has a shared backbone network, a
dense layer concatenating two channels’ outputs, and a logits layer merging
outputs from the dense layer. Specifically, these two channels shift the local data
distribution in two different ways using the same offset t. Formally, Eq. 1 shows
our two linear shifts:

xt = ((1− α)x+ αt, (1 + α)x− αt)), (1)

where the first channel adds the offset t to the input x with a coefficient α (i.e.,
(1− α)x+ αt is the input for the first channel) and the second subtracts t from
x with the same α (i.e., (1 +α)x−αt is the input to the second channel). Unless
otherwise mentioned, our default setting for α is 0.3 in our experiments.

4.2 Joint Optimization

In our joint optimization, each client aims to achieve the following two goals:

• Goal 1. Optimizing offset to shift local data distribution to better fit with local
model.

• Goal 2. Optimizing local model to fit with offsetted local data distribution.

We formulate the two goals as an optimization problem. Specifically, client i
aims to solve the following optimization problem in round r:

min
θr
i ,t

r
i

Lr
i =

1

n

∑
zt∈Dti

l(θri , zt), (2)

where θri is the local model of client i, tri is the offset of client i, and Lr
i is the

loss function of client i in round r. We choose cross entropy as loss term in our
implementation. Solving tri in Eq. 2 while fixing θri achieves Goal 1; and solving
θri in Eq. 2 while fixing tri achieves Goal 2. Therefore, we initialize θri as the global
model θr and alternately optimize tri and θri for each mini-batch. Algorithm 1
illustrates our pseudo-code.

4.3 Model and Offset Aggregation

The server aggregates both the local models and the offsets from the clients.
The model aggregation follows the traditional FL, e.g., the server computes the
mean of the clients’ local models as the global model like FedAvg [35]. Our offset
aggregation leverages the class distribution at each client. Next, we first introduce
a metric to measure distributional heterogeneity and then our offset aggregation
method based on the metric.
Distributional Heterogeneity. We define distributional heterogeneity to char-
acterize the class heterogeneity among the clients. Formally, we denote distribu-
tional heterogeneity as DH and define it as follows:

DH = 1−
∑

j∈[1,N ] cj

N × C
, (3)
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Fig. 3: Different distributional heterogeneity levels on CIFAR-10.

where N is the total number of classes, C is the total number of clients, and cj
is defined as follows:

cj =

{
0, if only one client has data from class j,

k, if k > 1 clients have data from class j.
(4)

Our defined DH has a value between 0 and 100%. In particular, DH = 0%
means that each client has data from the C classes, e.g., the clients’ local data
are i.i.d., while DH = 100% means that each class of data belongs to only one
client, i.e., an extreme non-i.i.d. setting. Figure 3 shows examples of different
levels of distributional heterogeneity visualized by heatmaps for clients’ local
data in our experiments on CIFAR-10. We list clients on the x-axis and classes
on the y-axis; and each cell is the fraction of the data from the corresponding
class that are on the corresponding client.

4.4 Offset Aggregation Methods

DisTrans aggregates clients’ offsets based on distributional heterogeneity. Intu-
itively, when the distributional heterogeneity is very large, the offset of one client
may not be informative for the offset of another client, as their data distributions
are substantially different. Therefore, we aggregate clients’ offsets only if the
distributional heterogeneity is smaller than a threshold (we set the threshold to
be 50% in experiments).

Suppose the distributional heterogeneity of an FL system is smaller than the
threshold. One naive way to aggregate the clients’ offsets is to compute their
average as a global offset, which is sent back to all clients. However, such naive
aggregation method uses the same global offset for all clients, which achieves
suboptimal accuracy as shown in our experiments. Therefore, we propose a neural
network based aggregation method, which produces different aggregated offsets
for the clients. Specifically, the server maintains a neural network, which takes
a client-specific embedding vector e ∈ R1×N and a client’s offset as input and
outputs an aggregated offset for the client, where an entry ei of the embedding
vector is the fraction of the training data in class i that are on the client.

