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Abstract. Autonomous driving has attracted interest for interpretable
action decision models that mimic human cognition. Existing interpretable
autonomous driving models explore static human explanations, which ig-
nore the implicit visual semantics that are not explicitly annotated or
even consistent across annotators. In this paper, we propose a novel
Interpretable Action decision making (InAction) model to provide an
enriched explanation from both explicit human annotation and implicit
visual semantics. First, a proposed visual-semantic module captures the
region-based action-inducing components from the visual inputs, which
learns the implicit visual semantics to provide a human-understandable
explanation in action decision making. Second, an explicit reasoning
module is developed by incorporating global visual features and action-
inducing visual semantics, which aims to jointly align the human-annotated
explanation and action decision making. Experimental results on two au-
tonomous driving benchmarks demonstrate the effectiveness of our In-
Action model for explaining both implicitly and explicitly by comparing
it to existing interpretable autonomous driving models. The source code
is available at https://github.com/scottjingtt/InAction.git.
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1 Introduction

Deep learning has recently accelerated the progress of autonomous through re-
markable success in computer vision tasks. Existing driving action decision sys-
tems can primarily be recognized to be in two major groups, one is the pipelined
framework [41] and the other is end-to-end system [17], [38], [18], [34], [35], [33].
Specifically, pipelined systems decompose the problem into a series of smaller
tasks, such as pedestrian trajectory planning and object detection. The final
driving action decision is made by relying on the performance of all the modules
designed for the sub-tasks. However, pipelined systems are vulnerable to inaccu-
racies in each sub-task module, which may cause the entire system to perform
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unreliably if the interactions between modules are ignored. On the contrary,
end-to-end systems take advantage of the entire visual scene to directly pre-
dict driving action, avoiding the loss of information caused by the intermediate
decisions adopted in pipelined systems.

Unfortunately, most end-to-end systems are complex deep neural network
models, performing as a black box with opaque reasoning for human interpre-
tation. In safety-critical domains, such as autonomous driving and medical di-
agnosis, building a transparent and interpretable learning model has recently
attracted attention beyond the performance alone [28]. Various interpretation
strategies have been explored to explain learning models, e.g., part-based meth-
ods [45], [47], saliency maps [1], [12], [46], activation maximization to visualize
neurons [23], [24], deconvolution/upconvolution to explain layers [10], [42]. How-
ever, such post-hoc methods give a superficial understanding of the black box
models, rather than being a comprehensive explainable system [28]. Alterna-
tively, prototypical visual explanations are incorporated in deep network archi-
tecture for intrinsic interpretation and case-based reasoning [2], [29], [22], [21].
Most prior prototype-based work explicitly explores the presence of prototypical
parts, which are utilized to recognize objects. However, such strategies ignore
the notion of spatial relationships, which is crucial for tasks like driving decision
making with complicated context and multiple objects.

For explainable autonomous driving decision making, Xu et al. proposed a
new paradigm to predict driving action based on finite action-inducing objects,
and generated a set of potential explanations in a multi-task fashion [39]. Un-
fortunately, there are four major limitations of this work from an interpretabil-
ity perspective. First, although the multi-task framework is supervised by both
driving action and a human-defined explanation, the proposed model does not
interpret the reasoning process of the prediction for black-box model. Second, the
proposed BDD-OIA dataset annotates the reasons of action into 21 explanations;
however, it is impractical that the human-defined finite explanation set can cover
all possible scenarios considering the complex scene context and objects input
for autonomous driving action prediction tasks. For example, the explanation
set in the BDD-OIA dataset recognizes “obstacles on the right lane” as a reason
“cannot turn right”, which is not accurate since different distances and locations
of the obstacles could lead to different decisions for drivers. Moreover, the logical
reasoning process from the explanation to driving action decision is ambiguous,
especially under a multi-label setting that all possible actions are annotated. For
instance, we notice that the proposed model predicts two explanations “traffic
light is green” and “obstacle: car”, but still predicts the action as “forward”,
without any reasoning about how the predicted explanation results in the action
prediction. Last but not least, OIA estimates the driving decision only based on
the last frame of observed sequence, ignoring the temporal information.

