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1 Details for Model Training and Ablation Experiments

In the dataset for IsPlanktonCLR model training, the images in the Training
Set and Testing Set 1 are color ROIs. We use their L channel as the input for
training network and ab channel as the ground truth to validate the network,
respectively. The Testing Set 2 contains 60 grayscale-color image pairs. The
grayscale images are used as network input to generate colorized images, and
their color counterparts are used as ground truth to validate the colorization
performance.

We train the IsPlanktonCLR network for 600 epochs with batch size of 16 on
an NVIDIA Tesla A100 GPU. We use Adam optimizer with an initial learning
rate 0.001, which decays every 400 epochs. The input image size is standardized
to 224 x 224 pixels as done in []].

Table 1. Ablation experiments and numerical comparison with other SOTA methods.

backbone Netl(wo,1) Net2(wi,1) Net3(wi,2) Ours(whole) | InstCol Chroma

CDSIM|  463.917 457.059 455.631 454.420 346.434 651.904 442.487
FID| 35.754 32.285 30.768 31.420 24.578 45.397  47.123
PSNRT 42.491 43.414 42.660 40.481 44.269 42.535  40.431
SSIMT 0.993 0.994 0.991 0.987 0.996 0.984 0.970

We perform a set of ablation experiments to show the impact of each module
in IsplanktonCLR. Table 1 summarizes the effect of each module. The back-
bone only has Extractor and Decoder, Net1~3 adds our palette and loss
function, and Ours adds Classifier and Encoder. It can be seen that with
the self-guidance reference, the metrics of CDSIM and FID that can reflect the
colourisation accuracy have been significantly optimized. The simplification of
the palette and the improvement of the loss function can reduce the complexity
of the model and accelerate the convergence speed.
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In addition, we also compare two SOTA models InstCol[I3] and Chromall5]
in Table 1. The results are consistent with our analysis.

2 Details for Loss Function

The value determination of w and 7 in Eq.4 of our loss is as follows. For w, we
assign equal weight wg to each colour, and weight w; to each colour according
to its proportion in the training set. The larger the proportion, the smaller the
weight. Specifically, we separate the quantity proportion into four intervals of [1,
0.1], (0.1, 0.01], (0.01,0.001], and (0.001,0], corresponding to weights of 0.001,
0.009, 0.09, and 0.9, respectively. Assuming that there are N colours in [1, 0.1],
the weight of each colour is 0.001/N. For ~, we test the case with values of 1
and 2, and the results do not change significantly.

Fig. 1 compares the colorization effect between two IsPlanktonCLR models
trained with the baseline cross entropy loss and our proposed loss after 100
epochs, respectively. We find that our loss can make the model converge faster
under the same conditions than the cross entropy loss does. As more detailed
observation indicated in the red dotted boxes, the model trained with our loss
is able to correctly recover more reddish color for the key parts of the plankton
targets, while the model using the cross entropy loss presents quite some wrong
greenish colors in the top example or is unable to recover reddish colors in the
bottom example.

Ground Truth Cross Entropy Loss Our Loss

Fig. 1. Colorization effect comparison between IsPlanktonCLR models trained with
different losses.

3 Extensive Representation of in situ Plankton Image
Colorization

To demonstrate the colorization performance of IsPlanktonCLR on more di-
verse plankton taxa, we select 84 new examples from different classes of the
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Fig. 2. 84 classes of representative marine plankton and suspended particles ROI im-
ages from the DYBPlanktonNet [9] colorized by the IsPlanktonCLR model.
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DYB-PlanktonNet [9] dataset and extract their L channel as grayscale image
input fed into the model. Their colorization results are gathered in Fig. 2. The
results show that IsPlanktonCLR can restore most examples to their original
colors perceptually, which indicates that the algorithm can achieve consistent
colorization performance at least on plankton taxa in specific sea areas such as
Daya Bay.

4 Calculation of Color Dissimilarity Metric

We first introduce the definitions and calculation of color histogram (CH) [BITTI12],
color coherence vector (CCV) [10], color correlogram (CC) [6] and color gradient
(CG) [3] for color feature extraction, and then introduce the regularization and
dimensionality reduction methods for them to calculate the metric of CDSIM.