The server learns the offset aggregation network by treating it as a regression
problem during the FL training process. Specifically, in each round of DisTrans,
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the server collects a set of pairs (ti, t
′
i), where ti is the offset from client i in

the current round, t′i is the aggregated offset the server outputs for client i in
the previous round, and i = 1, 2, · · · , C. The server learns the offset aggregation
network by minimizing the ℓ2 distance between ti and t′i, i.e., min

∑C
i=1 ||ti− t′i||2,

using Stochastic Gradient Descent (SGD).

5 Experiments

Hyperparameters. Our model’s architecture is the double-input-channel model
as shown in Figure 1. Our default α value is 0.3, number of epochs E = 1, and the
learning rates for the model and offset optimization are 5e-3 and 1e-3 respectively.
Our neural network based offset aggregator’s architecture is a single-input-channel
generator with four convolutional layers.
Datasets and Model Architectures. We use six different datasets in the
experiment to show the generality of DisTrans. (i) The BioID [1] dataset
contains 1521 gray level images with the frontal view of 23 people’s face and eye
positions. We keep 20 people’s images in a descending order and central-crop the
images into 256×256. (ii) The CelebA [33] dataset contains 202,599 face images of
10,177 unique, unnamed celebrities. Due to computation resource limit, we choose
images of 50 identities in descending order, central-crop them to 178×178, and
then resize to 128×128. (iii) The CH-MNIST [19] dataset contains eight classes of
5,000 histology tiles images (64x64) from patients with colorectal cancer, (iv) The
CIFAR-10 [25] dataset contains 60,000 32×32 color images in 10 different classes,
we resize them to 64×64, (v)The CIFAR-100 [25] dataset contains 60,000 32×32
color images in 100 different classes, and (vi) Caltech-UCSD Birds-200-2011 [44]
(referred as Bird-200. The Bird-200 dataset contains 11,788 image from 200 bird
species. Due to computation resource limit, we resize them to 128×128.

Here are the model architectures for each dataset. We use LeNet as the
backbone for BioID, AlexNet for CelebA, CH-MNIST and CIFAR-100, ResNet18
and ResNet50 for CIFAR-100, and ResNet18 for Bird200.
Local Data Distribution. Our local data distribution ranges from entirely i.i.d.
to extreme non-i.i.d., i.e., with distributional heterogeneity value ranging from
0% to 100%. Our data splitting method follows SOTA approach [39]. Specifically,
we first assign a specific number of classes u out of total classes N for each client.
Then, we sample si,c ∈ (0.4, 0.6) for each client i and a selected class c, and then
assign the client with

si,c∑
n sn,c

of the samples for the class c. We repeat the same

process for each client.

5.1 Results under Different Data Distributions

We evaluate DisTrans’s accuracy with different data distributions and compare
with SOTA personalized FL works.
Extreme non-i.i.d. The extreme non-i.i.d. setting, following prior work [50], is
a setup where each client only has one class (called positive labels), thus being
disjointed from each other. The distributional heterogeneity value is thus 100%.
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Table 1: DisTrans vs. SOTA under different data distribution. — means that
the approach is not applicable under that setting, and DH means distributional
heterogeneity (0%: i.i.d. and 100%: extreme non-i.i.d.). We did not evaluate the
datasets of BioID and CelebA under other distributional settings due to the
relative small number of images per class.

