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1 LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France
2 LASTIG, Univ Gustave Eiffel, IGN, ENSG

Abstract. Roof-mounted spinning LiDAR sensors are widely used by
autonomous vehicles. However, most semantic datasets and algorithms
used for LiDAR sequence segmentation operate on 360◦ frames, causing
an acquisition latency incompatible with real-time applications. To ad-
dress this issue, we first introduce HelixNet, a 10 billion point dataset
with fine-grained labels, timestamps, and sensor rotation information
necessary to accurately assess the real-time readiness of segmentation
algorithms. Second, we propose Helix4D, a compact and efficient spatio-
temporal transformer architecture specifically designed for rotating Li-
DAR sequences. Helix4D operates on acquisition slices corresponding to
a fraction of a full sensor rotation, significantly reducing the total latency.
Helix4D reaches accuracy on par with the best segmentation algorithms
on HelixNet and SemanticKITTI with a reduction of over 5× in terms
of latency and 50× in model size. The code and data are available at:
https://romainloiseau.fr/helixnet
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1 Introduction

Due to their low acquisition latency and high precision, rotating LiDAR sensors
are among the most prevalent sensors for autonomous vehicles [38]. The acquired
sequences of 3D points exhibit a complex structure in which the temporal and
spatial dimensions are entangled through the rotation of the sensor around a
reference point in motion; see Figure 1. However, this structure is often not
reflected in the formatting of open-access LiDAR datasets [3,25,28], which are
discrete sequences of range images, or frames, each corresponding to a 360◦

degree arc around the sensor. Consequently, most LiDAR semantic segmentation
methods operate on one or several such frames at the same time, in the image
[12] or point cloud [50,47,42] format. However, waiting for an entire frame to be
acquired introduces an unavoidable latency of more than 100ms on top of the
processing time, excluding applications for high-speed or urban driving. In this
paper, we address this issue by introducing (i) HelixNet, the largest available
LiDAR dataset, and whose fine-grained point information allows for the realistic
real-time evaluation of segmentation methods, and (ii) Helix4D, a spatio-temporal
transformer designed for the efficient segmentation of LiDAR sequences.

https://orcid.org/0000-0002-1804-0735
https://orcid.org/0000-0002-3804-0193
https://orcid.org/0000-0002-7738-8141
https://romainloiseau.fr/helixnet
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Fig. 1: Online LiDAR Segmentation. The 3D point sequences of rotating LiDAR
data of our proposed dataset HelixNet follow a complex helix-like structure in space and
time, represented in a by using the vertical axis for both time and elevation. We propose
an efficient spatio-temporal transformer to process angular slices of data centered on
the sensor’s position. The slices are partitioned into voxels, each attending other voxels
from past slices to build a large spatio-temporal receptive field b. Our proposed model
can segment the LiDAR point stream c with state-of-the-art accuracy and in real-time.

Our dataset HelixNet, has several key advantages compared to standard
datasets such as SemanticKITTI [3], see Table 1. By organizing points with
respect to sensor rotation and reporting their precise release times, we can
accurately benchmark the real-time readiness of leading state-of-the-art LiDAR
sequence segmentation algorithms. Furthermore, the pointwise sensor orientation
allows us to split the data into slices of acquisition corresponding to a fraction of
the sensor’s rotation. These slices can be processed sequentially by our proposed
network Helix4D, resulting in a lower acquisition latency and a more realistic
scenario for autonomous driving. Based on a spatio-temporal transformer designed
explicitly for LiDAR sequences, Helix4D is more than 50 times smaller than the
current best semantic segmentation architectures and reaches state-of-the-art
performance with significantly reduced latency.

2 Related work

We present an overview of the existing LiDAR datasets related to autonomous
driving, and a summary of the recent developments in 3D semantic segmentation.

