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Abstract. Simulators offer the possibility of safe, low-cost development
of self-driving systems. However, current driving simulators exhibit näıve
behavior models for background traffic. Hand-tuned scenarios are typ-
ically added during simulation to induce safety-critical situations. An
alternative approach is to adversarially perturb the background traffic
trajectories. In this paper, we study this approach to safety-critical driv-
ing scenario generation using the CARLA simulator. We use a kinematic
bicycle model as a proxy to the simulator’s true dynamics and observe
that gradients through this proxy model are sufficient for optimizing the
background traffic trajectories. Based on this finding, we propose KING,
which generates safety-critical driving scenarios with a 20% higher suc-
cess rate than black-box optimization. By solving the scenarios generated
by KING using a privileged rule-based expert algorithm, we obtain train-
ing data for an imitation learning policy. After fine-tuning on this new
data, we show that the policy becomes better at avoiding collisions. Im-
portantly, our generated data leads to reduced collisions on both held-out
scenarios generated via KING as well as traditional hand-crafted scenar-
ios, demonstrating improved robustness.

1 Introduction

After years of steady progress, autonomous driving systems are getting closer to
maturity [25]. Due to the high consequences of failure, they have to satisfy ex-
traordinarily high standards of robustness in the face of unseen and safety-critical
scenarios. However, real-world data collection and validation for these situations
is dangerous and lacks the necessary scalability [29, 31]. These problems can be
addressed with realistic simulation. Unfortunately, current simulators such as
CARLA [16] are not only insufficient in terms of visual fidelity but also lack the
necessary diversity of driving scenarios: there exists both an appearance and a
content gap to the real world [26]. The content gap poses a major challenge in
the adoption of driving agents trained in simulation using imitation learning (IL)
or reinforcement learning (RL), which are often brittle to o.o.d. inputs under-
represented during training [17]. In this work, we aim to address the content gap
by improving the behavior of simulated background traffic agents.

https://lasnik.github.io/king/
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Fig. 1. Generating safety-critical scenarios for robust driving. Left: we propose
KING, a novel optimization method to generate safety-critical driving scenarios which
iteratively updates the initial scenario using gradients through a differentiable kine-
matics model and successfully induces a collision with the ego agent. Right: fine-tuning
on expert behavior in safety-critical perturbations leads to a more robust agent.

Background agents in current simulators follow näıve behavioral models, re-
sulting in limited diversity of the emerging traffic [16,40]. Critical scenarios are
often hand-crafted [1,18]. This strategy is unlikely to be successful in fully cover-
ing the long-tailed distribution of critical situations that might be encountered in
the real world. Furthermore, these scenarios are often non-adaptive to the driv-
ing agent under test. A more targeted approach is to actively seek possible failure
modes. To do so, existing work perturbs the trajectories of background agents
in a physically plausible manner to induce failures in the driving agent [2, 48].
This paradigm can be framed as a kinematically constrained adversarial attack
on the driving agent, where the amount of safety-critical data generated within a
given compute budget is dependent on the success rate of the attack. The preva-
lent approach for this task is black-box optimization (BBO), since simulators
are often not differentiable [19, 23]. However, as we observe on the widely used
CARLA simulator [16], existing attacks based on BBO (e.g. [19,20,23]) struggle
to reliably induce collisions in IL-based driving agents (see Table 2).

As observed in image-space adversarial attacks, gradient-based optimization
has the potential to be faster and more successful than BBO [3, 13]. Moreover,
there has been a trend towards end-to-end differentiability, both in simulation
[5,44–46] and driving agents [6,7,10,11,36,42]. Using differentiable components
enables gradient-based generation of adversarial traffic scenarios. In this paper,
we answer an important question: does the entire simulation pipeline need to be
differentiable to provide useful gradients for the optimization of traffic scenarios?
We present KING, a simple and effective approach for safety-critical scenario
generation. Our key idea is to use a kinematic bicycle model as proxy to a
driving simulator’s true dynamics, and solve for safety-critical perturbations of
non-critical initial scenarios via backpropagation. The process of optimizing a
non-critical scenario with KING is visualized in Fig. 1 (left). Further, we show
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that KING generates challenging but solvable test cases for driving systems that
use both (1) a planner that acts on a bird’s-eye view (BEV) grid input and
(2) a camera and LiDAR-based driving agent [37]. Finally, we demonstrate that
scenarios generated by KING can augment the original training distribution
which has limited diversity. This leads to improved collision avoidance, as shown
in Fig. 1 (right).

