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Abstract. Robust 3D object detection is critical for safe autonomous
driving. Camera and radar sensors are synergistic as they capture com-
plementary information and work well under different environmental
conditions. Fusing camera and radar data is challenging, however, as each
of the sensors lacks information along a perpendicular axis, that is, depth
is unknown to camera and elevation is unknown to radar. We propose the
camera-radar matching network CramNet, an efficient approach to fuse
the sensor readings from camera and radar in a joint 3D space. To lever-
age radar range measurements for better camera depth predictions, we
propose a novel ray-constrained cross-attention mechanism that resolves
the ambiguity in the geometric correspondences between camera features
and radar features. Our method supports training with sensor modality
dropout, which leads to robust 3D object detection, even when a camera
or radar sensor suddenly malfunctions on a vehicle. We demonstrate the
effectiveness of our fusion approach through extensive experiments on
the RADIATE dataset, one of the few large-scale datasets that provide
radar radio frequency imagery. A camera-only variant of our method
achieves competitive performance in monocular 3D object detection on
the Waymo Open Dataset.
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1 Introduction

3D object detection that is robust to different weather conditions and sensor
failures is critical for safe autonomous driving. Fusion between camera and
radar sensors stands out as they are both relatively resistant to various weather
conditions [2] compared to the popular lidar sensor [3]. A fusion design that
naturally accepts single-sensor failures (lidar, radar, or camera or radar) is thus
desired and boosts safety in an autonomous driving system (Figure 1).

Most sensor fusion research has focused on fusion between lidar and another
sensor [32, 54, 7, 11, 50, 51, 19, 11, 31, 57, 39] because lidar provides complete geo-
metric information, i.e., azimuth, range, and elevation. Sparse correspondences



2 Hwang et al.

Fig. 1: Our approach takes as input a camera image (top left) and a radar RF
image (bottom left). The model then predicts foreground segmentation for both
native 2D representations before projecting the foreground points with features
into a joint 3D space (middle bottom) for sensor fusion. Finally, the method
runs sparse convolutions in the joint space for 3D object detection. The network
architecture naturally supports training with sensor dropout. This allows the
resulting model to cope with sensor failures at inference time as it can run on
camera only and radar only input depending on which sensors are available.

between lidar and another sensor is thus well defined, making lidar an ideal carrier
for fusion. On the other hand, even though camera and radar sensors are lighter
and cheaper, consume less power, and endure longer than lidar, camera-radar
fusion is understudied. Camera-radar fusion is especially challenging as each
sensor lacks information along one perpendicular axis: depth unknown for camera
and elevation unknown for emerging imaging radar, as summarized in Table 1.
Radar produces radio frequency (RF) imagery that encodes the environment
approximately in the bird’s-eye view (BEV) with various noise patterns, an
example shown in Figure 1. As a result, camera data (in perspective view) and
radar data (in BEV) form many-to-many mappings and the exact matching is
unclear from geometry alone.

To solve the matching problem, we consider three possible schemes for fusion:
(1) Perspective view primary [32]: This scheme implies we trust the depth
reasoning from the perspective view. One can project camera pixels to their
3D locations with depth estimates and find their vertical nearest neighbors of
corresponding radar points. If depth is unknown, one can project a pixel along
a ray in 3D and perform matching. (2) Bird’s-eye view primary [50]: This
scheme implies we trust the elevation reasoning from the bird’s-eye view. However,
since it’s difficult to predict elevation from radar imagery directly, one might
borrow elevation information from the map. Hence, the inferred elevation for
radar is sometimes inaccurate, resulting in rare usage unless LiDAR is available.
(3) Cross-view matching [13]: This scheme implies we perform matching in a
joint 3D space. For example, one can use supplementary information (map or
camera depth estimation) to upgrade camera and radar 2D image pixels to 3D
point clouds (with some uncertainty) and perform matching between point clouds
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Sensor Azimuth Range Elevation Resistance to weather 3D detection literature

Camera X x X medium abundant
Radar X X x∗ high scarce
Lidar X X X low abundant

Table 1: Characteristics of major sensors commonly used for autonomous driving.
Both camera and radar tend to be less affected by inclement weather compared
to lidar scanners. However, whereas regular camera does not directly measure
range, radar does not measure elevation. This poses a unique challenge for fusing
camera and radar readings as the geometric correspondences between the two
sensors are underconstrained. Overall, camera-radar fusion is still underexplored
in the literature. ∗Although there exists radars with elevation, this paper focuses
on planar radar which, at the moment, is more common for automotive radar.

directly. This is supposedly the most powerful scheme if we can properly handle
uncertainties. Our architecture is designed to enable this matching scheme, hence
we name it CramNet (Camera and RAdar Matching Network).

