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Abstract. In Cloud 3D, such as Cloud Gaming and Cloud Virtual Re-
ality (VR), image frames are rendered and compressed (encoded) in the
cloud, and sent to the clients for users to view. For low latency and high
image quality, fast, high compression rate, and high-quality image com-
pression techniques are preferable. This paper explores computation time
reduction techniques for learned image compression to make it more suit-
able for cloud 3D. More specifically, we employed slim (low-complexity)
and application-specific AI models to reduce the computation time with-
out degrading image quality. Our approach is based on two key insights:
(1) as the frames generated by a 3D application are highly homogeneous,
application-specific compression models can improve the rate-distortion
performance over a general model; (2) many computer-generated frames
from 3D applications are less complex than natural photos, which makes
it feasible to reduce the model complexity to accelerate compression com-
putation. We evaluated our models on six gaming image datasets. The
results show that our approach has similar rate-distortion performance
as a state-of-the-art learned image compression algorithm, while obtain-
ing about 5x to 9x speedup and reducing the compression time to be
less than 1 second (0.74s), bringing learned image compression closer to
being viable for cloud 3D. Code is available at https://github.com/cloud-
graphics-rendering/AppSpecificLIC.

Keywords: Cloud Gaming, Cloud Virtual Reality, Learned Image Com-
pression, Model Simplification, Application-specific Modeling, Model-
Task Balance

1 Introduction

Image compression plays an important role in cloud 3D, including cloud gaming
and cloud virtual reality (VR). Compared with local (non-cloud) 3D applications,
cloud 3D needs an extra step, image/video encoding and streaming, to trans-
mit compressed (encoded) frames of 3D applications to end users. The smaller
the file size of the compressed image (i.e., higher compression rate), the lower
network bandwidth usage and network latency will be. However, high compres-
sion rate usually either implies longer compression/decompression time or lower
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image quality. Therefore, fast, high compression rate, and high-quality image
compression techniques are highly preferable.

Recently, learned image compression [17,4,5,29,19,10,28,23,27,14,3,41,12,9]
has shown great potential for further increasing the compression rate, while
maintaining similar image quality. By replacing traditional discrete cosine trans-
form (DCT) [40] or discrete wavelet transform (DWT) [32] with deep neural
networks, the latent representation after transform operation can have smaller
data sizes (less spatial redundancy). Typical learned image compression frame-
works [17,4,5,29] utilize cascaded auto-encoder/decoder layers to optimize the
entropy encoding. Some studies [17,23] also aggregate information from all the
decoder layers to get a better compression rate and reconstruction quality. There-
fore, learned image compression has demonstrated better or comparable com-
pression capability, compared to traditional methods [40,32,6,7].

Although learned image compression has made great progress, there is still a
major challenge that hinders its application to cloud 3D: The high inference
latency of compression/decompression violates the timing constraint
of cloud 3D. For example, the Coarse-to-Fine model [17] takes about 5 and
7 seconds to compress and decompress an image with 1920×1080p resolution.
Compression and decompression at several seconds are not tolerable for cloud
3D, as its latency is typically required to be less than a second [11].

In this work, we focus on reducing the computation time for learned image
compression for cloud 3D while preserving low bitrate and high image qual-
ity. More specifically, we employed low-complexity and application-specific AI
models to reduce the computation time without degrading image quality. Our
approach is based on two key insights: (1) as the frames generated by a 3D
application are highly homogeneous, application-specific models can improve
the rate-distortion overall a general model; (2) many of the computer-generated
frames from real 3D applications are less complex than natural photos, which
also makes it feasible to employ less complex models to accelerate computation.

We collected six gaming image datasets to assist the development of our
learned image compression method. We evaluated our simplified application-
specific models on these datasets. The results show that our approach has similar
rate-distortion performance as a state-of-the-art (SOTA) learned image compres-
sion algorithm, while obtaining 5x to 9x speedup and reducing the compression
time to be less than 1 second, bringing learned image compression closer to being
viable for cloud 3D. Our method also has a lower bitrate than BPG and VTM.