Contributions: (1) We propose KING, a simple procedure for generating
safety-critical scenarios via backpropagation that is more reliable and requires
less optimization time than BBO. (2) We show that KING generates challeng-
ing, diverse, and solvable scenarios for two different driving agents with different
input modalities. (3) We use the generated scenarios to augment the CARLA
simulator’s non-diverse traffic, improving the robustness of an end-to-end IL-
based driving agent on both our generated test cases and a benchmark containing
CARLA’s hand-crafted scenarios.

2 Related Work

End-to-End Driving: We are interested in stress-testing and improving end-
to-end learning-based autonomous driving systems. While there are a few RL
methods for this task [8, 47], most work leverages IL. Some adhere closely to
the end-to-end learning paradigm [6, 11, 12, 30, 35, 37], directly inferring driving
actions from raw sensor observations. However, others use interpretable inter-
mediate representations [4, 43, 49]. In particular, BEV semantic occupancy grid
representations are widely used in modern driving approaches [7, 10, 42, 51, 52].
This representation can be inferred from images [10, 21, 22, 27, 28, 32, 33, 41]. In
our study we consider two IL-based driving agents reflecting both schools of
thought: (1) a planner called AIM-BEV acting on ground-truth perception rep-
resented as a BEV semantic occupancy grid, and (2) an end-to-end agent acting
on camera and LiDAR observations called TransFuser [37].

Generating Safety-Critical Scenarios: Previous work on generating safety-
critical scenarios relies on BBO techniques and explores a variety of search space
parameterizations, such as initial velocity or position of adversarial agents [14,
15,38], a high-level route graph [2] or parameterized driving policies [31]. In Ad-
vSim [48], the search space is parameterized as a sequence of kinematic bicycle
model states for each adversarial agent, with steering and acceleration actions
as free parameters. We also adopt this simple and expressive parameterization
for KING. Different from this line of work, we propose a gradient-based proce-
dure to optimize over these parameters rather than resorting to BBO techniques.
Concurrent work presents STRIVE [39], a framework that also generates critical
scenarios via gradient-based optimization. Here, an adversarial agent is parame-
terized as a latent vector of a learned motion forecasting model. STRIVE focuses
on a simple, privileged rule-based planner rather than end-to-end IL agents and
uses a proxy of the driving agent to enable gradient-based optimization, while
KING directly optimizes for collisions wrt. the actual driving agent.
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3 Safety-Critical Scenario Generation for Robust
Imitation

In this section, we outline our overall approach for stress-testing and improv-
ing the robustness of IL-based driving agents, which is illustrated in Fig. 2.
Given a driving agent trained on a dataset Dreg of regular traffic, we propose
KING, a novel gradient-based optimization procedure for automatically gener-
ating safety-critical perturbations of non-critical scenarios tailored to the agent
under consideration. These scenarios serve to augment the original training dis-
tribution with limited diversity. In the following, we formally present our task
settings, detail the parameterization and objective function used for scenario
generation, and describe our robust training approach for IL.

Driving Agent and Regular Training: We assume that the driving policy of
the agent is a neural network πω with parameters ω that takes in an observation
ot ∈ RHo×Wo×Co and goal location xgoal ∈ R2 indicating the intended high-
level route on the map, and plans a trajectory represented by four future 2D
waypoints w ∈ R4×2:

πω (ot,xgoal) : RHo×Wo×Co × R2 → R4×2. (1)

Based on the predicted waypoints, the final actions a0t ∈ [−1, 1]
2
in the form of

throttle and steering commands are produced by lateral and longitudinal con-
trollers. Currently, several state-of-the-art IL agents fall under this paradigm [9,
10, 37]. With this general scheme, we consider both an IL policy with an in-
termediate representation as well as a strictly end-to-end model in our study.
The first is a planner acting on ground-truth visual abstractions which we will
refer to as AIM-BEV. This is inspired by [4] and the AIM-VA model in [10], but
uses a BEV intermediate representation instead of 2D semantics since the BEV
is an orthographic projection of the physical 3D space which is better corre-
lated with vehicle kinematics than the 2D image domain. Here, the observations
ot ∈ R192×192×3 are a rasterized BEV grid encoding HD map information with
channels for (1) road and (2) lanes as well as a separate channel for dynamic
obstacles such as background agents (3). The grid represents the environment
ahead and to each side of the agent at a resolution of 5 pixels per meter. In addi-
tion to AIM-BEV, we also stress-test the publicly available checkpoint released
by the authors of TransFuser [37]. This is a recent state-of-the-art IL-based

self-driving model acting on observations orgb
t ∈ R256×256×3 obtained from a

front-facing camera and a discretized BEV lidar-histogram with two height bins
olid
t ∈ R256×256×2. Both AIM-BEV and TransFuser are trained on observation-

waypoint pairs (o,w) drawn from Dreg. The observations are mapped to a latent
representation which is input to a gated recurrent unit (GRU) that plans the
trajectory w in an autoregressive fashion. For additional details, please refer to
the supplementary material and the original TransFuser paper.