Since the effectiveness of projecting into 3D space heavily relies on accurate
camera depth estimates, we propose a ray-constrained cross-attention mechanism
to leverage radar for better depth estimation. The idea is to match radar responses
along each camera ray emitted from a pixel. The correct projection should be
the locations where radar senses reflections. Our architecture is further designed
to accept sensor failures naturally. As shown in Figure 1, the model is able to
operate even when one of the modalities is corrupted during inference. To this
end, we incorporate sensor dropout [7, 52] in the point cloud fusion stage during
training to boost the sensor robustness.

We summarize the contributions of this paper as follows:

1. We present a camera-radar fusion architecture for 3D object detection that
is flexible enough to fall back to a single sensor modality in the event of a
sensor failure.

2. We demonstrate that the sensor fusion model effectively leverages data
from both sensors as the model outperforms both the camera-only and the
radar-only variants significantly.

3. We propose a ray-constrained cross-attention mechanism that leverages the
range measurements from radar to improve camera depth estimates, leading
to improved detection performance.

4. We incorporate sensor dropout during training to further improve the accuracy
and the robustness of camera-radar 3D object detection.

5. We demonstrate state-of-the-art radar-only and camera-radar detection perfor-
mance on the RADIATE dataset [40] and competitive camera-only detection
performance on the Waymo Open Dataset [47].

2 Related Work

Camera-based 3D object detection. Monocular camera 3D object detec-
tion is first approached by directly extending 2D detection architectures and
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incorporating geometric relationships between the 2D perspective view and 3D
space [6, 27, 4, 43, 23, 23, 44, 8, 16]. Utilizing pixel-wise depth maps as an addi-
tional input shows improved results, either for lifting detected boxes [26, 42]
or projecting image pixels into 3D point clouds [53, 24, 58, 9, 55] (also known
as Pseudo-LiDAR [53]). More recently, another camp of methods emerge to be
promising, i.e., projecting intermediate features into BEV grid features along the
projection ray without explicitly forming 3D point clouds [36, 46, 34, 18].

The BEV grid methods benefit from naturally expressing the 3D projection
uncertainty along the depth dimension. However, these methods suffer from
significantly increased compute requirements as the detection range expands. In
contrast, we model the depth uncertainty through sampling along the projection
ray and consulting radar features for more accurate range signals. This also
enables the adoption of foreground extraction that allows a balanced trade-off
between detection range and computation.

Radar-based 3D object detection. Frequency modulated continuous wave
(FMCW) radar is usually presented by two kinds of data representations, i.e.,
radio frequency (RF) images and radar points. The RF images are generated
from the raw radar signals using a series of fast Fourier transforms that encode a
wide variety of sensing context whereas the radar points are derived from these
RF images through a peak detection algorithm, such as Constant False Alarm
Rate (CFAR) algorithm [35]. The downside of the radar points is that recall
is imperfect and the contextual information of radar returns is lost, with only
the range, azimuth and doppler information retained. As a result, radar points
are not suitable for effective single modality object detection [38, 33], which is
why most works use this data format only to foster fusion [2, 13, 29, 28]. On the
other hand, the RF images maintain rich environmental context information
and even complete object motion information to enable a deep learning model
to understand the semantic meaning of a scene [25, 40]. Our work is therefore
built upon radar RF images and can produce reasonable 3D object detection
predictions with radar-only inputs.

Sensor fusion for 3D object detection. Sensor fusion for 3D object detection
has been studied extensively using lidar and camera. The reasons are twofold: 1)
Lidar scans provide comprehensive representations in 3D for inferring correspon-
dences between sensors, and 2) camera images contain more semantic information
to further boost the recognition ability. Various directions have been explored,
such as image detection in 2D before projecting into frustums [32, 54], two-stage
frameworks with object-centric modality fusion [7, 11, 17], image feature-based
lidar point decoration [50, 51], or multi-level fusion [19, 11, 31]. Since sparse corre-
spondences between camera and lidar are well defined, fusion is mostly focused
on integrating information rather than matching points from different sensors.