In this paper, we propose a novel Interpretable Action decision making
(InAction) to provide reasoning of action prediction from both explicit human
annotation and implicit visual semantics (Figure 1). Generally, we consider the
explanation for action decision from two perspectives to compensate for the lim-
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itations of each method: existing human-annotated interpretation and AI-based
implicit visual hints. To sum up, our contributions are in three areas:

– First, we propose an inherently interpretable reasoning framework for au-
tonomous driving action prediction from both implicit visual semantics and
explicit human annotation perspectives.

– Second, the proposed Implicit Visual-Semantic Interpretation module inter-
acts with the Explicit Human-like Reasoning module by revealing action-
inducing concepts, and the learned implicit and explicit explanations com-
pensate for the limitations of each other in predicting the action decision.

– Finally, experimental results on two explainable autonomous driving bench-
marks demonstrate the effectiveness of the proposed model by comparing
with existing models showing enriched interpretation and reasoning.

2 Related Work

2.1 Autonomous Driving Action Prediction

Existing autonomous driving action prediction solutions can be roughly grouped
into two branches, i.e., end-to-end and pipelined. Generally, pipelined frame-
works separate the problem into a series of smaller tasks, such as object detec-
tion [6], [3],[15], pedestrian trajectory planning [30], [26], [5], [31], scene segmen-
tation [44], [11], [32], and object tracking [19], [7], [20]. Exploring the performance
of each sub-module and assessing its potential contribution to the final prediction
can help users understand the reasoning of the final decision. However, because
the final decision prediction relies on the performance of all sub-task modules,
pipelined systems are vulnerable to failures of individual sub-task modules, lead-
ing to unreliable systems.

End-to-end autonomous driving systems have achieved promising progress
thanks to the success of computer vision deep leaning algorithms [17], [38], [18],
[34], [35], [33],[9], [18], [37], [36]. However, most end-to-end systems are complex
deep neural networks, requiring large-scale datasets to train. Unfortunately, the
black box nature of deep neural networks makes the decisions not always trust-
worthy. Xu et al.. design an explainable object-inducing driving action prediction
system (OIA) together with a new benchmark consisting of ego-view driving
videos annotated with action and static explanations [39]. Through a model
that jointly predicts action and explanation, the learned model can explain the
decision predicted within the pre-defined reasoning set.

2.2 Interpretable Machine Learning

Building a transparent and interpretable model is crucial for safety-critical prob-
lems, such as autonomous driving and medical diagnosis [25], [43]. Many ef-
forts have been made to interpret deep neural networks from different perspec-
tives. Typically, researches include part-based methods [45],[47], attributes-based
methods [14],[13], saliency maps [1], [12], [46], activation maximization [23], [24],
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Fig. 1. Illustration of the proposed framework.

deconvolution/upconvolution to explain layers [10], [42] and have achieved in-
spiring progress to create human-interpretable black box models. However, such
post-hoc solutions have limited capability in enhancing transparency and inter-
pretability. Alternatively, prototype-based frameworks are proposed to build an
inherently explainable architecture [2], [29], [28], [16], [22].

For the paradigm proposed by OIA, we argue that a human-defined finite
explanation set provides inconsistent and insufficient explanations due to a lack
of direct reasoning and failing to leverage temporal knowledge. In this work,
we propose a novel prototype-based interpretable action decision making model
(InAction) from implicit visual-semantic and explicit human-annotation per-
spectives. Different from prior prototype-based object recognition, our proposed
model leverages and integrates action-inducing visual-semantic regions discov-
ery, spatial relationships among objects, and temporal knowledge for driving
decision prediction simultaneously and generates enriched explanations.

3 The Proposed Framework

3.1 Motivation

For autonomous driving, beyond pursuing high performance, interpretability is
needed for safety-critical domains [25], [43]. This aims to imbue autonomous ve-
hicles with reasoning abilities similar to human drivers. Existing efforts mainly
adopt human-annotated explanations to guide system learning and generate
human-understandable reasoning given the video inputs [39], which skews the
model towards human annotation.