Gradient-based Scenario Generation: To optimize for safety-critical pertur-
bations of an initial non-critical scenario (regular traffic), we iteratively simulate
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Fig. 2. Robust training pipeline. Given any agent with a driving policy πω trained
on regular traffic data, we propose to increase its robustness under safety-critical sce-
narios by generating targeted augmentations. We propose KING, a gradient-based
optimization procedure to obtain safety-critical perturbations of initial regular traffic
scenarios. These perturbations then serve as additional training data for πω.

the scenario with the driving agent under attack (ego agent) in a closed-loop
simulation. In particular, we aim to create a collision between the ego agent and
one of the background actors (adversarial agents). At each iteration, we adjust
the scenario’s parameters (i.e. the trajectories of adversarial agents) in order
to induce such a collision. Importantly, the ego agent is able to react to the
perturbations of the adversarial agents, since the attacks take place in a closed
loop. Therefore, the scenarios generated are adaptive to the specific ego agent
being attacked. In the following, we formally describe the simulation process and
scenario generation procedure.

Let xi
t ∈ R2, ψi

t ∈ [0, 2π] and vit ∈ R be the ground-plane position, orientation
and speed of the i-th agent at time t, where the index 0 indicates the ego agent.

We denote the traffic state as st =
{
xi
t, ψ

i
t, v

i
t

}N

i=0
, where N is the number of

agents. In slight abuse of notation, we will use sit to refer to the state of a
specific agent. We instantiate a particular scenario as a sequence of these states
S = {st}Tt=0, where T is a fixed simulation horizon. S is initialized using regular,
non-critical traffic behavior as described in Section 4.2. To unroll the simulation
forward in time, we compute the state at the next timestep st+1 given the current

state st and actions of all agents at =
{
ait
}N

i=0
using the kinematics model κ, i.e.,

st+1 = κ (st,at). We choose the bicycle model, which provides a strong prior on
physically plausible motion of non-holonomic vehicles [8,34] and is differentiable,
enabling backpropagation through the unrolled state sequence S. The ego agent
is reactive to the simulation and chooses its actions a0t based on observations ot

of the true underlying state, which are obtained through a rendering function R,
i.e., ot = R (st,M). To render BEV semantic occupancy grids for AIM-BEV, we
query a differentiable rasterizer [24] for the given current state st and HD map
M, representing other agents by their bounding polygons. To render sensor data,
e.g., camera and LiDAR data for TransFuser, we query the CARLA simulator’s
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graphics engine. Note that all components of the simulation (π, κ and R) are
differentiable for AIM-BEV but R is not differentiable for TransFuser.

Safety-Critical Perturbation: We perturb the sequence of states
{
si>0
t

}T

t=0
for the N adversarial agents to induce a collision. If the ego agent collides within
T timesteps, we terminate the simulation successfully. However, we would like
the behavior of the adversarial agents to remain plausible. Hence, if any adver-
sarial agent deviates from the drivable areas of the map or collides with another
adversarial agent, the simulation terminates unsuccessfully. To detect collisions,
we perform intersection checks between the bounding boxes of the agents. For
out-of-bounds violations, we check if the adversarial agent bounding boxes enter
the off-road area of the map.

As in [48], we parameterize the trajectories of adversarial agents as a se-
quence of states obtained by unrolling the kinematics model κ. Specifically,
a safety-critical perturbation is found by optimizing the sequence of actions{
ai>0
t

}T

t=1
for each adversarial agent. The overall search space can be written

as θ =
{
θi
}N

i=1
where θi =

{
ait=0, ...,a

i
t=T

}
, with dimensionality N × T × 2.

We optimize an objective C which is motivated by prior work on safety-critical
scenario generation [2, 15,48]:

θ∗ = argmin
θ

C(S) with C(S) = ϕegocol (S) + λ ϕadvcol (S) + γ ϕadvdev (S). (2)

We encourage collisions involving the ego agent with the cost ϕegocol , which mea-
sures the ℓ2 distance to the closest adversarial agent. Unsuccessful terminations
of the simulation are discouraged via the costs ϕadvcol and ϕadvdev , weighted using
hyper-parameters λ and γ. Here, ϕadvcol discourages collisions between adversarial
agents by penalizing violations of a safety margin and ϕadvdev penalizes deviations
from the drivable area. These costs are similar to those commonly used in plan-
ning [7, 42,50]. For details, we refer to the supplementary material.