Autonomous Driving 3D Datasets. As autonomous driving becomes an increas-
ingly realistic prospect, multiple datasets have been proposed to evaluate the
performance of perception algorithms [33,11]. In addition to cameras, rotating
LiDARs have become one of the most prevalent sensors mounted on autonomous
vehicles due to their high accuracy, low latency, and steadily decreasing prices [38].
ApolloScape [23], DublinCity [51], and TerraMobilita/iQmulus [43] have been
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Table 1: Embarked LiDAR Datasets with Semantic Point Annotations. With
over 8.8B annotated 3D points, HelixNet is 70% larger than SemanticKITTI, and
includes more diverse scenes spanning 6 different French cities. Contrary to other
datasets, HelixNet arranges points with respect to the sensor rotation and contains
fine-grained information about their release time.

Dataset labels frames classes span format

HelixNet (Ours) 8.85B 78k 9 6 cities sensor rotation
SemanticKITTI [16,3] 5.2B 43k 19 1 city frame
Rellis3D [25] 1.5B 13k 16 1 city frame
KITTI-360 [28] 1.0B 81k 37 1 city frame
A2D2 [17] 387M 41k 38 3 cities frames
Paris-Lille-3D [37] 143M N/A 50 2 cities multi-frame
Toronto3D [41] 78M N/A 8 1 city multi-frame

acquired with LiDAR setups that offer scans of urban environments with high
precision and density. However, the vertical orientation of the emitters is not
compatible with real-time road perception. Several prominent datasets such
as NuScene [6] or the very large ONCE dataset [31] provide only object-level
annotations (i.e. boxes).

This paper focuses on semantic segmentation algorithms for roof-mounted
rotating LiDAR sensors. In Table 1, we report several key characteristics of such
datasets [25,16,3,28,17,37,41]. Our proposed dataset HelixNet is 70% larger than
SemanticKITTI [16,3], and spans 6 cities and various environments. In contrast
to previously released datasets, the 3D points of HelixNet are given with respect
to the sensor rotation and in the order in which they are made available. This
last point proves crucial for evaluating the precision and latency of segmentation
algorithms in a setting that is compatible with real-time inference.

Deep Semantic Segmentation of 3D Point Clouds. The development of specific
deep architectures for the semantic segmentation of 3D point clouds has led to a
tremendous increase in performance [21]. The first set of methods that operate
on rotating LiDAR sequences processes data in range image format [27,40,12].
Taking advantage of advances in the implementation of sparse convolutions [18,9],
a second set of methods uses fine grids in polar [47], Cartesian [42,8] or cylin-
drical [50,22] coordinates. A third kind of approach proposes exploiting the
temporal dimension of LiDAR acquisitions by stacking contiguous frames [9,2].
Observing that cylindrical partitions better capture the geometry of rotating
LiDAR acquisition, our proposed Helix4D builds on the idea of Cylinder3D [50]
and adds a temporal component to the architecture.

Due to their remarkable performance and scalability, transformers [44] have
quickly been adapted from text processing to images [13,30,39,7], videos [1], or
meshes [29]. Transformers are also well suited to handle unordered sets, such
as 3D point clouds [20,48]. In particular, their scalability can be leveraged
to achieve large receptive fields [32,34] and more discriminative features [5]
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Training Set Validation Set

1- Clermont 2- Clermont 3- CASQY 13- Paris (5°) 14- Vincennes

4- CASQY 5- CASQY 6- Paris (11°) 15- Guyancourt 16- Vincennes (SE)

7- Clermont (Uni) 8- Clermont (Uni) 9- Paris (6°) 17- Vincennes (SE) 18- Amiens

10- Paris (6°) 11- Paris (6°) 12- Paris (6°) 19- Amiens 20- Amiens

Test Set

Fig. 2: Coverage from HelixNet. We split the acquisitions into 12 training, 2 val-
idation, and 6 testing sequences. HelixNet contains diverse scenes in various urban
environments from static or mobile sensors.

than purely convolutional approaches. Transformers can also efficiently process
complex temporal [26,45] and spatio-temporal [15] sequences. In the wake of
hybrid convolution-transformer models [19,10,14], our proposed Helix4D combines
efficient cylindrical convolutions with a simplified spatio-temporal transformer
architecture operating at low resolution.