Note that, in this work, we focus on image compression than video-based
encoding. Our results show that, for cloud 3D, the bitrate of our image com-
pression solution is about 3 times better than H.264 videos (about 20 Mbps V.S.
60 Mbps), which is commonly used for cloud gaming [26]. Moreover, this image
compression is similar to the I-Frames (independent frames) in videos. Using
images (i.e., only I-Frames) have better tolerance over lost frames, which is com-
mon in cloud 3D, as their decoding does not depend on previous (lost) frames,
and thus, potentially providing a better user experience. Finally, our conclusions
can also be applied to the encoding of I-Frames for video-based cloud 3D.
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In summary, the contributions of this work include:
1. Six gaming image datasets for learned image compression research on

rendered images.
2. A low-complexity and application-specific approach for learned image com-

pression for images generated/rendered by 3D applications.
3. A thorough evaluation of the proposed approach with various parameters

which showcases the viability of learned image compression for cloud 3D.
The rest of this paper is organized as following: Section 2 discusses the re-

lated work; Section 3 explains the problem and presents our approach; Section 4
demonstrates the effectiveness of our methodologies. Section 5 discusses special
design issues, and Section 6 concludes the paper.

2 Related Work

2.1 Traditional Image Compression

Traditional image compression frameworks employ several processes: image trans-
formation, quantization, and entropy encoding. JPEG, first proposed by Wallace
in 1992 [40], utilizes Discrete Cosine Transform (DCT) to make key information
compact at the left-up corner of an image. JPEG2000 [32] was proposed later,
which uses Discrete Wavelet Transform (DWT) to further improve the compres-
sion rate. Based on HEVC video encoding standard, Bellard proposed a new
compression solution, BPG [6], which uses intra image prediction techniques
and has been the state-of-the-art algorithm until VTM. Based on the latest
video encoding standard, VVC or H.266 [7], VTM uses improved methods, such
as larger coding units, more intra-prediction modes, and more transform types,
to increase image compression rate. However, VTM is complex and may spend
several hundred seconds in compression computation.

2.2 Learned Image Compression

As deep neural networks (DNN) have demonstrated excellent modeling and
representation ability on computer vision tasks, many deep learning-based im-
age compression schemes are proposed to improve the rate-distortion perfor-
mance of image compression. Based on network types, these algorithms fall into
two categories: recurrent models (RNN) [37,38,22,20] and convolutional models
(CNN) [4,5,29,19,17,10,28,23,27,14,3,41,12,9].

Recurrent neural network (RNN) models typically compress images or the
residual information progressively. Toderici et al. proposed a variable-rate RNN
model [37], which is the first to utilize convolutional LSTM to compress images.
Their approach supports end-to-end training and can generate multiple bitrates
through a single model. Later, Toderici et al. and Johnston et al. introduced
full-resolution RNN [38] and priming RNN [20], both of which achieve compa-
rable and even better performance when compared with BPG in terms of image
quality (MS-SSIM). Spatial RNN [22] excels BPG significantly by removing the
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redundant information among larger pixel ranges. However, RNN models tend
to have high complexity, especially for higher ranges of bit-rates.

Being less complex, CNN methods are widely studied recently. Ballé explored
an auto-encoder/decoder architecture with GDN network [4] to compress and
reconstruct images. Later, a hyperprior model [5] is invented to predict the prob-
ability distribution of pixels to help with the entropy coding, which is compara-
ble to BPG. The autoregressive entropy model [29] is based on the hyperprior
model and utilizes context information to further remove spatial redundancy.
EDIC model [23] and checkerboard context model [14] accelerate the decoding
process for the autoregressive entropy model [29]. Coarse-to-Fine model [17] is
proposed in 2020 and becomes the SOTA image compression solution. Coarse-to-
Fine adds one more auto-encoder/decoder layer to the hyperprior architecture
and aggregated information from all the auto-encoder/decoder layers to get bet-
ter compression rate and reconstruction quality. However, the compression and
decompression time of Coarse-to-Fine is usually high [34]. Slimmable network ar-
chitectures [41,43,42] provide an effective solution for variable rate and adaptive
complexity, making the AI models suitable for resource-limited devices.