Note that the realism of the generated scenarios is determined by the choice
of regularizing terms in C. While additional regularization may be beneficial, we
find that the three terms in Eq. (2) are sufficient to find meaningful scenarios.
We remark that our goal is to discover challenging scenarios that lie in the
long tail of the distribution of traffic. Therefore, the scenarios discovered by
our objective are not all likely to occur frequently in daily traffic. Importantly,
however, the discovered scenarios are diverse, solvable, and enable learning more
robust driving behaviors as demonstrated in Section 4.2 and Section 4.4.

Kinematics Gradients: Given that the sequence of states S is unrolled
based on the differentiable kinematics model, we can backpropagate costs at
any timestep t to the set of actions {at−1,at−2, ...,a0} at previous timesteps. In
the full unrolled computation graph of the simulation, the true gradients of the
cost at any timestep can be taken wrt. the actions in preceding timesteps by
recursively applying the chain rule along two paths: a direct path through the
kinematics model and an indirect path, which additionally involves the driving
policy πω and renderer R. This is illustrated in Fig. 3.
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Fig. 3. Gradient paths. To unroll a simulation, we first render an observation ot of
the traffic state st using a rendering function R. Both the ego agent policy πω and
adversarial agents then take actions. The actions of the ego agent a0

t depend on the
observation and a goal location xgoal. The actions of the adversarial agents ai>0

t form
the search space of the generation procedure. Given all actions, the next state st+1 is
computed using a differentiable kinematics model κ. Gradients from the cost at time t
can then be propagated back to preceding timesteps. The derivative has components
along two paths: an efficient direct path and a compute-intensive indirect path.

With KING, we propose an approximation to the true gradients, which only
considers the direct path and stops gradients through the indirect path. While
this introduces an error in the gradient estimation, we empirically find it to
work well while leading to several advantages. Firstly, as we show in Section 4.2,
it enables gradient-based generation in the common case where the rendering
function or driving policy is non-differentiable, preventing gradients to be taken
wrt. the indirect path. Secondly, even when all components are differentiable,
taking gradients wrt. to the indirect path involves backpropagating through the
driving policy and rendering function (dotted red arrows in Fig. 3), incurring
significant computational overhead. We investigate this setting for AIM-BEV
where both the driving policy and rendering function are differentiable in Sec-
tion 4.2 and show that given a fixed computational budget, this computational
overhead leads to worse overall results compared to KING. We hypothesize that
utilizing gradients through both paths becomes more important as the driving
policy becomes robust to attacks.

Robust Training for IL: After stress-testing the IL-based driving agents, we
are further interested in improving robustness by augmenting the original train-
ing data with the generated safety-critical scenarios. To this end, we pursue a
simple yet effective strategy: (1) we generate a large set of safety-critical sce-
narios, (2) we filter these for scenarios in which a privileged rule-based expert
algorithm finds a safe alternate trajectory, (3) we collect a dataset of observation-
waypoint pairs Dcrit for the filtered scenarios using the expert, and (4) we fine-
tune the policy πω with the standard L1 loss L on a mix of the safety-critical
data Dcrit and the original dataset Dreg:

ω∗ = argmin
ω

E(ot,xgoal,w)∼(Dcrit ∪ Dreg) [L(w, πω (ot,xgoal))] . (3)
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4 Experiments

We begin by presenting the research questions we aim to answer in this study.
Can gradient-based attacks outperform black-box optimization (BBO)
for safety-critical scenario generation? We are interested in reducing the
optimization time needed to take a set of non-critical scenario initializations
and find interesting scenarios. Given the computational overhead of computing
gradients and performing a backward pass, we analyze the gains that can be
achieved for this task with gradient-based attacks over BBO in Section 4.2.
In addition, as shown in Fig. 3, there are two paths for gradients through a
simulator. We aim to understand the computational cost of backpropagating
through each path and the corresponding gains in terms of collision rates.
Are gradient-based attacks applicable to non-differentiable simula-
tors? While our main experiments are conducted using a differentiable sim-
ulator, in Section 4.3, we aim to investigate the applicability of KING to non-
differentiable rendering functions, such as CARLA’s camera and LiDAR sensors.
Can we improve robustness by augmenting the training distribution
with critical scenarios? We are interested in the analyzing robustness of the
fine-tuned IL model that uses the data augmentation strategy described in Sec-
tion 3. In Section 4.4, we investigate this on both the regular benchmark (hand-
crafted scenarios) and held-out safety-critical test scenarios generated by KING.

