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Abstract. Underwater imaging with red-NIR light illumination can avoid
phototropic aggregation-induced observational deviation of marine plank-
ton abundance under white light illumination, but this will lead to the
loss of critical color information in the collected grayscale images, which
is non-preferable to subsequent human and machine recognition. We
present a novel deep networks-based vision system IsPlanktonCLR for
automatic colorization of in situ marine plankton images. IsPlankton-
CLR uses a reference module to generate self-guidance from a customized
palette, which is obtained by clustering in situ plankton image colors.
With this self-guidance, a parallel colorization module restores input
grayscale images into their true color counterparts. Additionally, a new
metric for image colorization evaluation is proposed, which can objec-
tively reflect the color dissimilarity between comparative images. Exper-
iments and comparisons with state-of-the-art approaches are presented
to show that our method achieves a substantial improvement over pre-
vious methods on color restoration of scientific plankton image data.

Keywords: image colorization, deep learning, underwater imaging, in
situ observation, marine plankton

1 Introduction

In situ imaging of marine plankton has been demonstrated very promising for
scientific research to understand marine ecosystems and also become appeal-
ing for modern ocean management [25,36]. Limited by working principle and
device performance, most early underwater plankton cameras can only capture
grayscale images [5]. With recent technology development, some dark-field un-
derwater cameras have been enabled for color imaging [13,6,21,33]. The color
images captured by them have been shown to improve a machine classifier’s ac-
curacy than that achieved on grayscale ones [21]. However, color imaging requires
white light illumination, which causes phototropic aggregation of zooplankton
frequently, thus resulting in plankton abundance measurement bias and great
concern for observation accuracy [38,39].
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Since most zooplankton are insensitive to longer wavelengths [12], in situ
cameras can use red-NIR light for illumination to avoid phototropic aggregation
[9,32]. But using red-NIR lighting will make an underwater camera acquire just
grayscale images. If such grayscale images can be colorized with high-fidelity
using deep learning techniques [1], it would not only enrich the image data with
extra color information to facilitate subsequent human and machine recognition,
but can also completely resolve the concern on plankton abundance measurement
error associated with white light illumination. Moreover, a grayscale image not
only has higher spatial resolution than its color counterpart with the same pixel
size and number, its file size is also much smaller than the color version. This
is beneficial to reduce the resource stress of image data processing, storage, and
transmission for achieving sustainable ocean observation.

Fig. 1. Representative examples of in situ marine plankton grayscale images, their
colorizations by IsPlanktonCLR, and the ground truth.

The demand for in situ plankton grayscale image colorization obviously cor-
responds to an image restoration problem. However, existing colorization algo-
rithms are mainly developed for colorizing natural scene images captured in the
real world [8,17,41,40,7,30,4], which corresponds essentially to an image enhance-
ment task. As the colorization of these images is more in pursuit of rationality,
comfort and diversity of human visual perception, the same target can be artifi-
cially painted into multiple colors. For example, a blue T-shirt can be colorized
into a green, or a yellow or a red one. This task is an ill-posed problem, in which
the deep colorization networks are difficult to establish deterministic mapping
between the input and the output, and hence unable to meet higher demands
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in colorization accuracy for scientific imaging applications. On the other hand,
many restoration-oriented algorithms need user guidance to ensure the coloriza-
tion effect [11,15]. However, these guidance is either given by human in advance
or obtained through human-computer interaction, which is not conducive to their
applications in long-term and automated ocean observation activities.

On this regard, we treat it as a color classification problem and propose
a self-guided automatic deep colorization algorithm for color restoration of in
situ plankton grayscale images. The network is named IsPlanktonCLR, whose
idea and architecture is illustrated in Figure 2. In the design of this network,
we firstly customize a reference palette to reduce the number of colors in the
searching space, so as to achieve satisfying colorization effect with better effi-
ciency. Then, to further ensure colorization accuracy and avoid color averaging
effect, we combine the advantages of both user-guided and big-data driven al-
gorithms to improve the model performance of color restoration in a self-guided
and automatic way. This is achieved through a parallel network architecture con-
sisting of a primary module for image colorization and an additional reference
module for providing guidance from the customized palette. Using this method,
we successfully achieve satisfying colorization effect on the in situ marine plank-
ton image data as shown in Figure 1.

The feasibility of IsPlanktonCLR is based on the premise that the coloration
of marine plankton is relatively monotonous in their in situ images. By inves-
tigating human visual perception of a large number of images, we realize that
most plankton only show one or two families of colors. This allows us to group
the plankton images based on their color families, and use this information to
label them as references for guiding the colorization.