As a result, these fusion techniques are not directly applicable to camera-
radar fusion where associations are underconstrained. Early work, Lim et al. [20],
applies feature fusion directly between camera and radar features without any
geometric considerations. Recently, more works tend to leverage camera models
and geometry for association. For example, CenterFusion [28] creates camera
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Fig. 2: Architecture overview. Our method can be partitioned into three stages:
(1a) camera 2D foreground segmentation and depth estimation, (1b) radar 2D
foreground segmentation, (2) projection from 2D to 3D and subsequent point
cloud fusion, and (3) 3D foreground point cloud object detection. The cross-
attention mechanism modifies the camera depth estimation by consulting radar
features, as further illustrated in Figure 3. The modality coding module appends
a camera or radar binary code to the features that are fed into the 3D stage,
enabling sensor dropout and enhancing robustness. We depict the camera stream
in blue, the radar stream in green, and the fused stream in red.

object proposal frustums to associate radar features and GRIF Net [13] projects
3D RoI to camera perspective and radar BEV to associate features. Our model, on
the other hand, fuses camera-radar data in a joint 3D space with the flexibility to
perform 3D detection with either single modality, leading to increased robustness.

3 CramNet for Robust 3D Object Detection

We describe the overall architecture for camera-radar fusion in Section 3.1. In
Section 3.2, We then introduce a ray-constrained cross-attention mechanism to
leverage radar for better camera 3D point localization. Finally, we propose sensor
dropout that can be integrated seamlessly into the architecture in Section 3.3 to
further improve the robustness of 3D object detection.

3.1 Overall Architecture

Our model architecture, in Figure 2, is inspired by Range Sparse Net (RSN) [48],
which is an efficient two-stage lidar-based object detection framework. The
RSN framework takes input of perspective range images, segments perspective
foreground pixels, extracts 3D (BEV) features on foreground regions using sparse
convolution [56], and performs CenterNet-style [60] detection. We adapt the
framework for camera-radar fusion and the overall architecture can be partitioned
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into three stages: (1) 2D foreground segmentation, (2) 2D to 3D projection and
point cloud fusion, and (3) 3D foreground point cloud detection.

Stage 1: 2D foreground segmentation. The goal of this stage is to per-
form efficient foreground segmentation for native dense representations from two
modalities. This allows us to restrict the expensive 3D operations to foreground
points. The network takes as input a pair of camera images IIIC and radar RF
images IIIR. We then employ two identical lightweight U-Nets [37] to extract 2D
features and predict foreground segmentation masks for each modality, FFFC and
FFFR, respectively. For camera image feature extraction, one can also adopt a more
powerful, multi-scale feature extractor, such as a feature pyramid network [21].
The detailed design of the U-Net can be found in the supplementary.

To train such a segmentation network (for both camera and radar), we use
the 2D projection of 3D bounding box labels as ground truth – a pixel belongs to
the foreground class if it falls inside any of the projected 2D boxes. This might
introduce some noise as background pixels sometimes fall within a box, but we
find that this noise is insignificant in practice. We then apply a pixel-wise focal
loss [22] to classify each pixel:

Lseg =
−1

N

(∑
i∈FFF

(1− pi)γs log(pi) +
∑
i∈BBB

pγsi log(1− pi)
)
, (1)

where N is the total number of pixels, FFF and BBB are the sets of foreground and
background pixels, and pi is the model’s estimated probability of foreground
for pixel i. The hyperparameter γs controls the penalty reduction. A pixel with
foreground score higher than τ will be selected. Since the 3D stage can resolve
false positives, whereas false negatives cannot be recovered, we typically set a
low value for τ to attain high recall.