Dataset # clients DH DisTrans (ours) FedAvg pFedMe pFedHN MOON FedAwS

CH-MNIST 8

0% (i.i.d.) 0.908 0.891 0.778 0.702 0.887 —

50% 0.907 0.892 0.834 0.871 0.894 —

100% 0.946 0.908 0.908 0.641 0.910 0.942

CIFAR-10 10

0% (i.i.d.) 0.829 0.809 0.520 0.652 0.789 —

40% 0.819 0.782 0.523 0.721 0.809 —

60% 0.846 0.751 0.673 0.785 0.798 —

80% 0.891 0.702 0.736 0.869 0.794 —

100% 0.860 0.726 0.751 0.629 0.813 0.829

CIFAR-100 10

0% (i.i.d.) 0.533 0.531 0.020 0.354 0.532 —

40% 0.586 0.538 0.018 0.492 0.564 —

60% 0.646 0.523 0.017 0.604 0.628 —

80% 0.734 0.461 0.013 0.669 0.709 —

100% 0.834 0.524 0.015 0.469 0.820 —

Bird-200 10

0% (i.i.d.) 0.556 0.518 0.018 0.053 0.523 —

40% 0.548 0.521 0.015 0.064 0.528 —

60% 0.542 0.528 0.012 0.086 0.532 —

80% 0.565 0.524 0.010 0.125 0.550 —

100% 0.641 0.549 0.014 0.309 0.621 —

BioID 20 100% 0.988 0.911 0.902 0.932 0.961 0.983

CelebA 50 100% 0.804 0.639 0.527 0.545 0.497 0.721

We single out this setting, because the evaluation metrics are different from
other settings given that each client only has positive images. That is, the same
amount of negative images (i.e., randomly-selected images from other classes)
are introduced in the testing dataset just like prior work [50].

The rows with 100% distributional heterogeneity values in Table 1 show
the model’s accuracy of DisTrans and the comparison with SOTA works. As
shown in those results, DisTrans outperforms all prior works with five different
datasets with an improvement ranging from 0.4% to 7.7%. FedAwS is clearly the
SOTA, which always performs next to DisTrans, because it is designed for this
extreme setting. Due to the negative test images, pFedHN performs poor since
the server assigns each client model weights that are trained on only positive
images according to its mechanism. FedAvg performs better than we expect
because the features of negative examples are aggregated from other clients. We
did not evaluate CIFAR-100 or Bird-200 under positive labels scenario (FedAws),
since the number of classes per client does not satisfy positive labels setting when
# clients equals to 10 for them. Instead, each client is assigned 10 or 20 disjoint
classes as the extreme non-i.i.d. case.
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Table 2: Comparison with data transformation for CH-MNIST dataset.

Method
Distributional heterogeneity

0% 25% 50% 75% 100%

FedAvg 0.891 0.893 0.892 0.847 0.908
DisTrans 0.908 0.904 0.907 0.905 0.946
mixup 0.896 0.895 0.882 0.839 0.901

AdvProp 0.879 0.880 0.877 0.859 0.919

Other Distributional Settings. Other settings include distributional hetero-
geneity values ranging from 0% (i.i.d.) to 80% . The evaluation also follows prior
FL works [35,43], i.e., each client evaluates testing data with the same classes as
its training data. Table 1 also shows the accuracy of DisTrans and four other
SOTA works (FedAvg, pFedMe, MOON, and pFedHN). DisTrans outperforms
STOA works in every data distribution for all datasets. Note that we do not
evaluate FedAwS in these settings because its design is only applicable to the
extreme non-i.i.d. setting.

5.2 Comparing with Data Transformation

We compare DisTrans with two state-of-the-art, popular data transformation
(augmentation) methods, mixup [51] and AdvProp [46]. The former, i.e., mixup,
augments training data with virtual training data based on existing data samples
and one hot encoding of the label. The latter, i.e., AdvProp, augments training
data with its adversarial counterpart. We add both data transformation methods
for local training data at each client of FedAvg.

The comparison results are shown in Table 2. DisTrans appears to out-
perform both mixup and AdvProp in different data distributions from i.i.d. to
non-i.i.d. There are two major reasons. First, DisTrans shifts local training
and testing data distribution to fit the global model, but existing data transfor-
mation only improves training data. Second, DisTrans aggregates the offset
based on data distributions, but neither data transformation approaches did
so. Another thing worth noting is that mixup improves FedAvg under an i.i.d.
setting, but AdvProp improves FedAvg under a non-i.i.d. setting. On one hand,
that is likely because virtual examples under a non-i.i.d. setting may introduce
further distributional discrepancies, while adversarial examples may help each
local model better know the boundary. On the other hand, the distribution is
the same under an i.i.d. setting and so does the virtual examples, but different
adversarial examples may explore different boundaries at different clients.

5.3 Ablation Studies

Single vs. Double-Input Channel. We compare the performance of single vs.
double-input-channel models to demonstrate the necessity in using the double-
input-channel model. Table 3 shows the model’s accuracy on three datasets with
different distributional heterogeneity values. As shown, the double-input-channel
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Table 3: Ablation study on model structures. We adopt different distributional hetero-
geneity values according to the number of classes in the dataset, i.e., 0%, 25%, 50%,
75%, and 100% for CH-MNIST (8 classes) and 0%, 40%, 60%, 80%, and 100% for
CIFAR-10 (10 classes) and Bird-200 (200 classes).