3 HelixNet: A Dataset for Online LiDAR Segmentation

We introduce HelixNet, a new large-scale and open-access LiDAR dataset intended
for the evaluation of real-time semantic segmentation algorithms. In contrast to
other large-scale datasets, HelixNet includes fine-grained data on sensor rotation
and position, as well as point release time.

General Characteristics. As seen in Figure 2, HelixNet contains 20 sequences of
3D points, each corresponding to 6 to 7 minutes of continuous acquisition, for a
total of 129 minutes. Scanning was performed by an HDL-64E Velodyne rotating
LiDAR [24] mounted on a mobile platform [35]. As shown in Figure 3, HelixNet
covers multiple cities and a wide variety of environments such as a university
campus, dense historical centers, and a highway interchange. With a total of 10
billion points across 78 800 frames and 8.85 billion individual labels, HelixNet is
the largest densely annotated open-access rotating LiDAR dataset by a factor of
1.7 as shown in Table 1. HelixNet follows the file format of SemanticKITTI [3],
allowing researchers to evaluate existing code with minimal effort.
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Fig. 3: Extracts from HelixNet. Our proposed dataset contains various urban scenes
from motorway to pedestrian plazas and historical centers. In the first row, we represent
extracts of 15 to 30s of acquisition colored according to the point release time. In the
second row, we represent the point semantic labels.

We use a 9-classes nomenclature: road (16.4% of all points), other sur-
face (22.0%), building (31.3%), vegetation (8.5%), traffic signs (1.6%), static
vehicle (4.9%), moving vehicle (2.1%), pedestrian (0.9%), and acquisition arti-
fact (0.05%). Points without labels correspond to either un-annotated (6.2%)
parts of the clouds due to their ambiguity, or point without echos (6.1%). Com-
pared to fine-grained classes such as the ones used by SemanticKITTI [3] or
Paris-Lille3D’s [37], our focused nomenclature limits class imbalance and makes
macro-averaged metrics more stable.

Each point is associated with the 9 following values: (1-3) Cartesian coordi-
nates in a fixed frame of a reference, (4-6) cylindrical coordinate relative to the
sensor at the time of acquisition, (7) intensity, (8) fiber index, and (9) packet
output time. As detailed in the next paragraph, the last two features are not
typically available in large-scale datasets and cannot be inferred.

Sensor-Based Timing and Grouping. A rotating LiDAR consists of a set of
lasers—or fibers—arranged on a rotating sensor head. The lasers send periodic
pulses of light whose return times give the position of the impact points relative
to the sensor. In the context of autonomous driving, these sensors are typically
deployed on a moving platform and capture 3D points with centimetric accuracy.
The sensor releases the data stream as a discrete temporal sequence of packets
of 3D points. For an HDL-64E LiDAR, each packet contains 6 × 64 points,
corresponding to around 1◦ rotation of the sensor. To represent the real-time
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(a) Rotation of the sensor head (b) Slices covering 120◦

Fig. 4: Sensor Acquisition Geometry. We represent in a the acquisition of a rotating
sensor, which is split into 1⁄3 turn slices in b. As the Laser emitters position forms an
angle of over 17.3◦ around the sensor head, taking slices with respect to the sensor
rotation θ results in a jagged profile.

operational setting of autonomous driving, we associate with each point the
timestamp of its packet output event, i.e. the instant the packet is available
and not the acquisition time of the point. The latency between the acquisition
of the first point and the complete transfer of its packet is 278µs. Although
small compared to acquisition and inference times, this more rigorous timing
constitutes a step towards a more realistic evaluation setting of segmentation
algorithms of LiDAR sequences.

On top of its absolute position, we associate with each individual point its
cylindrical coordinates relative to the position of the sensor at the exact time of
its acquisition. This differs from other datasets such as SemanticKITTI [3], which
gives the relative position of all points but the absolute position of the sensor
only once per frame. While sensor movement can be interpolated, the vehicle
trajectory might not be linear and the sensor head rotates. For comparison, at
50km/h, the sensor moves more than 1.4m during each rotation.