Unfortunately, human annotation has some drawbacks like insufficient ex-
planation and inconsistent reasoning. Insufficient explanation means there are
always implicit visual semantics not annotated by finite human-defined explana-
tion set, which cannot be easily tracked through an end-to-end system with visual
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inputs and explanation outputs. Inconsistent reasoning is particularly challeng-
ing since different people have different explanations, especially for complicated
scenarios, leading to biases and insufficiency of the ground-truth annotation.

Motivated by this, we explore both the implicit visual-semantic interpretation
and explicit human annotation jointly, and propose the Interpretable Action
decision making model (InAction), whose goal is to enhance transparency and
interpretability for autonomous driving action decision making.

3.2 Framework Architecture

An overview of the proposed InAction framework is shown as Figure 1. The
model consists of a convolutional backbone G(·), and two interpretable action
prediction modules—an implicit visual-semantic module and an explicit human-
annotated reasoning module—to predict driving action and reasoning of the deci-
sion from different perspectives. Specifically, the implicit visual-semantic module
is denoted as GS(·), which takes the feature map per frame extracted by convo-
lutional backbone as input to discover action-inducing concepts and the presence
of learned semantic prototypes as visual cues for following prediction. For the ex-
plicit reasoning module, global visual features and the discovered action-inducing
local regions are fused and input to two multi-task classifiers, predicting the
driving action and human-annotated explanations, denoted as CR(·) and FR(·),
respectively. Finally, the learned prototypical visual cues and predicted human-
annotated explanations are fused and input to a fully-connected layer without
bias as the action predictor, denoted as CS(·). For the input video sequence, such
prediction is applied to each frame, with a temporal attention layer employed to
explore the contribution of each frame.

Mathematically, given an input video with m frames, X = {xi}mi=1, whose ac-
tion label as ya ∈ A and human annotated explanation ye ∈ E, where Cact = |A|
and Cexp = |E| are the numbers of categories of actions and human-annotated
explanations, respectively. For each frame x, the convolutional backbone ex-
tracts the feature map f = G(x) with shape H × W × D, where W and H
denote the width and height, respectively, and D is the number of channels.
For the clarity of description, denoting all the patches in the feature map as
Zx = {zi ∈ f}HW

i=1 , and the shape of each patch zi is RD×1×1. The implicit
visual-semantic module will slide over the whole feature map and calculate the
activation scores for all patches in the feature map with respect to the pres-
ence of learned semantic prototypes. On the one hand, those regions primarily
activated corresponding to specific prototypes are selected as action-inducing
semantic regions and being fused with the global features to predict the action
and explicit human-annotated explanation. On the other hand, the limitations
of the activation map will be compensated by the predicted human-annotated
explanations for the action prediction.
Implicit Visual Semantic Interpretation

To explore the action-inducing local regions in the visual input, we assign
mk semantic prototypes for each action class k, resulting in m = mk × Cact

prototypes in total, making up the visual-semantic layer P = {Pk}|Cact

k=1 , in which
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Pk = {pj}|mk
j=1, and pj denotes the semantic visual prototypes to be learned for

predicting action class k. Given the convolutional output feature map Zx and
prototype pj , the visual-semantic layer will go though all patches zi ∈ Zx of the
feature map to compute the activation score between them:

sij = log
(∥zi − pj∥2 + 1

∥zi − pj∥2 + ϵ

)
, (1)

where ϵ is a small positive value, and the activation score sij represents how
strongly a semantic prototype is presented in the specific region of the input
frame. The activation scores of all the patches in the feature map produce an
activation heat map Mj

x with shape H×W , identifying how similar each part of
the input frame is to one specific prototype pj . Calculating activation maps for
all prototypes results in an activation feature set Mx = {Mj

x}mj=1,M
j
x ∈ RH×W .