Dataset Structure
Distributional heterogeneity

0% 40%/25% 60%/50% 80%/75% 100%

CH-MNIST
single 0.874 0.871 0.872 0.874 0.889
double 0.908 0.904 0.907 0.905 0.946

CIFAR-10
single 0.775 0.802 0.785 0.796 0.811
double 0.829 0.819 0.846 0.891 0.860

Bird-200
single 0.569 0.512 0.497 0.501 0.505
double 0.556 0.548 0.542 0.565 0.641

Table 4: Ablation study on aggregation methods. We adopt different distributional
heterogeneity values according to the number of classes in the dataset, i.e., 0%, 25%,
50%, 75%, and 100% for CH-MNIST (8 classes) and 0%, 40%, 60%, 80%, and 100% for
CIFAR-10 (10 classes) and Bird-200 (200 classes).

Dataset Aggregation
Distributional heterogeneity

0% 40%/25% 60%/50% 80%/75% 100%

CH-MNIST

no agg 0.868 0.887 0.907 0.905 0.946
avg agg 0.903 0.902 0.907 0.865 0.899
nn agg 0.908 0.904 0.905 0.887 0.921

nn+no (default) 0.908 0.904 0.907 0.905 0.946

CIFAR-10

no agg 0.767 0.789 0.846 0.891 0.860
avg agg 0.811 0.814 0.813 0.702 0.798
nn agg 0.829 0.819 0.799 0.743 0.839

nn+no (default) 0.829 0.819 0.846 0.891 0.860

Bird-200

no agg 0.501 0.522 0.542 0.565 0.641
avg agg 0.526 0.529 0.525 0.515 0.489
nn agg 0.556 0.548 0.551 0.532 0.513

nn+no (default) 0.556 0.548 0.551 0.565 0.641

model always outperforms the single-input-channel with around 3%–9% accuracy
improvement on three different datasets.

Different Offset Aggregations. We compare different offset aggregation meth-
ods, i.e., no aggregation, average aggregation and neural network (NN) based
aggregation, on three datasets with various distributional heterogeneity values.
Table 4 shows the comparison results. No aggregation performs best when the
distributional heterogeneity is greater than 50%, and NN aggregation performs
the best when the distributional heterogeneity is smaller than 50%. Average
aggregation always performs worse than the other two. This motivates the design
of DisTrans in adopting no aggregation for greater than 50% distributional
heterogeneity and NN aggregation for less than 50% distributional heterogeneity,
which is the “nn+no (default)” row in Table 4.
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Different α Values. We evaluate top-1 accuracy of DisTrans with different α
values, and 0% and 100% distributional heterogeneity to justify why we choose
0.3 as α. Figure 4 shows the results. The accuracy with 100% distributional
heterogeneity is more sensitive to α than that with 0%. In both data distributions,
the accuracy is the highest when α equals 0.3. The reason is as follows. When α
is small, the offset is too weak to shift the distribution. When the α is large, the
offset is too strong in overriding the original data distribution.
Different Local Epochs. We study different local training epochs for each
round. Figure 5 shows the accuracy for CH-MNIST, CIFAR-100, and Bird-200
with epochs from 1, 5, 10, to 20. The accuracy is the highest with the local
epoch as 1, and decreases when the epoch increases. The reason is too much local
training makes offsets become overfitted to local data.
Convergence Rate. We study the convergence rate of three SOTA works and
DisTrans in terms of communication rounds between the server and local clients.
Figure 6 shows the number of communication rounds as the x-axis and the
model’s accuracy as the y-axis for the Birds-200 dataset under the i.i.d. setting
(i.e., 0% distributional heterogeneity). There are two things worth noting. First,
as shown, the convergence rate of DisTrans is similar to that of FedAvg, which
needs approximately 100 rounds. Second, the accuracy of DisTrans is constantly
better than FedAvg for each communication between client and server.