Stage 2: 2D to 3D projection and point cloud fusion. Once we obtain
the foreground pixels, we project them into 3D for the following 3D stage. For
the camera projection, we predict a depth value for each pixel from the same
U-Net with additional convolutional layers. The depth ground truth is obtained
by projecting lidar points to the camera view and overlaying them with depth
values from projected ground truth 3D boxes. The use of depth from ground
truth boxes is to enable 3D detection where lidar data alone is insufficient. This is
especially true outside of lidar range, as well as when lidar points are deteriorated
due to weather. We train the depth estimation using pixelwise L2 losses on valid
regions, or Ldepth. The camera projection relies on the camera model, i.e., the
intrinsics and extrinsics, with depth to infer the 3D location of each pixel.

For radar projection, we use the radar model to transform radar BEV points
to 3D using the sensor height as elevation. If map is available, the road elevation
can be used to offset this value to handle non-planar scenes like hills.

There are several options to combine the camera and radar 3D point clouds.
One plausible choice is to select one modality as a major sensor and gather
features from the other modality. This is usually how researchers fuse lidar with
other sensors [50]. However, the drawback is obvious: the major sensor is a
single point of failure. Instead, we directly place two point clouds in a joint 3D
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space. We align the feature dimensions of both modalities and append a modality
code to the feature so that the 3D network can leverage the multi-modality
information easily. The major benefit is to enable robust detection especially
when one modality fails to perform.

Stage 3: 3D foreground point cloud detection. We apply dynamic
voxelization [61] on the fused foreground point cloud, whose features are then
encoded into sparse voxel features. A 2D or 3D sparse convolution network [10]
(for pillar style [15], or 3D voxelization, respectively) is applied on the sparse
voxels. The network details can be found in the supplementary.

We follow RSN [48] for CenterNet-style [60] 3D box regression. We cal-
culate a ground truth objectness heatmap for every point x ∈ R3: h(x) =

max{exp(− ||x−c||−||xc−c||
σ2 ) | c ∈ C(x)} where C(x) is the set of centers of boxes

containing x, xc is the closest point to box center c, and σ is a constant. In other
words, the objectness of a point is inversely related to its distance to the closest
box center. We train the network to predict a heatmap using a focal loss [22]:

Lhm =
−1

N

∑
x

((
1− h̃(x)

)γh log
(
h̃(x)

)
1(h > 1− εh)+

(
1− h(x)

)α
h
h̃(x)γh log

(
1− h̃(x)

)
1(h ≤ 1− εh)

)
, (2)

where 1(·) is the indicator function, h and h̃ are the ground truth and predicted
heat map, (1 − εh) decides the threshold for ground truth objectness, and αh
and γh are hyperparameters in the focal loss.

The 3D boxes are parameterized as bbb = (bx, by, bz, l, w, h, θ) where bx, by, bz
are the offsets of a 3D box center relative to a voxel center, and l, w, h, θ are the
length, width, height, and heading of a box. All the box parameters are trained
with smooth L1 losses except for the heading that is trained with a bin loss [41].
An additional IoU loss [59] is employed for better accuracy. The box regression
loss is as follows:

Lbox =
1

B

∑
i

(
LSmoothL1(bbbi\θi − b̃bbi\θ̃i) + Lbin(θi, θ̃i) + LIoUi

)
, (3)

where B is the total number of boxes with ground truth heatmap value greater
than a threshold τhm, and bbbi and b̃bbi denote the ground truth and prediction
for box bbbi, respectively; the same for θi. For more details on heatmap and box
regression, we refer interested readers to RSN [48].

We train the fusion network end-to-end with losses summarized as:

L = λsegLseg + λdepthLdepth + λhmLhm + Lbox, (4)

where λ∗ are hyperparameters for the respective loss weighting.

3.2 Ray-Constrained Cross-Attention

It is widely known [30, 53] that camera-based 3D object detection relies heav-
ily on accurate depth estimation, either explicitly or implicitly through BEV
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Fig. 3: The proposed ray-constrained cross-attention mechanism resolves the
ambiguity in the geometric correspondences between camera features and radar
features. Following the Transformer [49], we take camera features as queries and
radar features as keys to transform 3D camera points as values.

representations. Luckily, for camera-radar fusion, we don’t have to rely solely
on camera to infer depth as radar provides relatively accurate range estimates.
To utilize the complementary sensing directions, we propose a ray-constrained
cross attention mechanism to leverage radar for improving camera 3D point
localization, illustrated in Figure 3.