Intuitively, the most important patches for making action decision should be
clustered around semantically similar prototypes of each specific action category,
and the clusters centered at prototypes from different action categories are well
separated. Thus, we also adopt a discriminative prototype learning loss as:

Ld = λ1Ex∈X min
pj∈Pya

min
z∈Zx

∥z− pj∥2 − λ2Ex∈X min
pj /∈Pya

min
z∈Zx

∥z− pj∥2, (2)

where λ1 and λ2 are two hyper-parameters determining the contributions of
the two loss terms. Minimizing Ld encourages that every input frame at least
has one prototype from its own action strongly activated in one of its latent
feature map patches, while maximizing the distances between the patches and
the prototypes from different classes. Such an optimization objective shapes the
latent space into a semantically meaningful clustering structure.
Explicit Human-annotated Reasoning

Compared to implicit region-based action-inducing prototypes searching, human-
annotated reasoning explains the driving decision in a more intuitive and ab-
stract way. Normally natural language annotation involves temporal and spatial
knowledge from visual inputs, which provides a more high-level explanation to
the decision making. Intuitively, such explanation includes the global scene un-
derstanding and corresponding action-inducing objects.

Inspired by OIA [39], we propose an Explicit Human-annotated Reasoning
module in a multi-task fashion to jointly generate human-annotated explana-
tions and predict action. Specifically, for all the patches in the extracted feature
map, we select top-N patches that activate any one of the prototypes assigned
to the same action class as the action-inducing local components, denoted as
Zlocal = {zl}Nl=1, where zl ∈ Zx. The activation scores denote the importance of
such patches contributing to the action decision making. It is noteworthy that
the action-inducing local components Zlocal are the presence of specific learned
semantic prototypes, thus are not limited to be objects detected by the pre-
trained object detection backbone, which is one of the limitations of OIA [39].
The selected top-N most activated patches can represent various scene contexts,
environmental information, in addition to human-defined objects. Furthermore,
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we consider that the global feature map provides an overall understanding of the
visual input and the information like environmental status, e.g., “Road is clear”,
and agent relationship, e.g., “There is a vehicle parking on the right”. In this
sense, the local action-inducing components are concatenated with the global
features, then input into to the action predictor CR(·) and human-annotated
explanation predictor FR(·).

Specifically, the global feature map Zx is processed with global average pool-
ing and represented as a feature vector with the same dimension as each local
patch zl, denoted as zglobal. Every local patch zl is concatenated with the global
feature zglobal producing the local-global fused feature Zg⊕l = {zl ⊕ zglobal}Nl=1,
where zl ∈ Zlocal, and ⊕ is concatenation operation. The local-global feature is
further vectorized then input to the following action and explanation prediction
networks, optimizing the important local components that are highly associated
with both action and explanation prediction. Eventually the predicted action
and explanation are denoted as ŷR

a and ŷR
e , respectively.

Considering the possible action decisions, we can explore to make a prediction
with only one action or more than one action. If more than one action can
be made, which is for a multi-label prediction task, the prediction logits are
normalized by sigmoid function to the range between 0 and 1. If only one action
can be made, which is a multi-class single-label task, the prediction logits are
normalized by softmax function. Therefore, we formulate the multi-task learning
objective of the explicit reasoning module as:

Lr = L(ya, ŷ
R
a ) + L(ye, ŷ

R
e ), (3)

where L(·, ·) denotes the cross-entropy loss and binary cross-entropy loss for
single-label and multi-label prediction tasks, respectively.

Interpretable Decision Prediction So far, we design two kinds of explana-
tions, i.e.,Mx and ŷR

e , for the decision making from two different perspectives. In
order for these two explanations to interact and compensate for one another, the
concatenated explanation vector ŷe = [Mx, ŷ

R
e ] is exploited to a fully-connected

layer CS(·) to predict the action decision ŷS
a = CS(ŷe).