5.4 Scalability

We study the scalability of DisTrans using two datasets CH-MNIST and CIFAR-
100 as the number of FL clients increases. First, we test the number of clients
from 8, 16, 24, to 40 using 50% distributional heterogeneity for CH-MNIST. The
third column in Table 5 shows the accuracy of four different works including
DisTrans as the number of clients increases. The fourth to eighth columns in
Table 5 show the total number of rounds to reach certain accuracy. Generally, the
convergence needs more rounds with more clients, which aligns with the previous
work [35]. Second, we show the testing accuracy in Table 6 for CIFAR-100 (with
ResNet18) of 50, 100, and 500 clients. Each client has 10 classes and the sample
rate is 0.2 [29]. DisTrans outperforms SOTA by 8.8%–30.7%. Note that the
accuracy of DisTrans drops by 8.4% while SOTA drops by 10.8% to 27.6% for
500 clients.
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Table 5: Best accuracy and the number of rounds to achieve it vs. different
number of clients using the CH-MNIST dataset when reaching listed accuracy,
e.g., DisTrans needs 5 rounds to achieve a 0.800 accuracy with 8 clients. (—:
the approach cannot reach the accuracy under that setting.)

# clients Best accuracy
# of rounds to achieve

>0.700 >0.800 >0.850 >0.870 >0.890

DisTrans (ours)

8 0.907 2 5 10 36 63
16 0.898 8 15 25 51 123
24 0.897 12 26 37 68 154
40 0.895 14 29 40 87 192

FedAVG

8 0.892 3 5 15 24 78
16 0.883 7 12 23 48 —
24 0.880 10 21 39 74 —
40 0.878 19 34 44 100 —

pFedMe

8 0.834 690 779 — — —
16 0.805 844 1,225 — — —
24 0.725 1,859 — — — —
40 0.719 3,071 — — — —

pFedHN

8 0.871 3 8 23 117 —
16 0.817 6 29 — — —
24 0.816 4 28 — — —
40 0.832 5 27 — — —

Table 6: Best accuracy vs. number of clients on CIFAR-100.

DisTrans pFedHN pFedHN-pc MOON

#Client 50 100 500 50 100 500 50 100 500 50 100 500

Accuracy 0.729 0.681 0.645 0.614 0.538 0.338 0.623 0.541 0.372 0.615 0.593 0.507

Table 7: Communication overhead of weights and offset for 64x64 RGB images.

Baseline (in bytes) DisTrans (in bytes)
∆ overhead

single-input-channel weight double-input-channel weight offset

LeNet 4,346,447 4,350,415 49,280 1.225%
AlexNet 244,449,263 244,489,263 49,280 0.036%
ResNet18 44,805,709 44,826,189 49,280 0.155%
ResNet50 94,326,992 94,408,912 49,280 0.139%

5.5 Communication Overhead

We study the communication overhead by calculating the ∆ bytes brought by
our double-input-channel weights and offset in each communication round. The
comparison baseline used is FedAvg with conventional single-input-channel model.
Table 7 shows results for different backbone neural network architectures: The
overhead is between 0.036% to 1.225% with an average value of 0.389% for
different network architectures because the double-input-channel model only
introduces one additional layer and the offsets are small.
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Fig. 7: UMAP visualization of embedded feature representations in the global
model for test images in CIFAR-10. DisTrans learns better feature representa-
tions than FedAvg, FedAwS, and pFedMe.

5.6 Prediction Visualization

We perform an experiment on CIFAR-10 using ten FL clients where each client
has data for only one class, and visualize hidden feature representations using
Uniform Manifold Approximation and Projection (UMAP) in Figure 7. The model
trained using FedAvg learns poor features, which are mixed and indistinguishable.
The feature representations of FedAwS and pFedMe also highly overlap. By
contrast, the feature representations of DisTrans are well separated in Figure 7d
as a result of shifting the local data distributions via personalized offsets.

6 Conclusion

FL often needs to contend with client-side local training data with different
distributions with high heterogeneity. This paper advances a novel approach,
DisTrans, based on distributional transformation, that jointly optimizes local
model and data with a personalized offset and then aggregates both at a central
server. We perform an empirical evaluation of DisTrans using five different
datasets, which shows that DisTrans outperforms SOTA FL and data aug-
mentation methods, under different degrees of data distributional heterogeneity
ranging from extreme non-i.i.d. to i.i.d.
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