Our observation is that an optimal 3D location for each foreground camera
pixel usually accompanies a corresponding peak response from radar. Thus we
propose to consult radar features along a camera 3D ray, emitted from each pixel,
to rectify the camera 3D point location after projection. Since there is infinite
possible locations, we perform sampling along the ray, centered at the initial
depth estimation. The final 3D location is decided by matching between camera
and radar features among these sampled locations.

We denote the projected camera 3D location from a depth estimate d̃i for
pixel i as M(d̃i). We sample s points farther and closer around the estimated
location respectively, or M(d̃i ± ε× k), where ε is a hyperparameter for depth
error, and k ranges from 1 to s. We denote this set of 3D locations as M̃MM i ∈
R(2s+1)×3. We gather closest radar features for every sampled location, denoted
as ψψψRi ∈ R(2s+1)×d. Likewise, we denote the camera feature for a pixel i as
ψψψCi ∈ R1×d. The final camera 3D point location Mi ∈ R1×3 for pixel i can thus
be obtained using a cross-attention formulation [49]:

Mi = softmax(
ψψψCiψψψ

T
Ri√
d

)M̃MM i. (5)

To relate to the naming convention in attention [49], we use the camera feature
ψψψCi as a query, a set of radar features ψψψRi as keys, and the sampled 3D locations
M̃MM i as values. Therefore, the final location is calculated by matching the query
with the most active keys, associated with the respective values.

Notably, this design is computationally efficient. The time complexity is
asymptotically proportional to (N×d×s), where N is the number of (foreground)
pixels. Since s is a small constant, this operation is as cheap as a conv layer.
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3.3 Sensor Dropout

One appealing property of this architecture is the independence of each sensor.
We can perform camera-only or radar-only 3D object detection with the same
architecture when one modality is unavailable. This is desired in practice as one
never knows when a sensor might be unavailable due to various situations, e.g.,
occlusions, weather, or sensor failure.

To enhance the model ability to handle sensor failures, we incorporate a
sensor dropout mechanism [7, 52] during training. With a probability Pdrop, we
randomly drop out the entire set of point features of camera ψψψC or radar ψψψR, or

XXXC = 1(r1 ≥ Pdrop) XXXC + 1(r1 < Pdrop ∧ r2 ≥ 0.5) 000

XXXR = 1(r1 ≥ Pdrop) XXXR + 1(r1 < Pdrop ∧ r2 < 0.5) 000 (6)

where 000 is a zero matrix and r1 and r2 are uniform random numbers in [0, 1].
Note that camera and radar features won’t be dropped out at the same time. We
use pdrop = 0.2 in our experiments.

The reason why we choose to mask out 3D point features instead of input
data directly is that we can still train the cross-attention with proper 2D features
normally. If radar sensor is corrupted during inference and produces noisy 2D
features, it results in a uniform attention map inside cross-attention and little
effect on 3D camera point locations.

4 Experiments

We present experiments on the RADIATE [40] and Waymo Open [47] datasets
to verify the efficacy of our proposed CramNet model. We introduce the settings
in Section 4.1 and 4.2. We include the main results, ablation studies, robustness
tests, and visualization on the RADIATE dataset in Section 4.3, 4.4, 4.5, and
4.7, respectively. We also present our camera-only results on the Waymo Open
dataset in Section 4.6. More ablation studies can be found in the supplementary.

4.1 Dataset and Evaluation

RADIATE dataset. We evaluate our method on the challenging RADIATE
dataset [40]. This dataset features radar sensor data collected for scene under-
standing for safe autonomous driving in various weather conditions, including
sunny, night, rainy, foggy, and snowy. The dataset includes 3 hours of annotated
radar imagery with more than 200k labeled objects for 8 categories. These prop-
erties make the RADIATE dataset one of the few public datasets that contain
high-resolution radar data along with a large number of ground truth labels for
road actors. While the dataset provides high-quality radar data, the quality of its
camera and LiDAR data is not comparable to that of other autonomous driving
datasets, such as the Waymo Open Dataset [47]. This shortcoming, however,
makes the evaluation of the robustness of our proposed sensor fusion algorithm
even more compelling. In all of our experiments, we train the models on the
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Method Overall
Sunny