4.1 Benchmarking IL Agents on Hand-Crafted Scenarios

To gain an initial understanding of their robustness, we first benchmark the
agents used in our study with hand-crafted scenarios from CARLA. As an ad-
ditional benchmark that aims to maximize the traffic interactions achievable
with such scenarios, we select a set of short routes through intersections involv-
ing dense traffic. We describe these benchmarks below. The results provide a
reference for performance of our AIM-BEV agent and the existing TransFuser
agent on these settings which are relevant for the following experiments. All our
experiments are conducted using CARLA version 0.9.10.1.

Experimental Setup: AIM-BEV and TransFuser [37] are trained via super-
vised learning to imitate a privileged expert on data containing regular CARLA
traffic. The expert is a rule-based algorithm similar to the CARLA traffic man-
ager autopilot. We evaluate these models on two benchmarks: (1) the NEAT
validation routes from [10], and (2) a set of 82 routes through intersections in
CARLA’s Town10 with dense traffic. The NEAT routes provide a holistic evalu-
ation of the driving performance, but the evaluation is time-consuming. This set
contains routes varying in length from 100m to 3km with regular CARLA traffic
and hand-crafted scenarios. Since several of the routes are long and contain low
traffic densities, poor collision avoidance has limited impact on the final metrics.
For a more focused evaluation on collisions with traffic, the Town10 intersection
routes are shorter in length (80m-100m). In this setting, we ensure a high density
of dynamic agents by spawning vehicles at every possible spawn point permitted
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Table 1. Performance on hand-crafted scenarios. We show the mean ± std over 3
evaluations. AIM-BEV has fewer infractions than TransFuser on the NEAT validation
routes. However, both agents collide in over 17% of the Town10 intersection routes.

NEAT validation routes [10] Town10 intersections

Method RC ↑ IS ↑ DS ↑ CR ↓ RC ↑ IS ↑ DS ↑ CR ↓

AIM-BEV 96.77±3.32 0.95±0.00 92.24±3.32 2.38±4.12 93.86±0.14 0.92±0.01 86.74±0.67 17.48±1.86

TransFuser [37] 99.25±1.30 0.78±0.03 77.59±2.01 11.90±4.12 93.68±2.01 0.85±0.00 80.03±0.79 17.48±0.70

Privileged Expert 99.83±0.07 1.00±0.00 99.83±0.07 0.00±0.00 94.89±0.33 0.97±0.00 92.81±0.53 3.66±0.00

by the CARLA simulator. Furthermore, each route is guaranteed to contain a
hand-crafted scenario in which multiple vehicles enter the intersection from dif-
ferent directions at the same time. We selected Town10 for this benchmark as we
found it to be the most challenging in preliminary experiments. On both of these
benchmarks, we report the official metrics of the CARLA leaderboard, Route
Completion (RC), Infraction Score (IS) and Driving Score (DS). RC
is the percentage of the route completed by an agent before it gets blocked or
deviates from the route. IS is a cumulative multiplicative penalty for every red
light violation, stop sign violation, collision, and lane infraction. DS is the final
metric, computed as the RC multiplied by the IS for each route. Each model is
tested with three different evaluation seeds. In addition, we report the collision
rate (CR), which is the percentage of routes in which the agent was involved in
a collision. Additional details regarding the driving metrics, rule-based expert,
and training dataset for the driving policy are provided in the supplementary.

Results: The performance of both IL-agents as well as the rule-based expert
which uses privileged information is shown in Table 1. Note that these methods
have different inputs, and are not directly comparable. AIM-BEV achieves su-
perior results in comparison to TransFuser. In particular, its significantly higher
IS on the NEAT routes indicates that it is proficient at avoiding collisions when
placed in sparse and non-adversarial CARLA traffic. On the Town10 intersec-
tions, AIM-BEV has a better IS than TransFuser, but we observe that the
CR of both agents is similar (17.48%). This is much higher than the expert
(CR=3.66%), showing that hand-crafted scenarios in dense traffic remain chal-
lenging for current IL-based methods. These hand-crafted scenarios are not adap-
tive to the agent, i.e., the same scenarios are applied for both AIM-BEV and
TransFuser. In the following, we study the more targeted approach of actively
generating safety-critical scenarios that are adaptive to the agent being attacked.

