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In this supplementary material, we provide additional details on geo-cell partitioning,
data augmentation, hyper-parameter values, baselines, evaluation metrics and illustrate
additional quantitative and qualitative results.

A Implementation Details & Hyper-parameter Values

A.1 Adaptive Geo-cell Partitioning

We utilize the S2 geometry library’ to divide the earth’s surface into a fixed number of
non-overlapping geographic cells. To directly compare our results with baselines, we use
the same partitioning approach like [6], where we subdivide the earth’s surface into three
resolutions containing 3298, 7202, and 12893 geo-cells referred to as coarse, middle,
and fine cells, respectively. The partitioning ensures each cell contains at least 50 and at
most 5000, 2000, and 1000 training images for the coarse, middle, and fine resolution.
Limiting the number of training images into a minimum and maximum range per geo-cell
gives two advantages. First, the training set does not suffer from class imbalance, which
is pivotal for classifying many classes. Second, the geographic areas which are heavily
photographed are subdivided into smaller cells, allowing more precise geo-localization
of these regions (such as big cities and tourist attractions). However, one drawback of
this approach is that many geographic areas have less than the required minimum number
of images. Consequently, many locations (such as oceans, remote mountainous regions,
deserts, poles) are discarded because of insufficient images. With the minimum range of
50, the partitioning covers almost 84% of the entire earth’s surface.

In classification-based geo-localization, the number of geo-cells closely relates to the
prediction accuracy. In other words, since the predicted GPS coordinates are always the
mean location of all training images in the predicted geo-cell, coarse cells often can not
produce good street-level accuracy. On the other hand, fine cells improve localization
precision by generating smaller geo-cells in highly photographed areas. Figure A.1 shows
the improvement of street-level (1 km) and city-level (25 km) geolocational accuracy by
using the predictions from finer cells on four different datasets. Since the continent-level
(2500 km) accuracy is not directly related to the size of cells, it remains almost unchanged
with geo-cell resolution variation. Next, we use an ensemble of hierarchical classification

3https://code.google.com/archive/p/s2-geometry-library/source
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Fig. A.1: Effect of the predictions from three different partitioning schemes on
the performance of TransLocator. The street-level (1 km) and city-level (25 km)
geolocational accuracy significantly improves as we employ finer geo-cells. However,
the continent-level (2500 km) accuracy remains almost unchanged.

using all three resolutions. However, in agreement with [10], this method does not
achieve a consistent improvement than considering only fine partitioning. Moreover, the
ensemble increases inference time by almost 9%. Following these observations, we use
the predictions of the fine geo-cells in all our experiments. We believe that adding a
retrieval network after classification would improve the performance by allowing the
system to search within the predicted geo-cell. However, this paper does not consider
any retrieval extensions for a fair comparison with the baselines.

A.2 Data Augmentation

Since the training set contains images in various orientations, resolutions and scales,
we use extensive data augmentation. The augmentation policy includes: RandomAffine
with degrees (0, 15), ColorJitter containing {brightness, contrast, saturation, hue}
strength of {0.4, 0.4, 0.4, 0.1} with a probability of 0.8, RandomHorizontalFlip with
a probability of 0.5, Resize in (256, 256), Tencrop with size (224, 224) and standard
Normalization. We apply ColorJitter only in the RGB channel. Table A.1 shows an
empirical analysis of the effectiveness of different augmentation techniques on training
TransLocator. We start with the standard Flip, Resize and Normalization operations.
Adding Affine transformation and ColorJitter helps in improving the performance by
a tiny margin. However, the TenCrop augmentation shows to have a significant effect,
improving 0.5 — 1.1% street-level accuracy in Im2GPS and Im2GPS3k datasets. Since
the important visual cues for geo-localization often reside on the edges of the image,
taking multiple crops from different positions and averaging the predictions helps in
improving the performance.
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Table A.1: Role of different data augmentation techniques on training TransLocator.
RHF, R, N, RA, CJ and TC denotes RandomHorizontalFlip, Resize, Normalization,
RandomAffine, ColorlJitter and, Tencrop, respectively, using the parameters mentioned
in Section A.2.