Our work is inspired by these prior studies. Nonetheless, more work is still
required to speed up learned image compression for real-time processing to meet
cloud 3D’s latency and quality requirements.

2.3 Formulation of Learned Image Compression

A basic learned image compression framework [4] follows the equations below:

y = ga(x, α)

ŷ = Q(y); b← ξ(ŷ); ŷ ← ξ−1(b)

x̂ = gs(ŷ, β)

(1)

where ga and gs are analysis and synthesis transforms that are used to reduce
image redundancy and reconstruct the image. α and β are optimized parameters
for analysis and synthesis transforms. x and x̂ denote the input raw image and
the reconstructed image. y is the latent representation, which is quantized by
Q. After quantization, the result ŷ is imported into ξ for entropy encoding. The
symbol b denotes the bitstream after image compression. For image decompres-
sion, the bitstream b is imported into ξ−1 for entropy decoding. The entropy
encoding and decoding processes are lossless [34,35]. Hence, the quantized la-
tent representation ŷ can be fully recovered after these two steps. Finally, gs
reconstructs the raw image from ŷ. Since quantization is a lossy process, the
reconstructed information x̂ may be different from the original input x. The
difference between x and x̂ is the reconstruction distortion.

For quantization, round-based quantization values can be used to generate
ŷ. However, learned image compression usually employs end-to-end models, and
the round-based quantization method is non-differentiable, making it challenging
for end-to-end training. Prior work [4] solved this problem by adding a uniform
noise u(−0.5,+0.5) to signal y during model training. This method creates a
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noisy signal ỹ, which is used to approximate ŷ during model training. That is,
this solution makes the quantization process differentiable.

For entropy coding, prior work [4] used a basic factorized model, and later
the authors proposed a more advanced trainable hyperprior model [5]. The hy-
perprior model added another auto-encoder/decoder layer to the baseline model,
and the new layer is used for probability estimation. To model long term depen-
dency, the Coarse-to-Fine model [17] proposed hierarchical layers of hyperpriors
to conduct more comprehensive analysis, which can be formulated as,

y = ga(x, α); z = ha1(y, α1);w = ha2(z, α2)

ŷ = Q(y); ẑ = Q(z); ŵ = Q(w);

pẑ|ŵ(ẑ|ŵ)← h2 ← hs2(ŵ; θs2)

pŷ|ẑ(ŷ|ẑ)← h1 ← hs1(ẑ; θs1)

x̂← gs(ŷ, β), h1, h2

(2)

where ga, gs, x, x̂, y, ŷ, α, β, andQ are same as the Formula 1. ha1 and hs1 are the
auto-encoder and decoder in the first auxiliary layer, while ha2 and hs2 are the
auto-encoder and decoder in the second auxiliary layer. After the transformation
of ga, the latent representation y (output of transformation) is imported into ha1.
ha1’s output z is in turn imported into ha2 to produce w. Then, y, z, and w are
further quantized into ŷ, ẑ, and ŵ. h1 and h2 are side information from hs1 and
hs2, which help reconstruct the original image, along with gs(ŷ, β). pẑ|ŵ(ẑ|ŵ)
is the estimated distribution conditioned on ŵ, and pŷ|ẑ(ŷ|ẑ) is the estimated
distribution conditioned on ẑ. pẑ|ŵ(ẑ|ŵ) and pŷ|ẑ(ŷ|ẑ) are used to do entropy
coding of ŷ and ẑ. The distribution of ŵ uses the typical factorized model.