It is noteworthy that driver action decision making has more complicated
scene contexts with many different agents, which is different from other prototype-
based interpretable object recognition only considering the presence of some
specific prototypical parts [2], [22], [29], [21]. Thus, the learned semantically
meaningful prototypes that contribute to the final decision could be a part of
or a complete object, even a set of objects or an environment region, in the in-
put frame. Moreover, the location of a specific prototype, and the relationships
between it with other objects and the environment, play crucial roles in deter-
mining the final action. Thus, rather than only choosing the maximum activation
score for each prototype in the corresponding activation heat map, the whole ac-
tivation feature set is considered for the fully-connected layer CS(·) to integrate
the spatial and relationship knowledge for predicting the action decision.
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Similarly, we consider single-label and multi-label tasks with different acti-
vation functions and the learning objective of action prediction is defined as:

Ls = L(ya, ŷ
S
a ), (4)

where L(·, ·) represents cross-entropy loss for multi-class single-label tasks, while
it is the binary cross-entropy loss for multi-label prediction tasks.
Cross-module Fusion and Temporal Aggregation Two action decision pre-
dictions ŷR

a and ŷS
a are obtained with different input knowledge. The former one

is based on the visual features, while the latter one is based on explored explicit-
and-implicit explanations. Thus, we accept two prediction logits followed by the
specific activation function for multi-label or single-label problem, making the
final aggregated action prediction, which is denoted as ŷa = ŷR

a + ŷS
a .

Moreover, for the video input X = {xi}mi=1 with m frames, we make the
decision prediction for each frame xi ∈ X, resulting in a sequence of predictions
{ŷ1

a, . . . , ŷ
m
a }. To find the most relevant information (key frames) in the observed

sequence, a temporal attention layer is developed with a fully-connected layer
followed by Softmax activation function, generating the importance δi for each
frame xi. The objective with a temporal attention layer is defined as:

Lt = L(ya,
∑m

i=1
δiŷ

i
a), (5)

wherer L(·, ·) is cross-entropy loss or binary cross-entropy loss for single-label
and multi-label prediction tasks, respectively.
Overall Objective. To sum up, we integrate two explanation modules into our
unified framework and formulate the overall optimization objective as follows:

L = Ld + Lr + Ls + Lt, (6)

which includes two action decision classifiers and one explicit explanation pre-
dictor, and these two action decision classifiers will compensate for each other
as they are based on different knowledge. In the test stage, we fuse the two
predictions of action decision to obtain a more robust output.

4 Experiments

4.1 Experimental Setup

Pedestrian Situated Intent (PSI) dataset [4] contains 110 about 15 seconds
long videos with 30 fps, and each is annotated with one of 3 speed change actions
(“maintain speed”, “slow down”, and “stop”) on frame level. The reasoning of the
action decision is described in natural language, which will be used as explana-
tion knowledge in our experiments. We split all videos into train/validation/test
set with the ratio of 75%/5%/20%. We sample the tracks with length of 15
frames, and the overlap ratio is 0.8, while predicting the 16th frame’s action and
explanation. Samples in PSI dataset are assigned one single label out of three
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Table 1. Statistics of BDD-OIA and PSI dataset

Dataset Action # Frame # Reasoning

BDD-OIA [39]

Forward 12,491

21 [Human-defined]
Stop/Slow Down 10,432

Turn Left 5,902
Turn Right 6,541

PSI [4]
Maintain Speed 5,800

29 [k-means clustered]Slow Down 4,925
Stop 1,177

actions, so we evaluate the model by overall prediction accuracy and class-wise
average accuracy for action prediction.

The original explanations are sentence-based, and each sentence contains
descriptions of environmental context and human behaviors. We first split the
original sentences into segments reflecting the environmental context or human
behaviors. A syntactic dependency tree is applied to generate the dependency
tagging of words, and then a set of heuristic rules are adopted to group each
sentence into segments. Afterwards, the pre-trained BERT [8] is used to gener-
ate embeddings for all segments. The embedding of each segment is generated
by averaging the embeddings of the words within the sentence segment. Conse-
quently, we apply k-means clustering to obtain k semantic categories (k = 29 in
our experiment). Given an explanation, since it is split into multiple segments
and each might belong to different semantic categories, we generate k binary
labels for each explanation to represent its semantics. For the human-annotated
explanation, we report the overall F1 score and class-wise mean F1 score.