Distance (a, [%] @ km)
Dataset Method Street City Region Country Continent
1 km 25km  200km  750km 2500 km
RHF+R +N 18.8 46.2 62.8 73.6 83.6
Im2GPS +RA 18.8 46.5 63.1 73.8 83.8
[2] +RA +CJ 19.0 46.8 63.2 74.1 84.0
+RA+CJ+TC 19.9 48.1 64.6 75.6 86.7
RHF+R +N 11.3 30.4 45.7 58.0 78.4
Im?)(l?PS +RA 11.4 30.6 46.0 58.0 78.5
+RA +CJ 11.4 30.8 459 58.2 78.7
2] +RA+CJ+TC 11.8 31.1 46.7 58.9 80.1

Table A.2: Hyper-parameters of TransLocator.

Hyper-parameters \Notation\ Value

#dim for dense layers in MFF| - [768,8,1]

R coarse | [768,3298]

#dim for classification FC mtl,l(jile [[7766887 ’ 6500000(3’17228092?1]

scene | [768,3/16/365]

Training

Batch-size - 256

Epochs N 40

Optimizer - AdamW

Loss - CE

Base learning rate o 0.1

Momentum - 0.9

Learning rate scheduler - Cosine

Warmup epochs - 2

Weight decay - 0.0001

A.3 Hyper-parameter Details

In Table A.2, we furnish the details of hyper-parameters used during training. Grid
search is performed on batch size, learning rate, and the depth of classifier heads to find
the best hyper-parameter configuration. The model is evaluated after every epoch on
the validation set and the best model was taken to be evaluated on the test set. We use
AdamW [5] optimizer with cosine learning rate scheduler and fixed number of warmup
steps for optimization without gradient clipping.

B Baselines

In this section, we provide additional details about the baseline methods. Very few
approaches in the literature have attempted to geo-locate images on a scale of an entire
world without any restrictions. In the last 5 years, CNNs trained with large-scale datasets
have significantly improved the planet-scale geo-localization performance. To the best
of our knowledge, we are the first to introduce the effectiveness of fusion transformer
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architecture for this ill-posed problem. We compare our method with the following
baselines:

o Im2GPS [1] is the first to attempt planet-scale geo-localization by using a simple
retrieval approach to match a given query image based on a combination of different
hand-crafted image descriptors to a reference dataset containing more than 6M GPS-
tagged images. This approach has later been improved [2] by refining the search with
multi-class support vector machines.

e PlaNet [12] is the first deep neural network trained for unconstrained planet-scale
geo-localization. More specifically, PlaNet divides the earth in 26263 geo-cells and
trains an inception [9] network with batch normalization [3] using 91M geo-tagged
images. PlaNet outperforms both versions of Im2GPS [1,2] by a substantial margin.

o [L]KNN [ 1] proposes a retrieval-based geo-localization system which combines the
Im2GPS and PlaNet by using features extracted by CNNs for nearest neighbour search.
Though this method uses a 5-times smaller training set than PlaNet, the retrieval-
based approach requires a substantially larger inference time and disk space than
classification approaches.

e CPlaNet [8] develops a combinatorial partitioning algorithm to generate a large number
of fine-grained output classes by intersecting multiple coarse-grained partitionings of
the earth. This technique allows creating small geo-cells while maintaining sufficient
training examples per cell and hence improves the street- and city-level geolocational
accuracy by a large margin.

e MvVMF [4] introduces the Mixture of von-Mises Fisher (MvMF) loss function for
the classification layer that exploits the earth’s spherical geometry and refines the
geographical cell shapes in the partitioning.

e ISNs [0] reduces the complexity of planet-scale geo-localization problem by leveraging
contextual knowledge about environmental scenes. To deal with the huge diversity of
images on earth’s surface, this approach trains three different ResNet101 networks for
natural, urban, and indoor scenes, and achieves the current state-of-the-art performance
on Im2GPS and Im2GPS3k. However, training different networks is cost-prohibitive
and can not be generalized to a larger number of scenes. Our work addresses the
limitations of ISNs by training a unified dual-branch transformer network in a multi-
task framework and improves the state-of-the-art results by a significant margin.

C Evaluation Metrics

In a classification setup, we train TransLocator using cross-entropy loss which is closely
associated with the classification accuracy. However, we evaluate TransLocator using
geolocational accuracy. Hence, we empirically verify the strong correlation between
these two metrics. We consider the Top- NV classification accuracy for 8 different NV values
(1, 5, 10, 50, 100, 200, 300, 500) and geolocational accuracy (a,.) for 8 different  values
(1, 25, 100, 200, 400, 750, 1500, 2500) in similar intervals, and observe the correlation
among them on different evaluation sets. The Pearson correlation coefficients between the
two metrics for TransLocator are 0.978, 0.984, 0.985 and 0.982 on Im2GPS, Im2GPS3Kk,
YFCC4k and YFCC26k, respectively. We also observe a similarly high correlation for
the ViT-MT model. Figure 4 in the main paper and Figure C.1 in supplementary material
illustrates the strong linear correlation between the two metrics for TransLocator and
ViT-MT on all 4 evaluation sets.
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Fig. C.1: Strong linear relationship between the geolocational and classification
accuracy metrics. The positive correlation enables us to treat geo-localization as a
classification problem.