4.1 Color Feature Definition and Calculation

Color Histogram (CH) is a statistical histogram formed by counting the
frequency of each color occurrence in a color image. CH reflects the proportion
of different colors in an image, but cannot represent the spatial distribution of
colors. Fig. 3 shows the CH of a plankton image example.

pixel frequency

=

colors

Fig. 3. Color histogram of a ROI image containing a Polychaete.

Color Coherence Vector (CCV) is a color feature containing the spatial
distribution information of colors. If a continuous area in a color image occupied
by some pixels of the same color is larger than a given threshold, the pixels in
this region are called coherent pixels; otherwise, they are regarded as incoherent
pixels [I0]. CCV adds up the number of coherent and incoherent pixels of the
same color in a CH, and divides pixels of each color into coherent and incoherent
parts. Suppose the color image contains a total of N colors, «; and §; represent
respectively the number of coherent pixels and incoherent pixels of the i*" color
in its CH, then (ay, 8;) is called a Coherence Pair, and the CCV of the image is
expressed as:

< (a1, B1), (a2, B2), ..., (an, BN) > . (1)
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Color Correlogram (CC) is another color feature incorporates spatial distri-
bution of colors. It considers the distribution of various colors around a color.
Suppose there are N colors in an image, denoted as cy, ..., cy; the coordinates
of a pixel of the image are denoted as I = (x,y) with its color C(I); the co-
ordinates of all pixels on the image is a set of j, and all the pixel coordinates
corresponding to color ¢; is denoted as a set 7., = {I|C(I) = ¢;}. Then, we can
define the probability of color ¢; at a distance d to c; as:

Véi)cj (J) 2 PT[IQ € Je; ‘diSt(Ila 12) =d, ) € j;, > € j]ai =12---,N, (2)
where dist(I1,I5) is the distance between pixels of p; and p, measured by the

Lo norm as :
dist(I1, Is) £ maz{|z1 — za|, [y1 — v}, (3)

and d < dy, dy is a fixed a priori. vgi)c ;(9) represents the color distribution along
the four edges of a square with its center of color ¢; and side length of d. If d = 1,
fy&l,)cj () represents the probability of color ¢; in the eight surrounding pixels for
all pixels with color c;.

We use the pixel frequency to estimate ﬂygi)c]. (7), and the CC at distance d
can be written as a square matrix of order NV:

2 (d) () () ,?(d) ()

T T
X Aegrer (7) Acares -+ Aegien (9)
A = e , (4)

Ao (1) AN -+ Alden )
where d = 1,2, ...,dy. It can be seen that CC has a total of N2d, elements.

The dimensionality of CC is much greater than that of CCV and CH (N2dy >
2N > N). We only use the elements on the diagonal of 4@ as CC feature, which
reduces the dimensionality from N2dy to Ndy. The diagonal elements are also
called Color Auto-correlogram (CAC), which can be expressed as:

’A}/c(,fl,)ci(]),i: 1,2,3,...N. (5)

Color Gradient (CG) stands for gradient features calculated using color in-
formation from a multi-channel image. We use two methods to compute CG
features from RGB color images, respectively.

The first method uses Sobel operator [4] to obtain gradients from a single
color channel. First, we calculate the gradients R,, Ry, G, Gy, By, and B,
along the x and y directions at the pixel position of (z,y) on each of the R, G,
B channels of a color image, and then calculate the CG feature as:

(6)

R2+ R} G?2+G? B2+B?2
M(m,y)\/ 5 Y+ 5 Y+ 5 L.
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This method considers the gradients of R, G, and B channels along the x and y
directions, but ignores the gradient information between color channels.

The second method considers the relationship between different channels [3].
It defines the direction along which the gradient is maximum and is expressed
as:

1 29
0 x,Yy) = ftan_l 7'1/’ 7
(@,y) = 3 [gm_gyy] (7)
where
OR oG 0B
J— . — T — 72 2 2
oo =W HZWA |8x|+|31’|+‘3x|’ (8)
OR oG 0B
gyy:V'V:VTVZ|a*y|2+\afy|2+|fay\2, (9)
. o7 _8R8R+8G(')G 0BOB 0
and

_OR N oG aBb 1
U T ot B (D
_OR N oG N aBb
Ty Ty
Here r, g, and b are unitary vectors associated with the R, G, and B axes,
respectively.