We are also aware that the obvious imbalance in plankton image dataset leads
to the imbalance in the color quantities. For example, there are a lot of yellowish
colors in the dataset, while the reddish colors are less common. Direct use of
imbalanced data to train the model will cause dominant color effect, which is a
known problem associated with many deep colorization models [44]. To resolve
this issue, we use data augmentation and loss reweighting to enforce the model
learning more on rare colors.

In addition, we notice an obvious lack of objective and quantitative col-
orization evaluation metrics for restoration-oriented scientific image coloriza-
tion. Although PSNR, SSIM and other metrics are often used for image restora-
tion evaluation, they are known to be less effective for colorization evaluation
[17,40,47,7,29,37], and are often inconsistent with human perception. Therefore,
we propose a new metric Color Dissimilarity (CDISM) to better characterize
the color restoration accuracy of an output image relative to its ground truth.
CDSIM is obtained by calculating the Euclidean distance between color feature
vectors extracted from two comparative images. We demonstrate its effectiveness
on both plankton and natural scene images.

To summarize, the contribution of this work includes:
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—A new idea in automatic grayscale image colorization for scientific domain
imagery is provided, which improves the colorization accuracy and efficiency by
referencing the colorization model with a simplified color palette.

—A customized self-guided automatic colorization network IsPlanktonCLR
is designed and its colorization performance on plankton images has been veri-
fied superior to SOTA methods. To the best of our knowledge, this is the first
endeavor to study scientific colorization of in situ marine plankton imagery.

—A new metric CDSIM is proposed for evaluation of color similarity between
input and output images of a colorization model, which has been verified suitable
for restoration-oriented image colorization problems.

2 Related Work

2.1 Underwater plankton cameras for in situ plankton color
imaging

All the underwater cameras that are good at capturing in situ colorful images
of marine plankton have adopted dark-field imaging principle. The early Video
Plankton Recorder (VPR) can only capture grayscale images [9], but it is re-
ported to support color imaging latterly after device upgrade [33]. The Con-
tinuous Particle Imaging and Classification System (CPICS) has been deployed
on the sea floor [14]. The Scripps Plankton Camera (SPC) has been deployed
underwater at the shore [31], with profilers [6], and under a floating station in
the Lake Greifensee [28]. The Imaging Plankton Probe (IPP) has been deployed
under a moored buoy for monitoring coastal waters [21].

There is no significant difference in the imaging light path of these dark-field
cameras. While they all use flashed white-light as sources, their lighting path de-
sign is different. VPR uses lateral side lighting [9], CPICS uses annular oblique
lighting [13], SPC uses standard hollow-cone illumination as adopted in tradi-
tional dark-field microscopes [31], and IPP uses annular orthogonal compressed
lighting [21]. VPR and SPC are not reported to be color-calibrated, while CPICS
and IPP both perform white balance calibration using external reference targets
[13,21]. It is worth noting that IPP has not only achieved high-quality in situ
true color imaging of marine plankton through spatially compressed and con-
densed laminar white-light illumination, but also greatly inhibited the leakage of
white light to the adjacent underwater environment, thus greatly reducing the
phototropic aggregation of zooplankton [21]. However, in principle, this lighting
design still cannot completely eliminate the white-light leakage scattered by the
seawater within the imaging area. It is still suspicious whether the influence by
phototaxis of zooplankton can be completely avoided.

2.2 Deep learning-based image colorization

The colorization of grayscale image has long been a very challenging problem.
With the development of deep learning technology and the emergence of large-
scale image datasets such as ImageNet [10] and MSCoco [24], various deep net-
works have been applied to the field of natural scene image colorization and
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achieved good results [1,45,44,20,41,40]. Based on the difference of their objec-
tives, these deep image colorization algorithms can be roughly classified into
two groups for image enhancement and restoration. The algorithms for image
enhancement [8,17,41,40,34,46,27,3,42] aim at converting grayscale images into
color images with visual comfortableness and fit of human commonsense, but pay
little attention to whether the generated colors are the same as ground truth.