LiDAR sequences are typically split into frames containing points that cover
a 360◦ degree arc around the sensor. However, the acquisition geometry makes
this grouping artificial. Indeed, the fibers (i.e. the individual lasers) do not all
face the same direction: they are arranged around the sensor’s heads at different
angles, with a range of more than 17.3◦. This means that the points within a
packet are not vertically aligned but present a jagged profile as seen in Figure 4.
In order to obtain frames with straight edges such as those of SemanticKITTI [3],
we would have to consider an acquisition over a sensor rotation of 377◦, adding a
further 5ms of latency. Contrary to other datasets, HelixNet contains the index
of the emitter of each point and organizes the points with respect to the angle of
the sensor itself This allows us to easily build frames or frame portions that are
directly consistent with the rotation of the sensor head itself. This is important
for measuring the real latency of segmentation methods and, as described in the
next section, contributes to the efficiency of our proposed network.
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4 Helix4D: Fast LiDAR Segmentation with Transformers

We consider a sequence of 3D points acquired by a rotating LiDAR on a mobile
platform, which we split into chronologically ordered slices of acquisition. As
represented in Figure 5, we process each slice with a U-Net architecture [36]
with cylindrical convolutions [50]. At the lowest resolution, a spatio-temporal
transformer network connects neighboring voxels in space and time, resulting
in a large receptive field. We first describe the construction of slices, then our
cylindrical U-Net, and finally the transformer module.

4.1 Temporal Slicing

Instead of processing the data frame-by-frame, we propose to split the sequence
into slices covering a fixed portion of the sensor rotation, resulting in a shorter
acquisition time and a lower latency. Each point i of the sequence is characterized
by the angular position θi of the sensor head at its exact time of acquisition.
The points are sorted in chronological acquisition order i.e. θi ≤ θj if i < j. We
partition the sequence into groups of contiguous points called slices, acquired
during a portion ∆θ ∈]0, 2π] of a full rotation of the sensor itself. Choosing
∆θ = 2π corresponds to the classic frame-by-frame setting and implies an
acquisition latency of 104ms in HelixNet or SemanticKITTI [3]. A slice size of
∆θ = 2π/5 leads to an acquisition latency of 21ms, which is more conducive to
real-time processing of driving data.

4.2 Cylindrical U-Net

Inspired by the Cylinder3D model [50], we first discretize each slice along a fine

cylindrical partition grid (1). Each point i is associated with a descriptor xpoint
i

based on its intensity, relative position with respect to the sensor in Cartesian
and cylindrical coordinates, and its offset with respect to the center of its voxels
in grid (1). We compute the point feature fpoint

i by applying a shared Multi-Layer

Perceptron (MLP) Epoint to xpoint
i for all points i in the slice. The resulting fpoint

i

are then maxpooled with respect to the voxels of grid (1) to serve as input to a
convolutional encoder Egrid. The network Egrid is composed of sparse cylindrical
convolutions [18] and strided convolutions for downsampling. Egrid produces a set
of L sparse feature maps fgrid(1), · · · , fgrid(L) with decreasing resolutions:

fpoint
i = Epoint

(
xpoint
i

)
(1)

fgrid(1), · · · ,fgrid(L) = Egrid
(
maxpool

(
fpoint

))
, (2)

where maxpool is performed with respect to grid (1). At the lowest resolution
grid (L), we apply the transformer-based module T presented in the next sub-
section to the feature map fgrid(L) to obtain the coarse cylindrical map ggrid(L):

ggrid(L) = T
(
fgrid(L)

)
. (3)
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Fig. 5: Helix4D Architecture. A point sequence is split into angular slices, whose
points are encoded by Epoint and pooled along a fine-grained cylindrical partition. A
convolutional encoder Egrid yields feature maps at lower resolutions. We apply W
consecutive spatio-temporal transformer blocks T w on the coarse voxels, with attention
spanning across current and past slices. The resulting features are up-sampled to full
resolution with a convolutional decoder Dgrid using the encoder’s maps at intermediate
resolutions through skip connections. Finally, the grid features are allocated to the
points, which are classified by Dpoint.