4.2 Comparison to BBO for Safety-Critical Scenario Generation

Next, we analyze the efficacy of KING for the generation of safety-critical sce-
narios, by comparing it with several BBO baselines for attacking AIM-BEV.

Experimental Setup: One scenario in our experimental setup involves rolling
out a policy for 20 seconds of simulation time (80 timesteps at 4fps). We find
this time horizon to be sufficient for the ego agent to traverse a route from
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the start location to the end location while coming in close proximity to the
adversarial agents. We compare several adversarial optimization techniques on 80
such scenarios. We obtain 4 maps (Town03-Town06) from the CARLA simulator.
The 4 maps have a wide variety of road layouts, including intersections, single-
lane roads, multi-lane highways, exits, and roundabouts. We sample a dense set
of candidate start locations and end locations for the ego agent from the set of
all junctions available in these 4 maps. The 80 ego agent routes in our evaluation
are obtained by uniformly sampling 20 candidate routes per CARLA town. For
each of these routes, we then initialize the adversarial agents to mimic regular
CARLA traffic to obtain an initial, non-critical scenario, which allows explicit
control over the traffic density. We use three traffic densities in our evaluation: 1,
2 and 4 agents (additional details in supplementary). The adversarial scenarios
are evaluated using the collision rate (CR), which is the percentage of routes
for which the adversarial scenario search yielded a collision while respecting
behavioral constraints. A search is only considered successful if all adversarial
agents stay on drivable parts of the map (i.e., the road) and do not collide
with other adversarial agents. To evaluate convergence, we report the average
time to 50% collision rate (t50%). This measures the average computation
cost (in GPU seconds) required to find a collision in 50% of the total scenarios
available. Finally, we report the runtime of each technique as the average number
of optimization seconds per iteration (s/it). The t50% and s/it metrics for
KING as well as all baselines are evaluated on a single RTX 2080Ti GPU. For
all methods, we use a compute budget of 180 seconds per route on a single GPU,
leading to a total experimental budget of up to 4 GPU hours for 80 routes.

Results: We now assess the efficiency of KING compared to BBO. To this
end, we report the CR, t50% and s/it of our approach and several baselines
in Table 2. We consider the three traffic density settings separately, as well as
the overall metrics for the complete set of 80×3 scenarios. Our baselines opti-
mize the scenario parameters via BBO. In particular, besides Random Search
and Bayesian Optimization, we consider SimBA [19], CMA-ES [20] and
Bandit-TD [23]. SimBA is a variant of Random Search that greedily maxi-
mizes the objective and CMA-ES is a state-of-the-art evolutionary algorithm.
Finally, Bandit-TD computes numerical gradients by integrating priors into a
finite differences approach.

KING obtains a significantly higher CR than the BBO baselines in all 3
settings, increasing the number of scenarios for which a safety-critical pertur-
bation is found by over 20%. Among the BBO baselines, CMA-ES attains the
best overall scores with respect to both CR and t50%. Interestingly, the best
performance for BBO is often observed for N = 2 agents. As we increase N
from 1 to 2, it becomes easier for the baselines to find one nearby agent that can
be perturbed to collide with the ego agent. However, further increasing N to 4
makes it harder to maintain plausible trajectories where the adversarial agents
do not collide with each other or go off-road, leading to reduced performance.
As the dimensionality of the search space increases (e.g. N = 4), KING begins
to outperform the baselines in terms of t50% by a large margin.
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Table 2. Critical scenario generation on CARLA. We show the CR, t50% and s/it
for different optimization techniques in three traffic settings, as well as the aggregated
metrics. KING finds collisions in over 80% of the initializations.

1 Agent 2 Agents 4 Agents Overall

Method CR ↑ t50% ↓ s/it ↓ CR ↑ t50% ↓ s/it ↓ CR ↑ t50% ↓ s/it ↓ CR ↑ t50% ↓ s/it ↓

Random Search 62.50 9.25 1.30 68.75 7.38 1.35 68.75 15.22 1.48 66.67 9.66 1.38
Bayesian Optimization 63.75 11.88 1.46 68.75 10.01 1.66 63.75 22.12 2.06 65.00 14.34 1.73
SimBA [19] 60.00 14.14 1.30 71.25 14.35 1.35 61.25 19.68 1.48 64.17 15.84 1.38
CMA-ES [20] 67.50 9.34 1.31 75.00 6.73 1.36 62.50 9.39 1.52 68.33 8.17 1.40
Bandit-TD [23] 37.50 - 3.87 30.00 - 4.39 21.25 - 5.02 29.58 - 4.43