The deep colorization algorithms for image restoration aim to recover the
original true color of scenes or objects in the grayscale images. CIC [45] trans-
forms the colorization problem into a classification problem of 313 colors. Pixe-
lated Semantic Colorization uses pixel-level semantic features to guide a network
for colorization [47]. LetColor achieves end-to-end colorization by learning the
global prior and local features of the image [19]. MemoColor [44] remembers
color information of rare instances through an external storage network [20],
achieving colorization with limited data. We notice some networks use paired
image data for colorization learning. For example, Colorization in the dual-lens
system [11] and Low-light Color Imaging [15] both use dual-camera systems to
obtain grayscale-color image pairs at the same time. Then the grayscale images
are colorized with the guidance from their color counterparts, so that the color
information is transferred from the color images with low resolution and poor
brightness to the grayscale images with higher quality. This is similar to our
idea, except that their goal is to improve the resultant quality of natural scene
color images, while ours is to automatically and accurately restore the true color
of marine plankton in grayscale images to be taken under red-NIR lighting in
seawater.

2.3 Metrics for colorization evaluation

Existing metrics for image colorization are mainly used to evaluate whether the
color of network output images conforms to human commonsense and cognition.
For example, the Colorfulness Score [16] evaluates the quality and diversity of
image colorization, but it is difficult to compare the color authenticity of the
output image with its ground truth. UCIQE [43] evaluates the color quality of
underwater images through a linear combination of chroma, saturation and con-
trast, but it does not consider the spatial distribution of color. Although PSNR
and SSIM are also frequently used for image restoration evaluation, they are
proved insensitive to color difference between images [17,40,47,7,29,37]. FID [18]
calculates the Fréchet distance between feature vectors extracted by an Inception
V3 network to evaluate the overall similarity between two comparative images,
but the deep features are not interpretable enough to clarify the relationship be-
tween both color images. In a word, it is difficult for previous metrics to simulate
the perception of human vision, and to objectively and quantitatively evaluate
the color similarity between images.
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3 Methodology

As illustrated in Figure 2, the IsPlanktonCLR network mainly consists of two
parts: a customized color palette, which simplifies the color space of the plankton
image data; and a deep colorization network, which is used to achieve self-guided
and automated colorization of the input grayscale image.

Fig. 2. Overview of IsPlanktonCLR: (a) palette customization; (b) reference module;
(c) colorization module.

3.1 Palette customization

We use the color ROI images in the DYB-PlanktonNet [22] dataset to customize
the reference palette. For convenience, we convert all the RGB ROIs into Lab
color space with (ai, bi) denotes the i

th color. Since the background of dark-field
image is nearly zero, we only extract color information from the foreground pixels
and integrate similar colors with a clustering algorithm based on K -means++
[2] to reduce the number of colors.To achieve this, we firstly select manually
2 ∼ 3 ROIs from each plankton class of the dataset, which can represent as
more colors as possible in this class. Then the foreground pixels of these ROIs
are extracted by thresholding, and their (a, b) values are used to train the K -
means++ clustering algorithm. After 10 iterations, the model with the smallest
inertia (sum of squared distances of samples to their closest cluster center) is
selected and denoted as Modelkm. The palette is then customized to contain
colors represented by the clustering centers of Modelkm:

palette = {(ai, bi) , i ∈ K} , (1)

where K is the number of clustering centers. We select a reasonable value range
of K by observing the inertia variation curve with K, and finally determine an
optimized value of K by comparing the image colorization results obtained with
different K.
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3.2 Colorization Network

As shown in Fig. 2 (b) and (c), the IsPlanktonCLR network consists of two
parallel modules. We classify the plankton images in the DYB-PlanktonNet into
five color families, namely white, red, yellow, green, and blue. The reference
module firstly determines the color family labels of an input grayscale image,
and then the colorization module completes the colorization under the guidance
of these labels.

The reference module consists of a classifier and an encoder. The classifier is
built on a ResNet18 network and is responsible for giving a color family label L
to the input grayscale image G. L is an integer ranging from 1 to 5, corresponding
to 5 color family labels, respectively. The encoder is used to encode the color
family label L and generate the reference information α and β for the colorization
module. We test two encoding methods. The first one is discrete encoding, which
directly encodes L with embedding to obtain the reference information R; the
other is continuous encoding, whose formula is

R = L− 1 + P, (2)

where P is the probability that G belongs to L. The R values obtained by the
two encoding methods are fed into an 1 × 1 convolution layer, and finally split
into α and β.

The colorization module is mainly composed of an extractor, a combiner
and a decoder. The extractor is mainly responsible for extracting the feature
map fmex, which consists of four e-blocks. Each e-block contains three convolu-
tional layers with batch-normalization and ReLU. The combiner is responsible
for adding α and β to fmex, which consists of two f-blocks. Each f-block is
composed of convolutional and FILM layers [27]. FILM layer implements the
function as expressed in Equation (3), where fmref is a feature map with refer-
ence information.

fmref = αfmex + β. (3)

The decoder achieves color classification of each pixel by the convolutional
and softmax layers. We encode the softmax output as a one-hot vector and then
decode it by multiplying it with the palette vector to obtain the ab channel of
the image. Finally, the ab channel is overlapped with the input L channel to
form the colorized image.