The decoder Dgrid combines cylindrical convolutions and strided transposed
convolutions to map ggrid(L) to a feature map ggrid(1) at the highest resolution,
and uses the maps fgrid(L−1), · · · , fgrid(1) through residual skip connections. We
concatenate for each point i the descriptor ggrid(1)(i) of its voxel in grid (1) and

its point feature fpoint
i . Finally, the point decoder Dpoint associates a vector of

class scores cpointi with each point i:

ggrid(1) = Dgrid
(
ggrid(L), fgrid(L−1), · · · , fgrid(1)

)
(4)

cpointi = Dpoint
([

ggrid(1)(i), fpoint
i

])
, (5)

where [ · ] is the channelwise concatenation operator. The network is supervised by
the cross-entropy and Lovász-softmax [4] losses directly on the point prediction,
without class weights.

Our approach differs from Cylinder3D [50] by relying on simple 3×3×3 sparse
cylindrical convolutions instead of asymmetrical convolutions and dimension-
based context modeling. Furthermore, we do not use voxel-wise supervision.

Our simplified architecture results in a lighter computational and memory
load, but can still learn rich spatio-temporal features thanks to the addition of
the transformer module described below.

4.3 Spatio-Temporal Transformer

We denote by V the set of non-empty voxels at the lowest resolution grid (L)
for all slices of the considered sequence. We associate with each voxel v of V a
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feature f voxel
v defined as the value of fgrid(L) at v. We remark that f voxel can be

ordered as a non-strictly ordered time sequence, and propose to successively apply
W independent transformer blocks T 1, · · · , T W whose architecture is described
below. We denote by gvoxel the resulting spatio-temporal voxel representation:

gvoxel = T W ◦ · · · ◦ T 1(f voxel) . (6)

We associate each voxel v of V with the absolute position (Xv, Yv, Zv) of its
center, the release time Tv of its first point, and the index Iv of the sensor rotation
of its corresponding slice. In order to use a sparse attention scheme, we define
for each voxel v a spatio-temporal mask M(v) characterized by a radius R and a
set of rotation offsets P ⊂ N:

M(v) = {u | ∥(Xv, Yv, Zv)− (Xu, Yu, Zu)∥ < R , Iv − Iu ∈ P} . (7)

In the context of autonomous driving, we choose R = 6m and P = {0, 5, 10}.
With a standard rotation speed of 10Hz, this corresponds to considering slices
0.5 and 1 seconds in the past along with the current one. See Figure 6 for an
illustration of the receptive field and attention maps.

Simplified Transformer Block. We now define a single transformer block T w with
H heads operating on a sequence of voxel features f voxel of dimension D. For
each head h and each voxel v, we apply the following operations:

(i) A single linear layer Lh generates both a key khv of dimension K and a value
valhv of dimension D/H.

(ii) For all voxels u in the mask M(v), we define the compatibility score yhu,v
as the cross-product between keys and with a learned relative positional
encoding PEh(u, v).

(iii) The cross-voxel attention ahu,v is obtained with a scaled softmax.

(iv) The values valhu of voxels in M(v) are averaged into a vector f̃h
v using their

respective cross-voxel attention as weights.
(v) The vectors f̃h

v are concatenated channelwise across heads and added to
the input of the block to define its output.

These operations can be summarized as follows:

khv , val
h
v = Lh

(
f voxel
v

)
(8)

yhu,v =
(
khv

)⊺ (
khu + PEh(u, v)

)
for u ∈ M(v) (9){

ahu,v
}
u∈M(v)

= softmax
({

yhu,v
}
u∈M(v)

/
√
K
)

(10)

f̃h
v =

∑
u∈M(v) a

h
u,vval

h
u (11)

T w(f voxel)v = f voxel
v + [f̃1

v , · · · , f̃H
v ] . (12)

Our design is similar to the classical transformer architecture but uses keys
as queries to save memory and computation. We also do not use feed-forward
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−1 sec. −0.5 sec. 0 sec. −1 sec. −0.5 sec. 0 sec.

spatio-temporal mask M(v) voxel v sensor position cross-voxel attention

Fig. 6: Spatio-Temporal Attention. We represent the spatio-temporal mask and
attention score of one head of the transformer for two different voxels. The network
gathers information from different frame offsets P as the sensor moves.

networks after averaging the values: the only learnable part of a block T w is its
linear layers Lh and its relative positional encoding PEh.