(Parked)
Overcast

(Motorway)
Sun/OC
(Urban)

Night
(Motorway)

Rain
(Suburban)

Fog
(Suburban)

Snow
(Surburban)

Baseline [40] 46.55 79.72 44.23 35.45 64.29 31.96 51.22 8.14

CramNet-C* 23.66 67.98 6.50 23.43 2.24 17.69 9.50 0.12
CramNet-R 56.19 83.58 37.65 48.33 60.38 42.86 71.11 15.84
CramNet 62.07 96.68 50.49 52.25 79.56 57.90 85.26 8.89

Table 2: Main results evaluated in BEV AP (%) on the RADIATE dataset [40].
CramNet-C (*notes evaluation on camera/lidar-specific labels), CramNet-R, and
CramNet denote our camera-only, radar-only, and fusion models, respectively.
Our final model outperforms the baseline Faster R-CNN [40] by 16 percentage
points, the camera-only variant by 38 points, and the radar-only variant by 6
points. These large gains validate the efficacy of our proposed sensor fusion model.

training set that contains both good and bad weather conditions, and we evaluate
the resulting models on the standard validation set.
Evaluation. The (pseudo) 3D labels in the RADIATE dataset are 2D BEV labels
with assumed heights for each category. We therefore report our 3D detection
results in terms of BEV AP to align with the baselines, unless otherwise noted.
We follow the proposed evaluation in the dataset and define the category “vehicle”
to encompass the six categories “car”, “van”, “truck”, “bus”, “motorbike”, and
“bicycle”. The final BEV/3D AP numbers are therefore weighted sums of the
objects from these categories. For all radar and fusion experiments, we evaluate
the performance on the region that is captured by both the cameras and the radar
sensors, up to the radar range of 100 meters. For all camera-only experiments,
we exclude labels that do not contain any LiDAR points. The motivation for this
is that camera depth estimates beyond the LiDAR supervision (up to 70 meters)
tend to be inaccurate.

4.2 Implementation Details

Hyperparameters. CramNet follows the implementation of RSN [48]. The
sparse convolution implementation is also similar to [56]. The input camera and
radar RF images are both normalized to be in [0, 1]. The foreground score cutoff
is set to 0.15, the segmentation loss weight is set to 400, and the depth loss weight
is set to 20. For cross-attention, we sample 1 point closer and farther around
the predicted depth location, with 10% error. The voxelization region is [-100m,
100m] × [-100m, 100m] × [-5m, 5m] with 0.2 meter voxel sizes. In the heatmap
computation, σh is set to 1.0, the heatmap loss weight is set to 4 and threshold
εh are set to 0.2. We use 12 bins in the heading bin loss for heading regression.
Training and inference. We train CramNet from scratch end-to-end using the
Adam optimizer [14] on Tesla V100 GPUs. The models are trained with 5 batches
on 8 GPUs. We use a cosine learning rate decay, where we set the initial learning
rate to 0.006, with 1k warm-up steps starting at 0.003 and 50k steps in total. We
use layer normalization [1] instead of batch normalization [12] in the 3D network
for the number of foreground points varies among different scenes. We do not
perform 2D data augmentation but adopt two 3D data augmentation strategies,
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namely, random flipping along the x-axis and a global rotation around the z-axis,
with a random angle from [-π/4, π/4] on the selected foreground points.

4.3 Performance on the RADIATE dataset

We evaluate the performance of our method on the RADIATE dataset [40] and
summarize the results in Table 2. We report the BEV AP at a 0.5 IoU threshold
to align with the baseline proposed in the RADIATE dataset [40]. The baseline
runs a Faster R-CNN detector with a ResNet-101 backbone on radar RF images.

Our radar-only variant, CramNet-R, outperforms the baseline by a large
margin, ∼ 10 percentage points in AP. Our two-stage framework effectively filters
out radar noise in the segmentation stage to focus inference on the remaining radar
signals in subsequent stages. Our camera-only variant, CramNet-C, performs the
worst. Several factors may contribute to the poor performance. First, adverse
weather affects the cameras more than the radar sensors, which is exacerbated
by the lack of wipers mounted on the vehicles. Second, the effective range of
the LiDAR sensors, which we use for camera depth supervision at training time,
tends to drop from 70 meters in clear weather to about 40 meters in adverse
weather, whereas we have labeled ground truth boxes within a range of 100
meters. Overall, we observe that the short sensing range and the sparsity of
the points prevent the model from learning accurate camera depth estimation,
resulting in poor camera-only 3D detection performance.