3.3 Loss Function

We treat pixels containing common colors as easy examples, and pixels contain-
ing rare colors as hard examples. We use a loss function incorporating OHEM
[35] and Focal-Loss [23] to solve the color imbalance problem by training the
model with more weights on rare colors to avoid dominant color issue in the
results. The loss function is formulated as follows:
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losspixle (x, pt) = −ωt (1− pt)
γ
log (pt) , (4)

loss =
1

N

∑
i∈S

losspixle (i, pt) . (5)

In Formula (4), losspixel (x) denotes the loss of classifying pixel x, where pt
denotes the probability that x is classified correctly, and ωt denotes the weight
of the correctly classified category in calculating the loss. ω is determined by
Modelkm in Section 3.1. We use Modelkm to quantify the image color in the
entire training set to obtain information about the number of colors in each
class. The higher the number of colors, the smaller the weight is assigned to
pixels belong to that color class. Therefore, ω is mainly used to balance the
differences between categories. γ is a modulating factor to make the weights of
hard examples larger than those of easy examples for balance.

In Formula (5), S denotes the set of hard examples, and N is the number of
hard examples. We first sort the color classification loss of all pixels in a batch,
and then take N pixels with the largest loss to form S. This allows the model
to focus only on the pixels with larger loss and ignore the remaining pixels.
In addition, as the training progresses, the number of hard examples gradually
decreases, so the size of N also decreases.

The reference module and the colorization module produces a loss as ex-
pressed by Formula (5), respectively. We add the two in proportion as the final
training loss as follows:

lossfinal = µlossref + ϑlosscolor, (6)

where µ and ϑ are the scaling factors for the reference module loss lossref and
colorization module loss losscolor, respectively.

3.4 Evaluation Metric

We propose CDSIM to evaluate the difference in color quantity and spatial distri-
bution between the colorization results and their ground truth. The calculation
of this metric is dependent on the extraction of color features from the images.
The color features we use include color histogram, color coherence vector, color
correlogram, and color gradients. Details of their definition and feature reduction
can be referred to the Supplementary Materials.

The combination and reduction of these features can produce an 1260-dimensional
vector. Then the Euclidean distance between the color feature vectors of two im-
ages is defined as CDSIM, which is expressed in Equation (7).

CDSIM (X,Y ) =

√√√√ l∑
i=1

(xi − yi)
2
, (7)

where X and Y are the color feature vectors of two comparative images, and l
is the vector length. The smaller the CDSIM is, the better the colorization is.
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4 Experiments

4.1 Dataset

We construct a dataset consisting of 2907 in situ marine plankton ROI im-
ages for training and testing the IsPlanktonCLR network, whose composition
is shown in Table 1. There are two main sources for this dataset. The first is
the DYB-PlanktonNet dataset [22], which contains ROI images of 92 classes of
marine plankton and suspended particles recorded in situ by IPP [21]. The
second is from a dataset we exclusively obtained for this study by imaging
natural seawater sample with the customized dual-channel dark-field imaging
apparatus as used in [26]. For acquiring the IsPlanktonCLR dataset, this ap-
paratus is firstly modified with installment of two lenses with the same mag-
nification, replacement of one color camera with a grayscale camera with the
same pixel size and number, and addition of an 850nm NIR light source to the
white light source to illuminate the plankton in the seawater sample. Then the
grayscale and color cameras are synchronized to capture image pairs of the same
plankton sample in real seawater, which eventually constitute the IsPlankton-
CLR dataset after image registration similar to that used in [26]. The IsPlank-
tonCLR dataset is available at https://drive.google.com/drive/folders/

1GspuXRqd_GbB2k12UWiclN3MPFoclxYn?usp=sharing.

Table 1. Composition of the in situ plankton image dataset for experiments.

Training Set Testing Set 1 Testing Set 2 Total

DYB-PlanktonNet 2117 356 0 2473
IsPlanktonCLR 344 30 60×2 494
Total 2461 386 120 2967

4.2 Comparisons with Previous Works

Figure 3 compares the colorization results of multiple marine plankton grayscale
images produced by IsPlanktonCLR and several SOTA approaches. Among
them, images in row (1) ∼ (11) are results from Testing Set 1, and images
in row (a) ∼ (c) are results from Testing Set 2.