Thus, the CG feature can be calculated as:

v (12)

Fo(z,y) = \/{;[(gaw + gyy) + (Gza — gyy) cos 20(x,y) + 2Gy sin 20(x, y)]}.
(13)

4.2 Color Feature Dimension Reduction

The original color features introduced above are not regularized and with very
high dimensions. For ease of CDISM computation, we use the following two
approaches to regularize them and reduce their dimensionality.

The first approach is to use statistical descriptors of the single-channel his-
togram (SCH) for dimensionality reduction. Specifically, we first get the SCHs
of a color image, and then the statistical descriptors listed in Table 2 are cal-
culated based on the formulas listed on the right [I]. Among them, CH, CCV,
and CAC features are calculated in three color spaces of RGB, LCH, and HSV,
respectively; and CG features are calculated in the RGB color space.

The second approach is to extract CH, CCV, and CAC features from a sim-
plified color palette of the color image. Specifically, the K-means++ algorithm
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Table 2. Statistical descriptors extracted from a single-channel histogram.

Names Formulas
Mean p=3200"p(d) - h(i)
Mode i = argmax(h(i))
Minimum min(h(i))
Maximum max(h(i))
Variance o =5 (p(6) — ) - h(i)
Range max(h(i))—min(h(i))
Entropy — 355" h(@) - log(h(i))

1st Quartile Mean
2nd Quartile Mean
3rd Quartile Mean
Quartile Mean Difference
Upper Quartile
Lower Quartile
Quartile Difference
Median
Asymmetry(Skewness)

Kurtosis

Hq1 = ZZH:_(;H/M p() - h(i)
paz = S0 p() - h(i)
pgs = S 12 4 p () - (i)
gl — g3
Tintya)
Iisniya
Isneyay — Laayay

Iiaiy2)

LS H3p(0) — - 1)

o3

SR - ) hG)

H is the number of bins in the histogram, p(i) is the pixel value of the i*" bin,
h(i) is the value frequency of the i*" bin, I;)is the j'" largest pixel value in an

image, and M is the pixel number.
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[1412] described in the Section 3.1 of the manuscript is firstly used to cluster the
image colors on the HSV, Lab, and Luv color spaces, respectively. Then the
CH, CCV, and CAC features are extracted from the simplified color palette of
the original image.

We summarize the number of all the color features used for calculating CD-
SIM metric in this work in Table 3.

Table 3. Summary of color features used for CDSIM computation in this work.

Features SCH CH CCV CAC CG Total

Number 153 96 192 768 51 1260

5 Online Survey for Visual Evaluation of Colorization
Effect

We present the detailed design and results of the questionnaire used in this work.
The questionnaire consists of 14 questions. The participants are asked to evaluate
the color similarity between the targets in the ROI.1 ~ ROI.4 and the GT in each
question. ROI.1 ~ ROI.4 in each question corresponds to the colorization results
of the L channel grayscale image of the GT by IsPlanktonCLR, MemoColor [16],
LetColor [7], and CIC [I7] models, respectively. The scores of color similarity are
scaled in 5 points with 5 being the most similar and 1 being the least similar.
The questionnaire was sent to three WeChat groups consisting of 45 PhD
students, 490 marine biologists, and 7 plankton taxonomists. 115 valid results
from participants without any knowledge of the background and intension of this
survey were received within two days before the submission of this manuscript.
The table below each question details the vote and score results for that set of
image comparison. Finally, the average scores for the 14 questions are calculated
and listed in Table 2 in the main manuscript. The results of this survey prove
that the colorization effect of IsPlanktonSR achieves the closest to extensive hu-
man visual perception evaluation among all the SOTA colorization models.
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Question 4.

ROL1 ROL2 ROL3 ROIL4

ROI\ Similarity 1 2 3 4 5 Average
ROL1 35(30.43%) 38(33.04%)  23(20%) 12(10.43%)  7(6.09%) 2.29
ROIL.2 34(29.57%) 36(31.3%)  22(19.13%) 15(13.04%) 8(6.96%) 237
ROL3 4(3.48%)  15(13.04%)  46(40%)  34(29.57%) 16(13.91%) 3.37
ROL4 9(7.83%)  22(19.13%) 41(35.65%) 32(27.83%) 11(9.57%) 3.12

Question 5.