BDD-OIA dataset [39] is a subset of BDD100K [40] consisting of 22,924 5-
second video clips, which were annotated with 4 action decisions (“move for-
ward”, “stop/slow down”, “left turn”, and “right turn”) and 21 human-defined
explanations. Specifically, each video contains at least 5 pedestrians or bicycle
riders and more than 5 vehicles. The videos are collected with complex driving
scenes to increase the scene diversity. Following the setting of [39], only the final
frame of each video clip is used thus the temporal attention layer is neglected. As
there are multiple possible action choices for each sample, we evaluate the per-
formance by F1 score for each specific action, overall F1 score, and the class-wise
average F1 score for both action and explanation prediction.

More statistics of the benchmarks are shown in Table 1.

Implementation Details. The Faster R-CNN [27] is pre-trained on the an-
notated images from BDD100K [40] and set as the backbone, which is followed
by two 3× 3 convolutional layers generating the global feature map with shape
7 × 7 × 256 for each input frame. For implicit visual semantic interpretation
module, we assign mk = 6 prototypes with dimension 128 for each action class,
resulting in m = 24 prototypes for BDD-OIA dataset, and m = 18 prototypes in
total for PSI dataset. For our InAction model, we set N = 10 thus the top− 10
patches from the input feature map with the smallest distances compared to all
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Table 2. Single-label action and multi-label explanation prediction on PSI dataset

Method Maintain Slow Stop act. Accall act. mAcc exp. F1all exp. mF1

OIA-global[39] 0.540 0.774 0.537 0.635 0.617 0.178 0.119
OIA [39] 0.693 0.622 0.463 0.643 0.593 0.189 0.110

Ours-f 0.703 0.771 0.641 0.719 0.704 0.277 0.203
Ours-v 0.717 0.776 0.672 0.734 0.722 0.285 0.223

Table 3. Multi-label action and explanation prediction on BDD-OIA dataset

Method F S L R act. F1all act. mF1 exp. F1all exp. mF1

Res-101[39] 0.755 0.607 0.098 0.108 0.601 0.392 0.331 0.180
OIA[39] 0.829 0.781 0.630 0.634 0.734 0.718 0.422 0.208
OIA∗[39] 0.792 0.742 0.594 0.627 0.705 0.689 0.501 0.293

Ours(proposals) 0.795 0.743 0.597 0.613 0.706 0.687 0.558 0.332
Ours(global) 0.800 0.747 0.612 0.619 0.714 0.694 0.565 0.347

semantic prototypes are selected to be fused with the global features for explicit
human-annontated explanation and action prediction. The feature map is input
to two additional 1 × 1 convolutional layers to reduce the channel dimension
to be same as the prototypes dimension and normalized by sigmoid function
following [2] before calculating the activation scores. The action predictor CS(·)
based on the fused explanation vector is one fully-connected layer without bias.
We follow the same strategy of [2] to initialize and train the model. For the
explicit human-annotated reasoning module, the action decision predictor CR(·)
is a three-layer fully-connected neural network, and the explanation predictor
FR(·) is two-layer fully-connected neural network. ReLU activation is used for
all hidden layers. The model is optimized by Adam optimizer with learning rate
initialized as 10−3, and decayed by 0.1 every 10 epochs. For simplicity, we set
λ1 = 0.1 and λ2 = 0.01 by default for all experiments. We empirically fixmk = 6,
and we observe the results are not sensitive to it if mk > 3 on validation set.

4.2 Comparison Results

We compare our proposed InAction model with the OIA method [39] on the PSI
and BDD-OIA datasets, and the results are reported in Table 2 and Table 3.
OIA model only adopts the last frame of a sequence as input, thus we report two
results produced by our model with only the last frame or the whole observed
video sequence as input, denoted as Ours-f and Ours-v in Table 2, respectively.
For experiments on BDD-OIA in Table 3, we reproduce the OIA model based
on the official implementation released by the author, denoted as OIA∗, in ad-
dition to the results reported by OIA [39]. The reproduced results of OIA on
BDD-OIA are lower in action decision while better in explanation in term of
F-1 score, compared with the reported OIA. Note that OIA adopts the detected
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§ Follow traffic
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Fig. 2. Selected comparison examples of action and explicit explanation prediction
between OIA and InAction on BDD-OIA dataset. G denotes the ground-truth anno-
tation, and P shows the predicted result from OIA/Ours. green predictions are True
Positive, red are False Positive, and gray are False Negative.