Judging from human visual perception, the colorization performance of Is-
PlanktonCLR is obviously better than other models. The plankton shown in row
(1) ∼ (4) are a Megalopa larvae, an amphipod, and two copepods, which are nu-
merous and common in the dataset. The rest of the tested images contain rare
colors, on which the results of IsPlanktonCLR remained excellent, but the results
of other models on them are significantly degraded. Specifically, other models
show varying degrees of dominant color effect in row (5) ∼ (7), color averaging

https://drive.google.com/drive/folders/1GspuXRqd_GbB2k12UWiclN3MPFoclxYn?usp=sharing
https://drive.google.com/drive/folders/1GspuXRqd_GbB2k12UWiclN3MPFoclxYn?usp=sharing
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effect in row (8), wrong colorization in row (9) ∼ (10), and poor colorization of
details in row (11).

IsPlanktonCLR also achieves good colorization effect on the images from
Testing Set 2, i.e., row (a) ∼ (c),while the colorization results of other models
are far from the ground truth.This demonstrates very good device- and content-
generalization potential of the IsPlanktonCLR network.

Fig. 3. Visual perception comparison of colorization performance by IsPlanktonCLR
and other SOTA methods.

Table 2 compares the evaluation results between IsPlanktonCLR and other
models on various numerical metrics. IsPlanktonCLR obtains the highest scores
on both CDSIM and FID, which proves that the images generated by this algo-
rithm have the highest similarity with ground truth; it performs slightly worse
than other models on Colorfulness Score, because this metric mainly measures
the color richness of image and is irrelevant to the colorization accuracy. Al-
though the results of MemoColor get the best evaluation on Colorfulness Score,
they contain many unreal colors. We also provide the evaluation results of PSNR
and SSIM for reference only.

In order to make a fair comparison between IsPlanktonCLR and SOTA ap-
proaches, we further conduct an online survey to collect human visual evaluation
from 115 volunteers (mainly composed of PhD students, marine biologists and
several marine plankton experts) on the color similarity between the coloriza-
tion results of four models and the ground truth. The survey questionnaire is
designed to include 14 groups of marine plankton images, which can be referred
to in the Supplemental Materials. The volunteers are asked to score the color
similarity between each colorized image generated by one of four colorization
models with its ground truth. The score is based on an 1-5 points scale with
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5 for the most similar and 1 for the least similar. The average score for each
model is finally tabulated in the rightmost column in Table 2, which indicates
that IsPlanktonCLR still performs the best.

Table 2. Numerical comparison of colorization performance by IsPlanktonCLR and
other SOTA methods under various evaluation metrics.

CDSIM FID Colorfulness UCIQE PSNR SSIM Human
↓ ↓ ↑ ↑ ↑ ↑ ↑

CIC 466.001 40.904 5.901 0.443 42.903 0.997 2.716
MemoColor 734.186 29.348 6.789 0.429 43.307 0.995 2.668
LetColor 384.637 29.063 6.009 0.447 43.905 0.983 2.920
IsPlanktonCLR 346.434 24.578 5.921 0.425 44.269 0.996 3.785

4.3 Ablation Experiments

Color Number. In order to select an appropriate number of color clusters
K during palette customization, we calculate the variation of inertia with the
number of clusters K as shown in Figure 4 (a). In general, the smaller the inertia,
the better the color clustering, and the larger the corresponding K. We compare
the colorization results when K is taken as 32, 64, and 128, respectively, and
find that there is little difference among them. Therefore, we choose K = 32 as
the final number of clusters.

Fig. 4. (a)Inertia variation with the color cluster numbers. (b) The palette of the
natural scene, (fixing L = 50 and normalizing ab channel values to [0,100]). (c) The
customized palette of DYB-PlanktonNet dataset at K = 32. (d) Color clustering result
of the DYB-PlanktonNet dataset with the customized palette (colors are not real but
only for visualization).

As can be compared in Figure 4 (b) and (c), the customized palette of the in
situ plankton images has significantly reduced colors over the palette of natural
scenes after color clustering. This not only greatly simplifies the search space of
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the colorization algorithm, but also limits the color abuse by the model. Figure
4 (d) shows the 32 clustered colors of the DYB-PlanktonNet dataset are well
separated.