D Additional Quantitative Results

In this section, we investigate the contribution of different loss functions and provide a
direct comparison of TransLocator with the ISNs [6].

D.1 Ablation Study on Training Objective

As discussed in section 3.4 of the main paper, our overall training objective contains three
losses for geo-cell prediction and one for scene recognition. Table D.1 shows how each
loss function contributes to the performance of TransLocator on Im2GPS and Im2GPS3k
datasets. We begin with training TransLocator separately on coarse, middle, and fine
geo-cells. As the size of the geo-cells reduces, the geolocational accuracy with a smaller
distance threshold typically improves. With the fine geo-cells, TransLocator gains 5 -
8.3% street-level accuracy than using the coarse cells. Combining all three different
geo-cells helps the system learn geographical features at different scales, leading to a
more discriminative classifier and improving the street-level accuracy by 0.2 - 0.9%.
The performance is further improved by another 0.7 - 0.9% after adding the scene
information, which reduces the complexity of the data space by providing contextual
knowledge about the surroundings.

D.2 Differences from ISNs

As the Individual Scene Networks (ISNs) [6] is the first method that utilizes scene
information for geo-localization, we present clear differences of our method from ISNs.
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Table D.1: Ablation study on different losses of the training objective of TransLoca-
tor. The finer geo-cells helps to improve the geolocational accuracy with smaller distance
threshold.

Distance (a, [%] @ km)
Dataset |70 ﬁg;’od‘”c nggﬁ‘ Lascene|| Street City Region Country Continent
1 km 25 km 200km 750 km 2500 km
X X X 9.8 30.9 54.4 72.5 84.7
X X X 14.0 384 58.5 72.9 86.7
Im2[G]PS X X X 18.1 46.0 61.8 73.1 85.7
X 19.0 47.2 62.7 73.5 85.7
19.9 48.1 64.6 75.6 86.7
X X X 5.9 22.7 40.7 54.9 77.0
Im2GPS X X X 8.0 25.5 42.8 56.9 78.1
3k X X X 10.9 29.8 45.0 56.8 78.1
2] X 11.1 30.2 45.0 56.8 78.1
11.8 31.1 46.7 58.9 80.1

Table D.2: Comparison of unified and separate systems for different scene kinds.
Using separate systems is not only cost-prohibitive but also does not utilize semantic
similarities across different scene kinds.

Evaluation Set {Scene} (Distance (a, [%] @ km)

Dataset Method 'lér;l:;a Natural Urban Indoor
1km 200km 2500 km|| 1km 200km 2500 km| 1km 200 km 2500 km
Natural 2.5 48.8 713 — — — — — —
ISNs (M, f, S3) [6] |Urban — - - 22.6 56.5 89.9 — - -
Indoor — — — — — — 15.8 31.6 57.9
ImQ[C]PS 7};1;51:0;1;;7 [Nawral  ||” 38~ 549 ~ 770 || - - = - — =~
Wo scene Urban - - - 24.8 65.0 88.2 - - -
Indoor - — - - - - 204 552 79.0
" TransLocator  [AIl ]| 50 608 838 || 275 ~ 729 869 | 263 614 947
Natural 32 31.8 63.1 — — — — — —
ISNs (M, f, S3) [6] |Urban — - - 14.1 44.8 72.7 - - -
Im2GPS Indoor — — — — — — 9.2 17.8 48.4
3k 7};11;1:0;1;;7 [Natwral  ||” 40 365 708 || - - = - - -~
2] Wo scene Urban - - - 14.4 459 80.2 - - -
Indoor - - - - - - 10.4 282 68.5
" TransLocator ALl ~ || 4 47 426 752 || 150 459 B33 || 130 327 82

First, ISNs train three separate ResNet101 networks for natural, urban and indoor scenes.
In contrast, TransLocator uses a unified dual-branch transformer backbone for all scenes.
Using three different networks is cost-prohibitive and restricts the system from sharing
the learned features across different scene kinds that likely have higher-order semantic
similarities. To directly comprehend the effectiveness of a unified network, we train
TransLocator without its scene recognition head separately on natural, urban and indoor
images. As shown in Table D.2, the single network achieves better performance than
separate networks for all three scene kinds. Table D.2 also exhibits the effectiveness
of dual-branch transformer backbone than ResNet for geo-localization. Moreover, un-
like ISNs, the segmentation branch of TransLocator helps produce better qualitative
performance under challenging real-world appearance variation.