KING Direct + Indirect 81.25 17.63 3.17 76.25 11.58 3.22 80.00 13.14 3.40 79.17 14.09 3.26
KING (Ours) 86.25 9.98 1.78 82.50 6.96 1.88 78.75 6.40 2.03 82.50 7.78 1.90

We also compare the proposed approximation in KING against the setting
where we use gradients through entire simulation, including the driving pol-
icy and renderer (“KING Direct + Indirect” in Table 2). While also reliably
finding safety-critical perturbations, the computational overhead of backpropa-
gating through the indirect path leads to worse overall results given the same
computation budget. This suggests the approximation in KING is reasonable for
efficiently generating safety-critical scenarios. Additional results and details re-
garding the hyper-parameter choices for BBO are provided in the supplementary
material. Since we observe that gradients through the direct path only are suf-
ficient, we now conduct a detailed qualitative analysis where we apply KING to
attack TransFuser, which requires the use of CARLA’s non-differentiable camera
and LiDAR sensors for rendering.

4.3 Analysis of Safety-Critical Scenarios

In this section, we analyze the safety-critical scenarios generated by KING for
both AIM-BEV and TransFuser in detail. Specifically, we show the distribution
of the resulting scenarios with a traffic density of N = 4 agents in Fig. 4. For
both driving agents, we first filter out the set of scenarios where KING is unable
to find a collision (“No Collision”) as well as those that are not solvable by the
rule-based expert (“Not Solvable”). We cluster the remaining scenarios using
k-means (similar to [39]) to obtain 6 clusters of failure modes such as cut-ins
(a1), rear-ends (a2) and unsafe behavior in unprotected turns (e,f). From the
frequency of scenarios with “No collision” in Fig. 4, we observe that both AIM-
BEV and TransFuser collide in at least 80% of the scenarios. This is a significant
deviation from the collision avoidance of both models in the benchmarks shown
in Table 1, where they attain a CR below 20%. The large amount of collisions
for TransFuser indicates that KING can achieve promising results when applied
out-of-the-box to driving simulators with non-differentiable rendering functions.

We show qualitative examples in Fig. 5 and 6, and additional examples in
the supplementary material. Both AIM-BEV and TransFuser frequently collide
in intersections when they encounter traffic that behaves differently from the
traffic observed during training. Importantly, the “Not solvable” column shows
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Not No
solvable collision

(a1) (a2) (b1) (b2) (c) (d) (e) (f)

Fig. 4. Collision types. KING generates a diverse set of challenging but solvable
scenarios. We group these into 6 clusters (a-f). The illustrations depict the ego agent
in red and the adversarial agent in blue. The scenarios include (a) cut-ins and rear-
ends caused by the ego agent, (b) head-on collisions, (c) merges, (d) side collisions with
oncoming traffic, and t-bone collisions in intersections (e and f).

Fig. 5. KING scenarios - AIM-BEV.
In intersections, AIM-BEV often fails to
yield to the perturbed traffic. This leads
to t-bone collisions, either by AIM-BEV
(left) or the adversarial agent (right), cor-
responding to clusters (e) and (f) in Fig. 4.

Fig. 6. KING scenario - Trans-
Fuser [37]. We show a scenario along with
camera and LiDAR inputs two seconds be-
fore and at collision. TransFuser fails to
slow down for an adversarial agent which
stops inside the intersection (red box).

that for both agents, only around 20% of the scenarios have no feasible alternate
trajectory. This leaves a large proportion of solvable scenarios in the 6 clusters
shown in Fig. 4. The most frequent failure modes of both models are observed in
clusters (a) and (b), which involve cut-ins, rear-ends, and head-on collisions. The
rule-based expert solves these challenging scenarios by accurately forecasting the
motion of the adversarial actors using privileged information. Interestingly, the
failure cases are fairly evenly distributed over the 6 clusters which involve a
wide variety of relative orientations between the colliding agents. The examples
in Fig. 5 correspond to clusters (e) and (f). We highlight examples from clusters
(a1) and (a2) for our experiment in Fig. 7. The high frequency and diversity
of solvable scenarios generated by KING indicate its potential to augment the
original training data for IL models, which we investigate next.
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Table 3. Robust training for AIM-BEV. Results shown are the mean and std over
3 evaluation seeds. Fine-tuning with safety-critical scenarios reduces the CR by over
50% on other safety-critical scenarios as well as hand-crafted scenarios from CARLA.