The typical loss function for learned image compression is a rate-distortion
trade-off. For the Coarse-to-Fine model, the bitrate includes three parts: Ry,
Rz, and Rw. The distortion, D(x, x̂), is the difference between x and x̂. The loss
function can be described as,

L = R+ λD = Ry +Rz +Rw + λD(x, x̂)

= E[− log2 pŷ|ẑ(ŷ|ẑ)] + E[− log2 pẑ|ŵ(ẑ|ŵ)] + E[− log2 pŵ(ŵ)] + λD(x, x̂),

(3)

where λ is a trade-off parameter. Larger λ leads to better (i.e., less) distortion,
and hence, higher bitrate. According to information theory, the minimum bitrate
to encode signal x is the cross entropy of the real and estimated distribution of
x. The E(.) calculates the size of output bitstream from each layer.

3 Proposed Research

3.1 Application-Specific Learned Image Compression in Cloud 3D:
A Practical Use Case

Learned image compression is a data-driven method, and the quality of the
reconstructed image is highly dependent on the training dataset and the practical
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use case. The image quality would become poor if obvious differences are found
between the training dataset and practical use case. To solve the problem of
image quality drift (degradation), we propose application-specific learned image
compression, which collects datasets and trains AI models for each specific use
case. To make this solution more practical, we are targeting the cloud 3D system.

GPU

Í GPU CmdsÎ Rendered Image

2D/3D Library

Interactive 3D Application

Rendering Engine (optional)

Graphics Interposer

Ì 2D/3D APIsÏ Rendered Image

Proxy (software)

Ë User
Inpu

t

Ð Image

Client Software

Ê User Input Ñ Compressed Image

Cloud 3D Platform

Fig. 1. A typical architecture of cloud 3D system.

Figure 1 illustrates a typical architecture of a cloud 3D system. Cloud 3D
platform and 3D applications are the two main components, and the 3D appli-
cations run above the cloud 3D platform. For the cloud 3D platform, it involves
server-side software (server proxy) and client-side software, and these two parts
are separated by the network. On the client-side, the user interacts with the
client software that is also responsible for displaying frames/images of remote
3D applications. The server-side includes several modules: proxy software, graph-
ics interposer, 2D/3D library, and GPU. The proxy receives user inputs (step Ê),
forwards inputs to corresponding 3D applications (step Ë), and transmits ren-
dered frames from the server-side to client-side (step Ñ). The graphics interposer
intercepts API calls from 3D applications and invokes the real 2D/3D library in
the cloud (step Ì). The GPU at the bottom of cloud 3D platform is responsible
for executing rendering commands (step Í). In cloud 3D, 3D applications are
offloaded from local computers to the cloud, and the GUIs of 3D applications
are transmitted to the client-side in the form of compressed images (step Ñ).
Therefore, image compression plays an important role in cloud 3D streaming.

Note that, an AI model is trained for each 3D application to conduct application-
specific image compression/decompression. Hence, instead of downloading and
installing a 3D application on local computers, an AI model (which is typically
smaller than a 3D application) will be downloaded for decoding.

3.2 Cloud 3D Image Dataset

Images in cloud 3D systems are rendered by programs. To study learned image
compression for cloud 3D images, datasets are collected from six 3D applications.

Dataset Collection Pictor benchmark suite [25] is created for cloud 3D
research. We used this benchmark suite to collect GUI frames of each 3D ap-
plication automatically. More specifically, after rendering a frame on GPU, the
pixels of the current frame will be copied from the GPU memory to CPU mem-
ory (step Î, Ï, and Ð in Figure 1). Before sending the frame to client side, we
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compress the frame into the PNG format [1] and save it to disk (in the graphics
interposer or the server proxy of Figure 1).

Fig. 2. A sample of cloud 3D image dataset from six 3D applications. Each 3D appli-
cation has 2000 images. 1000 images are 1080p, and the other 1000 images are 720p.
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Fig. 3. Entropy density comparison
of Cloud 3D images and natural im-
ages. The natural image dataset is from
DIV2K train HR [2,18].