E Additional Qualitative Results

In this section, we visualize a few example images from the Im2GPS and Im2GPS3k
datasets localized within 1 km, 200 km, and 2500 km from ground truth locations by
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TransLocator in Figure E.1. The corresponding Grad-CAM [7] activation maps highlight
the necessary pixels used for the decision. Famous landmarks and tourist attractions
like the Washington Monument, Eiffel Tower, Niagara Falls, and Trafalgar Square are
correctly localized. Moreover, TransLocator often yields surprisingly accurate results for
images with more subtle geographical cues, like a sea-beach in Venice or a uniquely-
shaped building in Seoul. Minor errors like 100 — 200 meters occur due to fine cells’ size
and can further be removed by using a retrieval extension. More difficult samples, like a
forest in Tanzania and a desert in Utah, are localized within a range of 10-20 km, which
can be attributed to the bigger geo-cells in those sparsely-populated areas. TransLocator
can learn to recognize famous streets, buildings, water-bodies, plants, animals and yields
surprisingly good results even in remote locations.

Im2GPS images localized within 1 km frqm ground truth

M

. @ Ik [ $ .
G - Washington DC G - Lisbon G - Paris G - Seoul G - Venice
P - Washington DC P - Lisbon P - Paris P - Seoul P - Venice
Error - 0.1 km Error - 0.1 km Error - 0.4 km Error - 0.3 km Error - 0.7 km

Im2GPS images localized within 200 km from ground truth

A e

G- Tanzania G - Norway G - Sydney G- Utah

G - Bangalore
P - Tanzania P - Norway P - Sydney P - Utah P - Mysore
Error - 7 km Error - 18 km Error - 3 km Error - 21 km Error - 146 km

Im2GPS images localized within 2500 km from ground truth

= - .3
G - California G - lllinois G - Aruba G - Kahului, Hawaii G - Azerbaijan
P - Nevada P - Ohio P - Venezuela P - Kekaha, Hawaii P - Israel
Error - 308 km Error - 612 km Error - 772 km Error - 356 km Error - 2245 km

ImgGPS:&k images Ioalized within 1 k from ground truth

G - Niagara G - Paris

G- London G - Sacramento
P - Niagara P - Paris P - Athens P - London P - Sacramento
Error - 0.1 km Error - 0.2 km Error - 0.1 km Error - 0.3 km Error - 0.7 km

Im2GPS3k images localized within 200 km from ground truth

e
G - Newport G- Amsterdam G- Cairns G- Paris G - Verona
P - Newport P - Amsterdam P - Cairns P - Paris P - Venice
Error - 3 km Error - 3 km Error - 21 km Error - 6 km Error - 121 km

: i | ==
G- Cairns G - Minneapolis G - Baltimore G - Grachen G - Thailand
P - Brisbane P - Lansing P - Boston P - Grenoble P - Philippines
Error - 1687 km Error - 1010 km Error - 652 km Error - 267 km Error - 605 km

Fig. E.1: Example images from Im2GPS and Im2GPS3k dataset localized within
three different distance threshold by TransLocator. The corresponding Grad-CAM [7]
activation maps highlights the most important pixels used for prediction.
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Fig. E.2: Qualitative comparison of TransLocator and ResNet101 on images with
same location but under challenging appearance variations. Unlike ResNet101,
TransLocator attends to similar regions in each image and locates them correctly. G
denotes ground truth, Pr, Er, Pr and Er denotes predicted location and prediction
error by ResNet101 and TransLocator, respectively. Best viewed when zoomed in and in
color.

Next, we illustrate a few more cases* of drastic appearance variation in the same
location depending on the time of the day, weather, or season in Figure E.2. Though the
RGB images experience extreme variation, the corresponding semantic segmentation
maps remain unchanged. Thus, TransLocator can learn robust features and produce con-
sistent activation maps across such radical appearance changes. In contrast, ResNet101
fails to recognize such variation.
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