Our proposed fusion model, CramNet, equipped with ray-constrained cross
attention and sensor dropout, outperforms the baseline BEV AP by 16 percentage
points, the camera-only variant by 38 points, and the radar-only variant by 6
points. These large gains validate the efficacy of our proposed sensor fusion model.
In the next sections, we study the performance of our method in more detail.

4.4 Ablation Study

Attention Dropout BEV AP

56.19
X 60.20

X 61.23
X X 62.07

Radar Intensity
Threshold

# of Points BEV AP Degradation

None - 60.20 -
0.25 70K 50.90 -15.45%
0.5 2K 17.81 -70.42%

Table 3: Ablation study on CramNet on the RADIATE dataset [40]. Left: The
cross-attention and sensor dropout both improve over the vanilla fusion model
by 4 to 5 points in AP. Putting them together yields the final fusion model with
the best performance. Right: We simulate the radar sparse signals by setting the
intensity thresholds to 0.25 or 0.5, resulting in ∼70K or 2K points, respectively.
As a result, our model performance is degraded relatively by 15% to 70%. This
confirms radar RF imagery contains critical information for 3D detection.
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Dropout Location BEV AP

Normal 57.00
Input 55.78
Point Cloud 58.64
Point Feature 61.23

Fig. 4: Left: Analysis on different sensor dropout strategies. Masking out point
features yields the best performance. Two possible benefits for this dropout
location: 1) Reduce the 3D network reliance on features, which are disrupted the
most given sensor noise. 2) Remain smooth training of 2D feature extractors and
cross-attention. Right: Analysis on model performance degradation on corrupted
data. We add varying degrees of Gaussian white noises to corrupt camera images
and evaluate the performance. Our fusion model trained with sensor dropout
greatly outperforms the one without by 2 to 10 percentage points in BEV AP.
This demonstrates that sensor dropout can drastically enhance sensor robustness.

Effects of ray-constrained cross-attention and dropout. We experiment
the fusion model with different settings to enable/disable ray-constrained cross-
attention and sensor dropout mechanisms. The experimental results are summa-
rized in Table 3 (left). The cross-attention and sensor dropout both improve over
the vanilla fusion model by 4 to 5 points in BEV AP. Putting them together
yields our final fusion model, achieving the performance of 62.07% AP.

Effects of sampling radar points. Most of the camera-radar fusion methods,
such as GRIF Net [13] and CenterFusion [28], perform experiments on the
nuScenes dataset [5] that contains only sparse radar points, at the scale of
hundreds of points in a scene. The resulted radar-only model usually performs
poorly, such as 25.5% AP reported in [13]. On the other hand, our model is
specifically designed to perform either single modality effectively by taking as
input the RF images instead of sparse points.

To quantitatively study how the sparsity of radar signals affects the perfor-
mance, we filter RF images with varying intensity thresholds, as summarized
in Table 3 (right). We set the intensity thresholds to 0.25 or 0.5, resulting in
∼70K or 2K points, respectively, which are already denser than sparse radar
points available on nuScenes [5] or SeeingThroughFog [2] datasets. As a result,
our model performance is degraded relatively by 15% to 70%. We conclude that
radar RF imagery contains critical information for effective 3D object detection.