Dataset Construction We have
collected six datasets from six 3D ap-
plications with two resolutions, 1920×
1080 and 1280× 720). Each 3D appli-
cation has 2000 images. 1000 images
are 1080p, and the other 1000 images
are 720p. For each resolution, there
are 800 images for training, 100 im-
ages for validation, and 100 images
for testing. With each game having
2000 images, there are 12000 images
in total. Figure 2 gives a sample of
the cloud 3D image dataset. Super-
tuxkart [16] is an open-source racing
game; 0AD [13] is an open-source real-
time strategy game; Red Eclipse [33]
is a first-person shooting game, and
it is also open-source. Dota2 [39] is
a highly popular online battle arena
game. Inmind [30] and Imhotep [31] are VR applications.

Dataset Analysis Rendered images from 3D applications usually have fewer
details and are relatively simpler than natural photos. To verify this intuition,
we analyzed the complexity of rendered images and natural photos that are
from the cloud 3D dataset and DIV2K train HR dataset respectively. Figure 3
provides quantitative evidence by comparing the difference between these two
datasets in terms of entropy density. Entropy, H(X) = −

∑n
i=1 p(xi)logp(xi), is
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a typical metric to evaluate the complexity of an image. Figure 3 shows that the
majority of natural photos’ entropy is on the right side of (i.e., larger than) the
cloud 3D datasets, indicating that cloud 3D images statistically have lower
entropy and are simpler than natural photos. Interestingly, Figure 3 also
shows that the entropy of cloud 3D images has a wide distribution, and one of
the peak values is very close to that of natural photos, indicating that some
rendered images have comparable complexity with natural photos.

3.3 A Slim Framwork: How Slim the Framework Can Be?

The SOTA learned image compression [17] has outperformed the traditional
image compression solutions. However, it has complex structures, such as cas-
caded DNNs. These structures make image compression and decompression time-
consuming. As discussed in Section 3.2, rendered images are simpler and have
fewer details than natural photos. However, it is unclear if these simpler images
can lead to more lightweight frameworks with lower bitrates to make it feasible
for compressing gaming images. To further explore this feasibility, we studied
the large, medium, small, xsmall models, and pruned models.

Table 1. Simplifying the Coarse-to-Fine model by continuously reducing the num-
ber(#) of channels in the main and auxiliary auto-encoder/decoders.

Model Name #of chnls in ga/gs #of chnls in ha1/hs1 #of chnls in ha2/hs2

Large Com. (3, [384, 384, 384, 384]) (384, [768, 1536, 256]) (256, [512, 256, 128])
Large Dec. (384, [384, 384, 384, 3]) (256, [1536,1536,384]) (128, [512, 512, 256])
Medium Com. (3, [192, 192, 192, 192]) (192, [384, 768, 256]) (256, [512, 128, 128])
Medium Dec. (192, [192, 192, 192, 3]) (256, [768, 384, 192]) (128, [128, 256, 256])
Small Com. (3, [96, 96, 96, 96]) (96, [192, 384, 256]) (256, [256, 128, 128])
Small Dec. (96, [96, 96, 96, 3]) (256, [384, 192, 96]) (128, [128, 256, 256])
XSmall Com. (3, [48, 48, 48, 48]) (48, [96, 192, 256]) (256, [256, 128, 128])
XSmall Dec. (48, [48, 48, 48, 3]) (256, [192, 96, 48]) (128, [128, 256, 256])
Pruning Com. Same as above Same as above pruned
Pruning Dec. Same as above Same as above pruned

Large, Medium, Small, and Extra-Small Models To reduce the compu-
tation time of the Coare-to-Fine model, we aim to obtain a slim framework by
continuously reducing the number of channels in ga, gs, ha1, hs1, ha2 and hs2
(Please refer to Formula 2 and prior work [17]). Table 1 shows the details of
large, medium, small, and xsmall models. “*Com” denotes image compression
(analysis), while “*Dec” denotes image decompression (synthesis). Each model
has separate analysis and synthesis processes. In each row of Table 1, the num-
bers stand for the input and output channels (chnls) of a CNN layer. E.g., in (3,
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[384, 384, 384, 384]), 3 refers to the RGB channels of an image, and [384, 384,
384, 384] denotes 4 convolutional layers each with 384 filters.