proposals generated by the backbone as local features. We utilize the implicit
visual-semantic prototypes learned from the global feature map and from the
detected proposals, and report the results as Ours(global) and Ours(proposals),
respectively. Specifically, to obtain Ours(proposals), we extract the top-100 de-
tected proposals features after average pooling process into the same size as the
learned prototypes, then follow the same fusing strategy as aforementioned.

For the PSI results (Table 2), we notice that our proposed InAction model
with only the last frame as input outperforms OIA around 0.07 and 0.01 for
the overall and class-wise mean action prediction accuracy, respectively. When
the whole video sequence is input to our model, the performance is improved
further by 0.015 and 0.018, respectively, demonstrating our model can benefit
from the temporal knowledge from the input sequence. The PSI dataset has
an imbalanced distribution and there are much fewer samples belonging to the
category “Stop”, thus both OIA-global and OIA∗ obtain worse performance
on this category compared to “Main speed” and “Slow down”. Surprisingly,
our model is able to achieve better performance on this decision. Moreover, as
OIA adopts both global and local detection proposals as input for prediction,
while InAction only uses the global feature map, so that we compare our model
with another baseline OIA-global, which has the same architecture with OIA
excluding the local proposal branch. From the results, we observe that OIA-
global obtains worse overall performance compared to OIA and InAction.

From the BDD-OIA results (Table 3), we observe InAction can improve the
action prediction performance compared to the reproduced OIA. For the rea-
son prediction, we notice that the reproduced results outperform the numbers
reported in the OIA paper around 0.08, and our proposed method can further
improve the overall F1 and class-wise mean F1 both over 0.5. This demonstrates
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Fig. 3. Comparison of explanations produced by the implicit visual-semantic module
and the explicit human-annotated reasoning module for examples on BDD-OIA.

Red Traffic Light

Vehicle@Right

Vehicle@Left

Fig. 4. Visualizing prototypes by selecting the most similar patches from the training
samples, where each row shows one explanation.

that our model works well in both action prediction and explanation reasoning.
Moreover, we observe that the results produced with prototypes learned on the
global feature maps are better than based on the detected proposals. We argue
that relying on the detected proposals will make the model fail, and constrain
the representative capabilities of learned semantic prototypes, compared to ex-
ploring the implicit visual-semantic knowledge based on the whole input image.

4.3 Interpretability Analysis

Comparison with OIA. We present qualitative results in Figure 2 to demon-
strate the interpretability and transparency of the propose InAction model. For
the same visual input, we compare both action and explanation prediction of
OIA and our InAction. From the selected examples, we notice that OIA made
wrong action predictions while InAction can achieve correct results in some cases.
The only wrong prediction in the 3rd example is that both OIA and the explicit
human-annotated reasoning module in InAction recognize the white vehicle in
front and predict the explanation as “Obstacle: car”, then make the “Stop/Slow
down” decision. However, the ground-truth action annotation does not contain
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this label. Such an observation demonstrates that insufficient explanation and in-
consistency reasoning always exists in the human-defined annotations, especially
on single-frame based prediction tasks.

Compensation between Implicit and Explicit Interpretation. In Fig-
ure 3, we compare the generated explanations from the implicit and explicit
modules for the same task. We notice that some human-annotated reasoning are
also captured by the implicit semantic prototypes, e.g., “Obstacles on the right
lane”. However, some explanations discovered by the implicit visual prototypes
compensate the lack of human annotation. For example, the vehicle on the left
lane in the second row example is quite close but not annotated, and the ground-
truth label is “forward” and “turn left”, while fortunately, our model notices the
obstacle on the left lane and predict “forward” only.

Implicit Visual Semantics Analysis.