Held-out KING scenarios Hand-crafted scenarios (Town10 intersections)

Dataset CR ↓ RC ↑ IS ↑ DS ↑ CR ↓

No Fine-tuning 100.00±0.00 93.86±0.14 0.92±0.01 86.74±0.67 17.48±1.86

Dreg 57.14±0.00 95.66±0.51 0.90±0.00 86.85±0.62 19.51±0.00

Dcrit 28.57±0.00 91.92±0.19 0.96±0.00 88.37±0.41 6.10±0.00

Dcrit ∪ Dreg 28.57±0.00 94.42±0.36 0.96±0.36 90.20±0.00 8.13±0.70

Fig. 7. Improved collision avoidance on held-out KING scenarios with AIM-
BEV. Comparison of AIM-BEV before and after fine-tuning on Dcrit ∪ Dreg in two
KING scenarios. Ego agent in red, adversarial agent in blue. Best viewed zoomed in.

4.4 Evaluating Robustness after Fine-Tuning

Finally, we analyze the efficacy of the generated scenarios in augmenting the
regular data Dreg to yield more robust driving agents. Here, we evaluate robust-
ness both wrt. safety-critical scenarios generated by KING and to hand-crafted
scenarios in the CARLA simulator (using the Town10 intersections benchmark).

Experimental Setup: The goal of this experiment is to collect training data for
improving collision avoidance. To this end, we build a large set of safety-critical
scenarios by attacking AIM-BEV using initializations from Town03-Town06 of
CARLA with N = 4 agents. To ensure meaningful supervision, we filter the
resulting scenarios for ones where KING finds collisions that are solvable by
the expert. This results in around 300 scenarios from which we hold out 20%
for evaluation. We ensure that there is no overlap between the training and
evaluation during this split by preventing routes with the same ego vehicle start
location from being in both splits. Additional details regarding the training data
and hyper-parameters are provided in the supplementary material.

Results: We report the driving performance of AIM-BEV after fine-tuning on
Dcrit ∪ Dreg in Table 3. Since the trajectories of the adversarial agents are fixed
after optimization via KING, some of the scenarios may be solvable by simply
adopting different overall driving styles, rather than becoming more proficient
at collision avoidance. To quantify this, we fine-tune each model with only the
original training data Dreg as a baseline, which reduces the CR from 100% to
57.14% on the held-out KING scenarios. Additionally, we compare to fine-tuning
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on only the critical scenarios Dcrit and the initial checkpoint from Table 1 (“No
Fine-tuning”). Among the three fine-tuning strategies, using only Dreg leads
to unsatisfactory results, with a CR of 19.51% on the Town10 intersections
benchmark. Using only Dcrit leads to a large reduction in CR on both evaluation
settings. However, the model has a lower RC and only a small improvement in DS
when compared to the Dreg baseline on the Town10 intersections. Finally, using
the combined dataset of Dcrit ∪ Dreg gives the best results. In this setting,
we obtain a CR of 28.57% on the KING scenarios, which is identical to the
model fine-tuned with only Dcrit. However, the DS of this model on Town10 is
improved by over 3 points, since it reduces the CR while maintaining a similar
RC to the original model. This shows that the simple strategy of fine-tuning on
a mixture of regular and safety-critical data is an effective way of learning from
the scenarios generated by KING.

In Fig. 7, we show qualitative driving examples of the original and fine-tuned
AIM-BEV agents on held-out KING scenarios, which belong to clusters (a1)
and (a2) from Fig. 4. While these scenarios are straightforward to handle for an
expert driver, AIM-BEV fails to brake for a vehicle stopping in between two lanes
and is unable to maintain a safe distance in merging maneuvers, which highlights
its brittleness in o.o.d scenarios. These scenario types do not frequently emerge
naturally from the CARLA simulator’s background agent behavior which governs
Dreg. By incorporating data from Dcrit during training, the driving agent can
learn to handle these scenarios safely.

5 Conclusion

In this work, we proposed a novel gradient-based generation procedure for safety-
critical driving scenarios, KING, which achieves significantly higher success rates
compared to existing BBO-based approaches while being more efficient. The key
to our success is a compute-efficient direct gradient path through a kinematic
motion model to guide the adversarial scenario generation process. Our analysis
indicates that KING can achieve promising results when applied out-of-the-box
to arbitrary driving agents. Furthermore, we show that despite having access to
privileged BEV semantic maps as inputs, state-of-the-art IL-based driving poli-
cies are surprisingly brittle to minor perturbations in the behavior of the back-
ground actors. By augmenting their training data with scenarios from KING, we
are able to significantly improve their collision avoidance. Exploring the robust-
ness of agents with different training procedures (e.g. RL) offers an interesting
direction for future research.
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