Framework Pruning Coarse-to-Fine proposed hierarchical hyperprior layers
to estimate the probability for entropy coding. Other studies [9,23] also proved
that side information can benefit image reconstruction. Therefore, our framework
kept these structures. Nonetheless, although adding one more hyperprior layer
benefits probability estimation, it also increases the complexity of the model
and the computation time. As we target cloud 3D, which has simpler images,
we removed the last hyper-prior layer to further speed up the computation time
(see Figure 4 and the “Pruning *” rows in Table 1).

Fig. 4. A slim framework for image compression and decompression.

After pruning ha2 and hs2, the original model becomes a slim framework.
In Figure 4, for image compression, the raw image x is first transformed by ga,
and then the output y is quantized into ŷ for arithmetic encoding (AE) in the
bottom path. In the top path, y is sent to ha1. After quantization and AE, y
is compressed into bitsteam. The hs1 in the top path generates h1, which is
imported into a probability estimation (Pro-Est) module to help with AE in the
bottom path. For image decompression, the bitsteam in the top path is imported
into the arithmetic decoding (AD) and further synthesized by hs1. Finally, with
h1, the image is reconstructed after gs processes ŷ. Consequently, inference and
loss function can be simplified as Formula 4 and 5,

y = ga(x, α); z = ha1(y, α1)

ŷ = Q(y); ẑ = Q(z);

pŷ|ẑ(ŷ|ẑ)← h1 ← hs1(ẑ; θs1)

x̂← gs(ŷ, β), h1

(4)

L = R+ λD = Ry +Rz + λD(x, x̂)

= E[− log2 pŷ|ẑ(ŷ|ẑ)] + E[− log2 pẑ(ẑ)] + λD(x, x̂)
(5)

Although most of the symbols have been described in this section, please also
refer to Formula 2 and 3 for more details about other symbols.
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3.4 Model-Task Balance on GPU

GPUs usually have limited video memory, which makes it challenging to run
large-scale AI models with high-resolution images. Splitting big images (e.g.,
1080p/2K/4K/8K) into smaller tiles (e.g., 256×256) might help learned image
compression. These small tiles can fit into GPU memory, allowing large AI model
processing in GPU without memory error. However, processing these tiles in a
sequential manner is suboptimal.

To further speed up the image processing on GPU, we employed Model-Task
Balance (M-T-Balance). The key idea is to increase the task size (size
of input tile) as we switch to more lightweight learned image com-
pression models. More specifically, as we continuously simplify or prune the
compression model, the input size can be increased accordingly. After getting a
slim framework (section 3.3), the AI model occupies less video memory, while
the saved video memory can be utilized to accommodate larger image tiles. In
this way, the computing resources in GPU can be fully utilized, which, in turn,
increases the parallelism and further speeds up the compression and decompres-
sion process. In our evaluation, our final slim framework allows whole image
frames to be stored in GPU memory.

4 Evaluation

Rate-distortion performance, compression/decompression speedup, and visual-
ization quality are evaluated in our experiments. For each dataset, the model
was trained with an initial λ value of 0.004. However, as a hyperparameter, λ
was tuned for each application-specific model, with potential values of 0.01, 0.02,
0.04, 0.08, 0.16, 0.002, 0.001, 0.0005, 0.0002, and 0.0001. Each model was trained
for 2500 epochs until the loss became stable. The speedup evaluation was con-
ducted on a server with an 8-core Intel i7-7820x CPU, 16GB memory, and an
NVIDIA GTX1080Ti GPU with 11GB GPU memory.