4.5 Detection Robustness

Detection robustness against sensor deterioration is critical for safe autonomous
driving. In this section, we study the effects of our proposed sensor dropout with
ablation study and corrupted sensor data.
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Where to drop out sensor data? Dropout is a popular technique for training
neural network models [45]. It is usually applied on a layer to randomly mask out
neuron activations. We experiment on various places to drop out sensor data and
summarize them in Table 4 (left). The ‘normal’ dropout applies the conventional
dropout on point cloud features, regardless of which sensor the points are from.
This conventional dropout does not provide benefits in either overall performance
or in bad weather conditions. The ‘input’ dropout randomly masks out a sensor
(radar or camera) entirely. The ‘point cloud’ dropout randomly masks out the
3D points from one sensor entirely. The ‘point feature’ dropout randomly masks
out the initial point cloud features from one sensor entirely but leaves the point
cloud positions intact. As the numbers dictate, masking out point features yields
the best performance. Two possible benefits for this dropout location: (1) Reduce
the 3D network reliance on features, which are disrupted the most due to sensor
noise. (2) Remain training of 2D feature extractors and cross-attention. As such,
we conclude dropping out sensor point features randomly is the most effective.
Sensor dropout improves robustness against input corruption. We study
how the corruption of sensors will affect the performance with and without sensor
dropout and summarize the experiments in Table 4 (right). For this purpose, we
add random Gaussian white noise with varying standard deviation to corrupt the
camera images to different degrees. We evaluate the fusion model on the corrupted
data, with or without sensor dropout during training. The experimental results
show that our fusion model trained with sensor dropout greatly outperforms the
one without by 2 to 10 percentage points in BEV AP. This study demonstrates
that sensor dropout can drastically enhance sensor robustness.

4.6 Camera-only CramNet on Waymo Open Dataset

Our radar-only and camera-radar fusion models perform strongly on the RADI-
ATE dataset [40]. However, the camera-only model suffers from the poor image
quality and adverse weather conditions in the dataset. Since we do not have
access to another public dataset that contains radar RF imagery, we evaluate our
camera-only model performance on the Waymo Open Dataset [47], as summarized
in Table 4. We report 3D AP/APH with 0.7 IoU threshold on the LEVEL 1
difficulty in Table 4. Our camera-only model, CramNet-C, achieves competitive
performance. More details can be found in the supplementary.

4.7 Visualization

We present the visual comparisons between our camera-only, radar-only, and
fusion models in Figure 5. Since the camera visibility is severely reduced due to
either underexposure or adverse weather, the camera-only model tends to miss
detection and the predicted localization tends to be inaccurate. In contrast, the
radar-only model suffers from false positives due to lack of appearance features
from RF images. Overall, our camera-radar fusion model combines the advantages
from the two and produces the most accurate predictions.
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Method 3D AP 0 - 30m 30 - 50m 50m - ∞ 3D APH 0 - 30m 30 - 50m 50m - ∞

M3D-RPN [4] 0.35 1.12 0.18 0.02 0.34 1.10 0.18 0.02
CaDDN [34] 5.03 14.54 1.47 0.10 4.99 14.43 1.45 0.10
CramNet-C 4.14 15.46 1.20 0.15 4.10 15.31 1.19 0.13

Table 4: Camera-only 3D detection results on the Waymo Open Dataset [47]
validation set on the vehicle class, evaluated in terms of 3D AP/APH at 0.7 IoU
on the LEVEL 1 difficulty. Baseline numbers are from [34]. Our camera-only
model, CramNet-C, achieves competitive performance among state-of-the-art.

Fig. 5: Visual comparison between CramNet-C, CramNet-R, and CramNet from
6 scenarios. We visualize the predicted boxes in red and the ground truth boxes
in yellow with projected radar and camera pixels. Whereas the camera-only
model tends to miss detections and predict inaccurate localization, the radar-only
model suffers from false positives. Our camera-radar fusion model combines the
advantages of the two and produces the most accurate predictions.

5 Conclusion

We introduced a camera-radar sensor fusion approach for robust 3D object
detection for autonomous driving. The method relies on a ray-constrained cross-
attention mechanism to leverage the range measurements from radar to improve
camera depth estimates. Training with sensor dropout allows the method to
fall back to a single modality when one of the sensors malfunctions. We present
experiments on the RADIATE dataset and the Waymo Open Dataset.

Limitations. Whereas a camera pixel corresponds to a ray, a (range, azimuth)
radar reading corresponds to an arc in 3D space. Intersecting a camera ray and
a radar arc yields their correspondence. We approximate the radar arc as a
pillar, that is, we assume that the radar points are at the same elevation as the
sensor. This assumption works well in practice when most objects are at a similar
elevation as the sensor. We currently use the RF images in Cartesian coordinates,
which may be suboptimal as the radar natively operates in polar coordinates.
We will explore a polar convolutional network design and radar-specific spherical
voxelization in future work.
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