Since gvoxel only requires information about the voxels of the current and past
slices, it can be computed sequentially for all slices in the order in which the
sensor releases them. For a given slice, the voxel map ggrid(L) for non-empty voxels
is given by the values of gvoxel, and set to zero otherwise. To save computation
at inference time, we store in memory the keys, values, and absolute positions
of the voxels in past slices with a fixed buffer of max(P ) rotations. This allows
us to allocate a large spatio-temporal receptive field to each voxel without
supplementary computations.

Relative Positional Encoding. We propose to learn relative positional vectors
PEh(u, v) that encode the spatio-temporal offset (Xu, Yu, Zu, Tu)−(Xv, Yv, Zv, Tv)
between voxels u and v for each transformer block w independently. Inspired by
the work of Wu et al . [46], we first discretize the offsets along each dimension
d ∈ {X,Y, Z, T} with Bd irregular bins. For each dimension d and head h, we
learn Bd weight vectors of size K. We define the functions PEh

d : R 7→ RK that
map the d-dimension of an offset to the vector associated with its corresponding
bin. The positional encoding between two voxels u and v is the sum of the vectors
corresponding to their discretized offsets in each dimension:

PEh(u, v) = PEh
X(Xu −Xv) + PEh

Y (Yu − Yv)

+ PEh
Z(Zu − Zv) + PEh

T (Tu − Tv) . (13)

Relative positional encoding vectors are used directly in the calculation of the
compatibility score, as given in (9). Additional details on positional encoding are
given in the supplementary material.

5 Evaluating Online Semantic Segmentation

We evaluate the performance and inference time of our approach and other
state-of-the-art methods in both online and frame-by-frame settings. We use our
proposed dataset HelixNet and the standard SemanticKITTI dataset.
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Online Evaluation Setting We aim at evaluating the real-time readiness of rotating
LiDAR semantic segmentation algorithms in the context of autonomous driving.
The total latency of a model is determined by its inference speed and also the
time it takes to acquire its input. Operating on full frames requires at least
104ms of acquisition, which is incompatible with realistic autonomous driving
scenarios. Instead, we propose an online evaluation setting using the slices defined
in Sec. 4.1. By default, we use a slice size of a fifth turn of the sensor head:
∆θ = 2π/5, corresponding to 21ms of acquisition.

Slices are processed sequentially. We define the inference latency of a segmen-
tation method as the average time between the release of the last point of a slice
and its segmentation. To meet the real-time requirement, inference must be faster
than the acquisition of a slice. Slower processing would cause the classification
to continuously fall behind. Although thinner slices directly reduce acquisition
latency, they also make the real-time requirement more strict: as a full turn must
be processed in less than 104ms, a fifth turn must be in at most 21ms.

Adapting SemanticKITTI. SemanticKITTI [3,16] contains 43 552 frames along
22 sequences of LiDAR scans densely annotated with 19 classes. In contrast to
HelixNet, SemanticKITTI is not formatted with respect to the sensor rotation
and only gives the acquisition time and sensor position once per frame. To
measure the latency, we make the following approximation: (i) the fibers are
assumed to be vertically aligned, meaning that the angle of the points is the
same as the sensor’s; (ii) we interpolate the acquisition time of points between
frames from their angular positions; (iii) we use the acquisition time as release
time. To obtain the absolute positions of the voxels, we assume that the sensor
jumps between the positions given by the camera poses for each frame. In our
open-source implementation, we provide an adapted dataloader allowing methods
already running on SemanticKITTI to be evaluated in the online setting with
minimal adaptation.

Adapting Competing Methods. To evaluate the semantic segmentation perfor-
mance and latency of other segmentation algorithms in the online setting, we
process the point clouds corresponding to each slice independently and sequen-
tially. This approach restricts the spatial receptive field to the extent of the slices.
However, as the sensor moves, it is not straightforward to add past slices whose
relative positions may no longer be valid. By explicitly modeling the spatio-
temporal offset between voxels, Helix4D does not suffer from this limitation.