4.1 Performance Comparison

Rate-Distortion Comparison. Our method (slim framework with application-
specific learned image compression) has similar or better rate-distortion per-
formance, when compared with other algorithms. Figure 5 compares the rate-
distortion performance of our approach with the Coarse-to-Fine model, BPG,
and VTM. In the first five subfigures of Figure 5, our method is very close to
the performance of the SOTA model. In the last subfigure for Imhotep, our
method has significant performance improvement and saved about 0.3 bpp (bits
per pixel) with a PSNR of 36dB. When comparing with BPG and VTM, our
method has similar performance on Supertuxkart, 0AD, and Dota2 datasets.
For the other three datasets, our method outperformed BPG and VTM. The
Imhotep dataset is particularly interesting, as it only has a liver in the image
with regular patterned background (see Figure 2), our compressing scheme is
more effectively on this dataset over other algorithms.
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Fig. 5. Rate-Distortion curves (PSNR) of Coarse-to-Fine model [17], handcrafted
BPG4:4:4 [6], VTM16-4:2:0 [36], and our method on six gaming datasets.

Computing Speedup. The goal of this work is to speed up the compres-
sion and decompression of learned image compression without harming the rate-
distortion performance. The previous evaluation has shown that our method has
better image quality at similar bitrates than other methods, the computing time
will be further evaluated. Table 2 compares the computing time of our approach
with the Coarse-to-Fine (SOTA) model, BPG, and VTM. Table 2 shows that
our method outperforms the other three methods on image compression speed.
More specifically, the compression time is reduced to 0.74s, which is about 9x
and 156x faster than Coarse-to-Fine model and VTM, respectively. For image
decompression, our method is about 4.7x faster than Coarse-to-Fine model, but
slower than BPG and VTM. Further reduction of computing time will be inves-
tigated in the future (See Section 5 for more discussion).

Table 2. Computing time comparison (in seconds) of Coarse-to-Fine model [17],
BPG [6], VTM-16 [36], and our method on six gaming image datasets.

Computing Time (s) Coarse-to-Fine (SOTA) BPG-4:4:4 VTM16-4:2:0 Ours

Compression 6.52 0.76 115.16 0.74

Decompression 7.72 0.38 0.39 1.64

4.2 Ablation Study

Application-Specific Compression. To illustrate the impact of application-
specific model, we also report the performance of the application-specific models
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with the “large” size. Figure 6 compares the rate-distortion performance of the
Coarse-to-Fine model (green curve) and the application-specific models (blue
curve with square marker). Figure 6 shows that the application-specific scheme
improves the rate-distortion performance of all applications significantly on both
high and low bitrates. In particular, Imhotep has the largest improvement, and
the reason of the large improvement is discussed in Section 4.1. Similarly, given
the same bitrate, our application-specific method can improve PSNR by 2 to
4dB in most cases.

Fig. 6. Rate-Distortion curves of the Coarse-to-Fine model [17] and application-specific
learned image compression (with model pruning) on six datasets.

Fig. 7. Comparison on visual quality with the Coarse-to-Fine model, BPG, VTM, and
our method. This sample image is 665.png under “test/dota2-1080p/” directory.

Rate-Distortion Comparison of Model Simplification and Prunning.
To determine the proper size of a slim framework, an ablation study on each
simplified model is also conducted. As shown in Table 1, large, medium, small,
and xsmall models are trained and evaluated, and the rate-distortion perfor-
mance is shown in Figure 6. From Figure 6, it is observed that the performance
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of these models gradually approaches the Coarse-to-Fine model as we keep sim-
plifying the original model. The xsmall model has worse performance than the
Coarse-to-Fine model, whereas the other three models behave well. As the small
model has lower complexity, it is selected to perform hyperprior layer pruning,
which achieves similar or better performance when compared with Coarse-to-
Fine as shown in Figure 6.