GT ROL1 ROI.2 ROL3 ROIL4

RO\ Similarity 1 2 3 4 5 Average
ROLI1 1(0.87%)  4(3.48%)  17(14.78%) 45(39.13%) 48(41.74%)  4.17
ROI.2 47(40.87%) 25(21.74%) 20(17.39%) 17(14.78%)  6(5.22%) 222
ROL3 48(41.74%) 38(33.04%) 19(16.52%)  8(6.96%)  2(1.74%) 1.94
ROIL4 56(48.7%)  32(27.83%) 22(19.13%)  4(3.48%) 1(0.87%) 1.8

Question 6.

ROL1 ROI.2 ROL3 ROIL4

ROI\ Similarity 1 2 3 4 5 Average
ROI.1 2(1.74%) 4(3.48%) 7(6.09%)  33(28.7%)  69(60%) 4.42
ROI.2 5(435%)  6(522%)  25(21.74%) 59(51.3%) 20(17.39%)  3.72
ROIL3 7(6.09%) 23(20%)  58(50.43%) 20(17.39%)  7(6.09%) 297

ROL4 32(27.83%) 43(37.39%) 21(18.26%) 14(12.17%)  5(4.35%) 2.28
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4(3.48%) 2:3

11



12 G.Guo et al.

Question 10.

GT ROL1 ROI.2 ROL3 ROI4

RO\ Similarity 1 2 3 4 5 Average
ROL1 3(2.61%)  2(1.74%)  4(3.48%)  23(20%)  83(72.17%)  4.57
ROIL.2 4(3.48%) 8(6.96%) 37(32.17%)  60(52.17%) 6(5.22%) 3.49
ROL3 108.7%)  28(24.35%) 55(47.83%) 20(17.39%)  2(1.74%) 2.79
ROL4 12(10.43%) 38(33.04%) 51(4435%) 11(9.57%)  3(2.61%) 2,61

Question 11.

GT ROL1 ROL2 ROL3 ROL4

b
ROI\ Similarity 1 2 3 4 S Average
ROL1 3(2.61%)  1(0.87%) 4(3.48%)  40(34.78%) 67(58.26%)  4.45
ROIL2 4(3.48%)  11(9.57%)  31(26.96%)  46(40%) 23(20%) 3.63
ROIL3 5(435%) 14(12.17%) 27(23.48%) 47(40.87%) 22(19.13%) 3.58
ROL4 6(5.22%) 12(10.43%) 21(18.26%) 50(43.48%) 26(22.61%) 3.68

Question 12.

ROL1 ROL2 ROL3 ROL4

ROI\ Similarity 1 2 3 4 5 Average
ROL1 8(6.96%)  25(21.74%) 38(33.04%) 28(24.35%) 16(13.91%)  3.17
ROI1.2 33(28.7%) 32(27.83%) 30(26.09%) 12(10.43%)  8(6.96%) 239
ROL3 5(4.35%) 23(20%) 30(26.09%) 38(33.04%) 19(16.52%) 3.37

ROL4 15(13.04%) 32(27.83%) 36(31.3%) 25(21.74%)  7(6.09%) 28
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Question 13.

GT ROL1 ROIL2 ROL3 ROL4

RO Similarity 1 2 3 4 5 Average
ROI.1 4(3.48%) 15(13.04%) 14(12.17%) 44(38.26%) 38(33.04%) 3.84
ROIL2 29(25.22%) 38(33.04%) 23(20%) 21(18.26%)  4(3.48%) 2.42
ROL3 22(19.13%)  36(31.3%) 35(30.43%) 15(13.04%)  7(6.09%) 256
ROIL4 51(44.35%) 24(20.87%) 20(17.39%) 13(11.3%)  7(6.09%) 2.14

Question 14.

GT ROI1 ROIL2 ROL3 ROL4

ROI\ Similarity 1 2 3 4 S Average
ROI.1 3(2.61%) 4(3.48%) 7(6.09%) 44(38.26%) 57(49.57%) 4.29
ROI.2 2(1.74%) 5(4.35%) 33(28.7%)  51(44.35%) 24(20.87%) 3.78
ROL3 7(6.09%) 33(28.7%) 38(33.04%) 28(24.35%) 9(7.83%) 2.99
ROL4 38(33.04%) 39(33.91%) 22(19.13%)  10(8.7%)  6(5.22%) 2.19
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