Color label. To validate the effectiveness of reference information provided by
the reference module, the activation maps before and after the combiner in the
colorization module are visualized in Figure 5 (a). It can be seen that before
the reference information is added, the network can only distinguish foreground
plankton from the background, and the mean activation within the plankton
is relatively homogeneous. After the addition of the reference information, the
mean activation at different colors within the plankton appears significantly
different. We can see the values of reddish colors in the ground truths are higher
in the activation map, while the those of yellowish or greenish colors are lower.
These results prove that the reference information can really help the network
to distinguish different colors and provide effective guidance for colorization

We also compare the colorization effect between discrete encoding and con-
tinuous encoding. For the majority of images, there is little difference between
the two encoding methods. However, for some plankton with similar morphol-
ogy and are difficult to determine color family labels, the continuous encoding
has achieved slightly better colorization effects than those obtained by discrete
encoding. Figure 5(b) shows the difference of colorization effect between the two
encoding methods on two confusable examples. It can be seen that the coloriza-
tion module will generate wrong colors with the guidance of discrete encoding
when the reference module gives a wrong color family label, while the continuous
coding can enable the model to recover correct colors in many positions. Taking
the bottom row of Figure 5(b) as an example, the network wrongly generates
the greenish colors with discrete encoding, while it can recover correctly reddish
colors with continuous encoding.

Loss Function. During training, we set the initial number of N, i.e., the difficult
examples, to be 0.05 of the total number of pixels, and it decays every 200 epochs
with an attenuation rate of 0.5. Both the reference module and the colorization
module use the same loss function as expressed in Formula (6) with coefficients
µ and ϑ equal to 0.1 and 0.9, respectively.

Figure 5(c) compares the effects of IsPlanktonCLR and other models on
colorization of rare colors. As the bodies of most plankton are semi-transparent
or transparent, there are many white examples in our dataset while the reddish
examples are rare. Except for a few species, reddish colors mainly appear in the
positions of plankton eyes. As can be seen, our model overcomes the dominant
color effect well and achieves accurate colorization of the decapod’s eyes and
the copepod’s eye-spot, while other models perform much poorer. In addition,
we conduct further experiment to compare the performance of our loss with the
cross-entropy loss as baseline. The results are detailed in the Supplementary
Materials, which show that our loss can make the model converge faster than
the baseline loss does under the same conditions.
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Fig. 5. (a) Examples indicating the change in mean activation before and after the
addition of reference information. The colors in the activation maps are related to the
mean value of activation with low values indicating cooler colors and high values indi-
cating warmer colors. (b) Comparison of colorization effects between discrete encoding
and continuous encoding. (c) Colorization effect comparison of each model on rare col-
ors.

4.4 CDSIM Metric

We firstly use a dataset of in situ plankton images to validate the proposed
CDSIM. Figure 6 (a) shows the evaluation results of color dissimilarity obtained
by different colorization models, where only the foreground pixels of plankton are
used for CDSIM calculation. Intuitively, the color differences of images in each
row from the ground truth become gradually more obvious from left to right,
and their CDSIM scores also gradually increase, indicating that the colorization
quality is getting worse. This result verifies that CDSIM can not only quantify
color dissimilarity between plankton images, but also its evaluation results are
consistent with the perception of human eyes.

In addition, we select some images from ImageNet [10] to further assess CD-
SIM on natural scene image colorization, and the results are compared with
those obtained by other common metrics, as shown in Figure 6(b). Before this
test, we replace some colors in the original pictures with other colors that look
still reasonable to human eyes. In Case1, some colors of the scenes are replaced
with visually similar colors; while in Case2, some colors in the pictures are re-
placed with obviously different colors. In this test, all the pixels of a whole image
are evaluated. The results show that when using CDSIM and FID, the scores of
Case1 images are significantly lower than those of Case2, which is consistent with
human visual perception. But the results of PSNR and SSIM are very similar in
the two cases, indicating that they cannot distinguish the color difference. The
evaluation results of Colorfulness are not consistent at all. This result proves
that CDSIM is also suitable for objective and quantitative evaluation of natural
scene image colorization.

Compared with PSNR, SSIM, FID and other metrics, CDSIM has higher
computational complexity. Especially for high resolution natural scene colorful
images, its computation can be intensive. However, for in situ marine plankton
dark-field ROIs, the CDSIM computation cost is significantly reduced due to
limited image resolution and even lower proportion of foreground pixels, which
is completely acceptable in practice.
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Fig. 6. (a) Comparison of visual perception and CDSIM evaluations on marine plank-
ton images produced by various colorization models. (b) Comparison of visual per-
ception and numerical metrics-based evaluations on artificially colorized natural scene
images.

5 Conclusion

We present a deep colorization model for automatic color restoration of in situ
marine plankton grayscale images. The model achieves the state-of-the-art per-
formances on color restoration of in situ marine plankton image data. This is the
first endeavor, to the best of our knowledge, to apply deep colorization for ma-
rine plankton scientific imagery. We also propose a metric for comparing color
dissimilarity between images, which provides a new and objective evaluation
for restoration-oriented image colorization algorithms. This method is expected
to inspire new design of next generation instruments or systems for achieving
long-term, continuous, high-frequency, and in situ ocean observation.