Computing Speedup. We also analyze the compression and decompression
time for the simplified and pruned models. Their computing time is shown in
Table 3. The M-T-Balance scheme is implemented on the “Small” model, and the
pruning scheme is based on the “Small” model and employs the M-T-Balance.
Table 3 shows that our model simplification can effectively reduce the computing
time for both compression and decompression. Moreover, M-T-Balance achieved
impressive speedup, and its average computing time is reduced by about 37%.
At last, pruning the last hyperprior layer saved another 0.3 seconds.

Table 3. Computing time comparison of application-specific learned image compres-
sion with different model sizes, model-task balance (based on Small model), and model
pruning (based on the small model and M-T-Balance).

Computing Time (s) Large Medium Small XSmall M-T-Balance (Small) Pruning

Compression 4.16 2.24 1.63 1.43 0.93 0.74

Decompression 5.27 3.42 2.60 2.25 1.75 1.64

4.3 Visualization Study

To exemplify the effectiveness and image quality of our approach, visual examples
of some reconstructed images are presented in Figure 7. A relatively complex
image is selected from the Dota2 dataset (as Dota2 is a popular 3D game and is
welcomed by many players). In this figure, we compared our approach with the
learned image compression algorithm, Coarse-to-Fine, as well as hybrid coding
methods (BPG and VTM). Figure 7 shows that these images are very close, and
we can barely distinguish these four images based on visual qualities. This is
coherent with the quantitative results presented in Figure 5.

In summary, our method has a lower compression time, similar or better
rate-distortion performance, compared with Coarse-to-Fine, BPG, and VTM.

5 Discussion and Future Work

Model Size in Bytes. The model size of our solution is about 30.9 MB. As
our models are application-specific, to use our models in cloud 3D, users need
to download a model for each 3D application. As the models are small, this
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download should not be an obstacle, especially when considering many existing
mobile games are significantly larger than our models.

Comparison with H.264 Video Encoding. Contemporary cloud gam-
ing, such as Google’s Stadia [8], primarily employed video encoding to stream
the game images to the client. The most common encoding standard used is
H.264 [26,15,24,21,8]. Due to space limitation, we cannot provide a detailed com-
parison with H.264 video-based encoding. The results are summarized there. On
average, at PSNR 30 to 35, the H.264 video bitrate for our datasets is more than
60Mbps, which is higher than our solution. That is, our solution (and learned
image compression in general) has better bitrates than H.264 encoding.

The main benefit of H.264 is its faster encoding and decoding, especially
with hardware accelerators. This fast computation makes H.264 more suitable
for real-time encoding for cloud 3D than the general learned image compression.
However, our application-specific solution can significantly reduce the compres-
sion/decompression time for learned compression. Although our solution is still
slower than H.264, further optimizations (more in the next paragraph) may make
learned image compression’s computation time closer to H.264. With smaller
bitrates (thus smaller network latency), the overall latency of learned image
compression can be potentially lower than H.264 for cloud 3D.

Further Reduction of Computation Time. This paper focuses on the
slim and application-specific model design for cloud 3D image compression.
Therefore, we only conducted limited optimization (i.e., the Model-to-Task bal-
ance) on the implementation of our models. In the future, we plan to explore
more optimization options, such as GPU code optimization, FPGA implemen-
tation, and/or ASIC (Application-specific Integrated Circuits) implementations,
to eventually make learned compression feasible for cloud 3D.

6 Conclusions

This work focuses on reducing the computing time of learned image compression
to make it one step closer to meeting the real-time requirement of cloud gam-
ing and VR. We proposed application-specific compression to reduce the model
complexity to speed up model computation time. Evaluations show that our ap-
proach significantly accelerated compression/decompression without degrading
image quality, making learned compression potentially viable for cloud 3D.
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