We selected five segmentation algorithms with open-source implementations
and trained models for SemanticKITTI. SalsaNeXt [12] uses range images, Polar-
Net [47] and panoptic PolarNet [49] a bird’s eye view polar grid, SPVNAS [42] a
regular grid, and Cylinder3D [50] a cylindrical grid. We do not consider methods
that stack frames as their structure and resulting latency is incompatible with the
online setting. When using SemanticKITTI, we evaluate the provided pretrained
models on the validation set. On HelixNet, we retrain the models from scratch
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Table 2: Semantic Segmentation Results. Performance of Helix4D and competing
approaches on HelixNet and on the validation set of SemanticKITTI⋆, in the frame-by-
frame and online setting. We report the mean Intersection-over-Union (mIoU) and the
inference time in ms. Methods meeting the real-time requirement are indicated with
✓and those who do not with ✗. ⋆ SemanticKITTI is denoted as SK. Measuring the
latency on this dataset requires making non-realistic approximations about the fiber
position.

Method
Size Full frame 104ms 1⁄5 frame 21ms

×106 HelixNet SK⋆ Inf. (ms) HelixNet SK⋆ Inf. (ms)

SalsaNeXt [12] 6.7 69.4 55.8 23 ✓ 68.2 55.6 10 ✓

PolarNet [47] 13.6 73.6 58.2 49 ✓ 72.2 56.9 36 ✗

Pan. PolarNet [49] 13.7 — 64.5 50 ✓ — 60.3 44 ✗

SPVNAS [42] 10.8 73.4 64.7 73 ✓ 69.9 57.8 44 ✗

Cylinder3D [50] 55.9 76.6 66.9 108 ✗ 75.0 65.3 54 ✗

Helix4D (Ours) 1.0 79.4 66.7 45 ✓ 78.7 66.8 19 ✓

Table 3: HelixNet Semantic Segmentation Scores. We report the IoU for each
class of HelixNet evaluated in the online setting with slices of 72◦.
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SalsaNeXt [12] 84.4 76.1 88.7 70.7 61.4 58.6 35.1 68.5 69.7 68.2
PolarNet [47] 86.2 77.9 91.2 77.9 63.2 64.8 35.4 68.1 84.8 72.2
SPVNAS [42] 80.5 77.1 93.0 81.8 68.0 60.9 36.9 71.7 59.0 69.9
Cylinder3D [50] 85.3 78.4 93.5 83.9 66.2 63.3 35.7 77.7 90.9 75.0
Helix4D (Ours) 87.8 82.5 94.0 84.4 68.9 72.3 46.4 78.8 93.3 78.7

using the procedure of their official repository. We removed all test-time augmen-
tations that resulted in prohibitive inference time. All methods are evaluated on
the same workstation using a NVIDIA TESLA V100 32Go GPU.

Analysis. In Table 2, we report performance in frame-by-frame and online set-
ting with slices of 72◦, for Helix4D and competing methods, for HelixNet and
SemanticKITTI. We observe that Helix4D yields state-of-the-art accuracy, with
mIoU scores only matched by Cylinder3D [50]. However, Cylinder3D is 50 times
larger in terms of parameters and twice slower, not meeting the real-time re-
quirement even in the full frame setting. As reported in Table 3, distinguishing
moving vehicles in HelixNet is particularly difficult. Our approach even largely
outperforms Panoptic PolarNet despite this method using instance annotation as
supervision, preventing us from evaluating on HelixNet. Helix4D yields signifi-
cantly improved scores thanks to its larger spatio-temporal receptive fields: 14m
and 1000ms vs. 8m and 21ms for Cylinder3D for a fifth rotation.
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Fig. 7: Influence of Slice Size. We plot the processing time (left, in ms) and precision
(right, in mIoU) of different methods with respect to the considered size of slices,
estimated on the validation set of SemanticKITTI [3]. Methods whose inference time
is slower than the acquisition time of the slice (red shaded area) do not meet the real
time requirement.