Acknowledgements. This work was supported by International Partnership
Program of Chinese Academy of Sciences No.172644kysb20210022, Scientific In-
strument Development Project of Chinese Academy of Sciences No.YJKYYQ201
90028, and Shenzhen Science and Technology Innovation Program No.JCYJ2020
0109105823170. We thank the participants for replying our online survey.



IsPlanktonCLR 15

References

1. Anwar, S., Tahir, M., Li, C., Mian, A., Khan, F.S., Muzaffar, A.W.: Image col-
orization: A survey and dataset. arXiv preprint arXiv:2008.10774 (2020)

2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Tech.
rep., Stanford (2006)

3. Bahng, H., Yoo, S., Cho, W., Park, D.K., Wu, Z., Ma, X., Choo, J.: Coloring
with words: Guiding image colorization through text-based palette generation. In:
Proceedings of the european conference on computer vision (eccv). pp. 431–447
(2018)

4. Baig, M.H., Torresani, L.: Multiple hypothesis colorization and its application
to image compression. Computer Vision and Image Understanding 164, 111–123
(2017)

5. Benfield, M.C., Grosjean, P., Culverhouse, P.F., Irigoien, X., Sieracki, M.E., Lopez-
Urrutia, A., Dam, H.G., Hu, Q., Davis, C.S., Hansen, A., et al.: Rapid: research
on automated plankton identification. Oceanography 20(2), 172–187 (2007)

6. Campbell, R., Roberts, P., Jaffe, J.: The prince william sound plankton camera: a
profiling in situ observatory of plankton and particulates. ICES Journal of Marine
Science 77(4), 1440–1455 (2020)

7. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via gen-
erative adversarial networks. In: Joint European conference on machine learning
and knowledge discovery in databases. pp. 151–166. Springer (2017)

8. Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art col-
orization with conditional adversarial networks. In: Proceedings of the 26th ACM
international conference on Multimedia. pp. 1536–1544 (2018)

9. Davis, C., Gallager, S., Berman, M., Haury, L., Strickler, J.: The video plankton
recorder (vpr): design and initial results. Arch. Hydrobiol. Beih 36, 67–81 (1992)

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

11. Dong, X., Li, W.: Shoot high-quality color images using dual-lens system with
monochrome and color cameras. Neurocomputing 352, 22–32 (2019)

12. Forward, R.B.: Light and diurnal vertical migration: photobehavior and photophys-
iology of plankton. In: Photochemical and photobiological reviews, pp. 157–209.
Springer (1976)

13. Gallager, S.M.: Continuous particle imaging and classification system (Mar 5 2019),
uS Patent 10,222,688

14. Grossmann, M.M., Gallager, S.M., Mitarai, S.: Continuous monitoring of near-
bottom mesoplankton communities in the east china sea during a series of ty-
phoons. Journal of oceanography 71(1), 115–124 (2015)

15. Guo, P., Ma, Z.: Low-light color imaging via dual camera acquisition. In: Proceed-
ings of the Asian Conference on Computer Vision (2020)

16. Hasler, D., Suesstrunk, S.E.: Measuring colorfulness in natural images. In: Human
vision and electronic imaging VIII. vol. 5007, pp. 87–95. International Society for
Optics and Photonics (2003)

17. He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L.: Deep exemplar-based coloriza-
tion. ACM Transactions on Graphics (TOG) 37(4), 1–16 (2018)

18. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017)



16 G.Guo et al.

19. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! joint end-to-end learning
of global and local image priors for automatic image colorization with simultaneous
classification. ACM Transactions on Graphics (ToG) 35(4), 1–11 (2016)

20. Kaiser,  L., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events.
arXiv preprint arXiv:1703.03129 (2017)

21. Li, J., Chen, T., Yang, Z., Chen, L., Liu, P., Zhang, Y., Yu, G., Chen, J., Li,
H., Sun, X.: Development of a buoy-borne underwater imaging system for in situ
mesoplankton monitoring of coastal waters. IEEE Journal of Oceanic Engineering
47(1), 88–110 (2021)

22. Li, J., Yang, Z., Chen, T.: Dyb-planktonnet. IEEE Dataport (2021)
23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object

detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)

24. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

25. Lombard, F., Boss, E., Waite, A.M., Vogt, M., Uitz, J., Stemmann, L., Sosik, H.M.,
Schulz, J., Romagnan, J.B., Picheral, M., et al.: Globally consistent quantitative
observations of planktonic ecosystems. Frontiers in Marine Science p. 196 (2019)

26. Ma, W., Chen, T., Zhang, Z., Yang, Z., Dong, C., Qiao, J., Li, J.: Super-resolution
for in situ plankton images. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 3683–3692 (2021)

27. Manjunatha, V., Iyyer, M., Boyd-Graber, J., Davis, L.: Learning to color from
language. arXiv preprint arXiv:1804.06026 (2018)

28. Merz, E., Kozakiewicz, T., Reyes, M., Ebi, C., Isles, P., Baity-Jesi, M., Roberts,
P., Jaffe, J.S., Dennis, S.R., Hardeman, T., et al.: Underwater dual-magnification
imaging for automated lake plankton monitoring. Water Research 203, 117524
(2021)

29. Messaoud, S., Forsyth, D., Schwing, A.G.: Structural consistency and controllabil-
ity for diverse colorization. In: Proceedings of the European Conference on Com-
puter Vision (ECCV). pp. 596–612 (2018)

30. Nazeri, K., Ng, E., Ebrahimi, M.: Image colorization using generative adversar-
ial networks. In: International conference on articulated motion and deformable
objects. pp. 85–94. Springer (2018)

31. Orenstein, E.C., Ratelle, D., Briseño-Avena, C., Carter, M.L., Franks, P.J., Jaffe,
J.S., Roberts, P.L.: The scripps plankton camera system: A framework and plat-
form for in situ microscopy. Limnology and Oceanography: Methods 18(11), 681–
695 (2020)

32. Picheral, M., Grisoni, J.M., Stemmann, L., Gorsky, G.: Underwater video profiler
for the” in situ” study of suspended particulate matter. In: IEEE Oceanic En-
gineering Society. OCEANS’98. Conference Proceedings (Cat. No. 98CH36259).
vol. 1, pp. 171–173. IEEE (1998)

33. Plonus, R.M., Conradt, J., Harmer, A., Janßen, S., Floeter, J.: Automatic plank-
ton image classification—can capsules and filters help cope with data set shift?
Limnology and Oceanography: Methods 19(3), 176–195 (2021)

34. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: Controlling deep im-
age synthesis with sketch and color. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5400–5409 (2017)

35. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 761–769 (2016)



IsPlanktonCLR 17

36. Steinberg, D.K., Landry, M.R.: Zooplankton and the ocean carbon cycle. Annual
review of marine science 9, 413–444 (2017)

37. Su, J.W., Chu, H.K., Huang, J.B.: Instance-aware image colorization. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 7968–7977 (2020)

38. Tanaka, M., Genin, A., Endo, Y., Ivey, G.N., Yamazaki, H.: The potential role of
turbulence in modulating the migration of demersal zooplankton. Limnology and
Oceanography 66(3), 855–864 (2021)

39. Tanaka, M., Genin, A., Lopes, R.M., Strickler, J.R., Yamazaki, H.: Biased mea-
surements by stationary turbidity-fluorescence instruments due to phototactic zoo-
plankton behavior. Limnology and Oceanography: Methods 17(9), 505–513 (2019)

40. Vitoria, P., Raad, L., Ballester, C.: Chromagan: Adversarial picture colorization
with semantic class distribution. In: Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision. pp. 2445–2454 (2020)

41. Wu, Y., Wang, X., Li, Y., Zhang, H., Zhao, X., Shan, Y.: Towards vivid and diverse
image colorization with generative color prior. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 14377–14386 (2021)

42. Xu, Z., Wang, T., Fang, F., Sheng, Y., Zhang, G.: Stylization-based architecture
for fast deep exemplar colorization. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 9363–9372 (2020)

43. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE
Transactions on Image Processing 24(12), 6062–6071 (2015)

44. Yoo, S., Bahng, H., Chung, S., Lee, J., Chang, J., Choo, J.: Coloring with limited
data: Few-shot colorization via memory augmented networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
11283–11292 (2019)

45. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European confer-
ence on computer vision. pp. 649–666. Springer (2016)

46. Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A.S., Yu, T., Efros, A.A.: Real-
time user-guided image colorization with learned deep priors. arXiv preprint
arXiv:1705.02999 (2017)

47. Zhao, J., Han, J., Shao, L., Snoek, C.G.: Pixelated semantic colorization. Interna-
tional Journal of Computer Vision 128(4), 818–834 (2020)


	Colorization for in situ marine plankton images