Connection weights for action “Forward” Connection weights for action “Turn left”

Ground-truth: Forward/Turn left

Sigmoid(3.750)=0.977 Sigmoid(1.351)=0.794

Activation scores maps

!!(Forward) !""(Stop/Slow)

!"#(Turn left) !$%(Turn right)

"&!
'()*+), "&""

'()*+),

"&"#
'()*+), "&$%

'()*+),

"&!
-.'/ "&""

-.'/

"&"#
-.'/ "&$%

-.'/

Fig. 5. Visualization of reasoning of selected instance.

To illustrate the learned
implicit visual semantic pro-
totypes in an intuitive way,
we visualize the proto-
types via the most similar
patches of images in the
BDD-OIA dataset [2]. Fig-
ure 4 shows the selected ex-
amples with patches highly
activated by specific se-
mantic prototypes from ac-
tion decision “Stop”, “Turn
left”, and “Turn right”.
The most activated patch
of the given input for
selected prototypes are marked
by bounding boxes in the
original input, which rep-
resent the image patches
that InAction considers to
focus on corresponding to
specific prototypes. From
the results, we observe that
when the implicit visual-
semantic reasoning module
slides over the whole input to obtain activation map, these three prototypes are
represented as “Red traffic light”, “Vehicle at right”, and “Vehicle at left”, re-
spectively. Any region is strongly activated by one of the specific prototypes, or,
in other words, one of the prototypes presents strongly in the input frame, will
play a crucial role in the final prediction.

Reasoning Process of InAction. Prior prototype-based models only observe
the most strongly activated region. However, driving action prediction has much
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more complicated scene context and multiple objects involved as hints, so the
spatial location of each prototype presence and the relationships among differ-
ent components make crucial influence for the final decision prediction. Figure 5
shows the reasoning process of our InAction predicting the action decision for a
test sample, which is annotated as “Forward/Turn left”. Given the input frame,
the implicit visual semantic interpretation module compares every patch in the
feature map against the learned prototypes, producing the activation score maps.
The activation maps that are most strongly activated by prototypes are shown
as the top-right heatmaps in Figure 5, where p5,p11,p16,p23 are assigned to
action classes “Forward”, “Stop/Slow down”, “Turn left”, and “Turn right”, re-
spectively. Although m prototypes are assigned to C action decision resulting
in mk prototypes per class during training, all activation scores produced by m
prototypes over the feature map of the input frame are multiplied by the weight
matrix in the last fully-connected layer CS(·) to generate the output prediction.
The weights in the fully-connected layer represent the connections between pro-
totypes and the predicted classes. In Figure 5, we select the weights (W) for
class “Forward” and “Turn left” corresponding to the selected prototypes, and
show them after reshaped into the same shape as the activation map. From the
weights over different regions of the feature map/activation map, we observe
that the same prototype plays different roles for different action decisions. For
example, components similar to prototype p11 appearing in the top area of the
view will make negative contribution to the prediction of “Forward”, while for
the prediction of class “Turn left”, it will reduce the probability of “Turn left”
only when it appears at the top-left corner, otherwise, this prototype is compa-
rably neutral. Interestingly, the prototype shown in the first row of Figure 4 is
prototype p11, which represents “Red traffic light”.

5 Conclusion

In this paper, we developed a novel Interpretable Action (InAction) decision
making model to provide enriched explanations from both explicit human an-
notation and implicit visual semantics perspectives. To implement this, two in-
terpretable modules were proposed including a visual semantic module and an
explicit reasoning module. Specifically, the first module aimed to capture the
region-based action-inducing semantic concepts from the visual inputs, so that
our model could automatically learn the implicit visual cues to provide a human-
understandable explanation. The second module attempted to benefit from the
human-annotated reasoning for action decision making so that our model was
able to provide a more high-level interpretation by aligning visual inputs to hu-
man annotations. Experimental results on two autonomous driving benchmarks
demonstrated the effectiveness of our InAction model.

Acknowledgment. We thank the Toyota Collaborative Safety Research Center
for funding support.
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