Table 4: Ablation Study. We report the speed and accuracy of several modification of
our Helix4D on the validation set of SemanticKITTI.

Method
Size Full Frame 104ms 1⁄5 Frame 21ms
×103 mIoU Inf. (ms) mIoU Inf. (ms)

Helix4D 985 66.7 45 ✓ 66.8 19 ✓

(a) Asymmetric Convolutions 1171 66.6 56 ✓ 66.6 31 ✗

(b) Cylindrical U-Net 985 58.6 22 ✓ 60.2 16 ✓

(c) Slice-by-Slice 985 62.9 29 ✓ 62.6 19 ✓

(d) w. Queries 993 65.2 45 ✓ 64.8 20 ✓

(e) w/o. Positional Encoding 983 64.3 41 ✓ 64.1 18 ✓

(f) Helix4D Tiny 306 65.3 45 ✓ 64.9 17 ✓

In the online setting, only two approaches meet the real-time requirement:
SalsaNeXt [12] and Helix4D. Our approach outperforms SalsaNeXt by over 10
mIoU points in both the full frame and the on-line settings. In short, Helix4D is
as accurate as the largest and slowest models with an inference speed comparable
to that of the fastest and less accurate models. The total latency (acquisition plus
inference time) of our model evaluated online is 40ms (21 + 19ms), and reaches
the same performance as Cylinder3D evaluated on full frame with a latency of
212ms (104 + 108ms), an acceleration of more than 5 folds.

In Figure 7, we report the inference time and mIoU for different slice sizes.
Due to various overheads, the inference time appears in an affine relationship
with the size of slices, making the real-time requirement stricter for smaller slices.
Due to its very design, the performance of Helix4D is not affected by the slice
size. In contrast, competing methods perform worse with smaller slices.
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Ablation Study We assess on SemanticKITTI the impact of different design
choices by evaluating several alterations of our method, reported in Table 4.
(a) Asymmetric Convolutions: we replace the 3× 3× 3 convolutions in our
U-Net with the convolution design proposed by Cylinder3D [50]. We did not
observe a significant change in performance and an increase in run-time of 50%,
failing the real-time requirement for slices of 72◦.
(b) Cylindrical U-Net: we replace the transformer by a 1×1×1 convolution on
the voxels of the lowest resolution. We observe a slight decrease in run-time and
a significant drop of over 6 mIoU points. This result shows that the transformer
is able to learn meaningful spatio-temporal features at low resolution.
(c) Slice-by-Slice: we restrict the mask M(v) of each voxel to its current slice.
This reduction in the temporal receptive field results in a drop of 4 mIoU points,
without any appreciable acceleration.
(d) w. Queries: we modify our simplified transformer to associate a query for
each voxel along with keys and values, and use key-queries compatibilities. This
does not affect the run-time and slightly decreases the performance.
(e) w/o. Positional Encoding: we remove the relative positional encoding
PE in the calculation of compatibilities in equation (9). This leads to a slightly
decreased run time, but decreases performance by more than 2.5 points. This
illustrates the advantage of explicitly modeling the spatio-temporal voxel offsets.
(f) Helix4D Tiny: we replace the learned pooling in our U-Net with maxpools
and use narrower feature maps for a total of 306k parameters. This method only
performs two points under Helix4D with a third of its parameters.

6 Conclusion

In this paper, we introduced a novel online inference setting for the semantic
segmentation of sequences of rotating liDAR 3D point clouds. Our proposed
large-scale dataset HelixNet contains specific sensor information that allows a
rigorous evaluation of the performance and latency of segmentation methods in
our online setting. We also introduced Helix4D, a transformer-based network
specifically designed for online segmentation, achieving state-of-the-art results
with a fraction of the latency and parameters of competing methods. We hope
that our open-source dataset and implementation will encourage the evaluation of
future semantic liDAR segmentation methods in more realistic settings and help
to bridge the gap between academic work on 3D perception and the operational
constraints of autonomous driving.
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